
Curation of Image Data for Medical Research

Lasse Wollatz∗, Mark Scott∗, Steven J. Johnston∗, Peter M. Lackie†, and Simon J. Cox∗
∗Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK

†Faculty of Medicine, University of Southampton, Southampton, UK

{L.Wollatz, Mark.Scott, S.J.Johnston, P.M.Lackie, S.J.Cox}@soton.ac.uk

Abstract—Microfocus X-ray computed tomography (μCT) and
3D microscopy scanning create scientific data in the form images.
These images are each several tens of gigabytes in size. E-
Scientists in medicine require a user-friendly way of storing the
data and related metadata and accessing it. Existing management
systems allow computer scientists to create automatic image
workflows through the use of application programming interfaces
(APIs) but do not offer an easy alternative for users less
familiar with programming. We present a new approach to the
management and curation of biomedical image data and related
metadata. Our system, Mata, uses a network file share to give
users direct access to their data and also provides access to
metadata. Mata also enables a variety of visualization options
as required by e-Scientists in medicine.

Index Terms—data curation, image management, metadata,
medical research

I. INTRODUCTION

Data curation is an essential part of medical research. New

imaging techniques and the fast-changing nature of research

lead to quick changes in the image analysis tools required by

e-Scientists in medicine.

Current systems, such as the Open Microscopy Environment

Remote Object (OMERO) platform [1] and the Bio-Image

Semantic Query User Environment (BisQue) [2], rely on

custom plug-ins and internal software to allow users to interact

with the data stored by them. Additional steps are needed for

the integration of new software into the image management

workflow. Either the users export data to their local file store,

to then import the data into the new software, or a plug-in is

programmed to allow the software to retrieve data through the

systems’ application programming interfaces (APIs).

Many researchers and technicians are working to ensure that

e-Scientists in medicine can conduct research using the latest

advances in computer science. The medical research itself has

to be undertaken by medical specialists. It is vital that e-

Scientists in medicine do not have to consult a computer sci-

entist to test and experiment with the vast number of software

tools and algorithms included in those tools. We consider easy

access to data to be more critical than programmatic access in

the form of an API [3].

Heterogeneous Data Centre (HDC) [4] is a tool that man-

ages users’ data without imposing such restrictions. A network

share enables users to access their data directly through their

Funding: This work was supported by the Engineering and Physical
Sciences Research Council [grant number 1511465]

operating system’s (OS) file manager application. A file-

system monitor keeps track of the data and synchronizes it

with the metadata in a database.

In this paper, we adapt HDC for the use of biomedical

research images. The resulting software is called Mata1 (a

combination of medicine and data) and provides additional

functionalities for working with metadata as well as pre-

viewing capabilities targeted to e-Scientists in medicine.

This paper makes the following contributions:

• It proposes an alternative approach to the curation of

research data in medicine;

• It shows how HDC can be configured to medical research

and the steps taken to create Mata;

• It designs distinct use cases to show how Mata can benefit

medical researchers.

The rest of this paper is structured as follows. An overview

of HDC and reasons for choosing it are given in section II.

Section III discusses Mata and how it adapts HDC to medical

research. Section IV presents different use cases and shows

how Mata can benefit medical researchers. We give a conclu-

sion in section V.

II. MOTIVATION

In [5], we tested a website-based system for image manage-

ment. The upload of several tens of gigabytes of data through a

web browser is slow and unreliable due to browser limitations

[6], [7]. The upload speed is mainly dependent on the internet

performance, which cannot be controlled by the system. There

are two common solutions to implement the upload of large

files. Either a webbrowser application is used, or a separate

software connects to both the local file store and the remote

one. We used Plupload2 in [5] to overcome the issue of file-

size when uploading large datasets, but it was not able to

increase reliability compared to that offered by software-based

file upload as used by other management systems [1], [2], [8].

The alternative approach, as used by [1], [2], [8], is a software

running on the e-Scientists computer that interacts with an API

on the management server. The downside of a system-specific

software for image upload and download is that it reduces user-

friendliness since it requires users to learn the operation of the

image management software. Providing access to data only via

an API introduces an additional step to connect other software.

Any new software will require a computer scientist to integrate

1Published as: doi:10.5258/SOTON/D0430
2Official site: http://www.plupload.com/ (last accessed 22/05/2018)

105

2018 IEEE 14th International Conference on e-Science

978-1-5386-9156-4/18/$31.00 ©2018 IEEE
DOI 10.1109/eScience.2018.00026

it with the management system via an API. The APIs used

by existing management systems are not standardized. The

existing clinical standard for data management and transfer,

Digital Imaging and Communications in Medicine (DICOM),

relies on detailed patient information and cannot be used

in a research environment, where the patient needs to be

anonymous [9], [10].

The reason for choosing HDC [4] was that it gives users

direct access to the server file store. Using a network file share

gives users a familiar environment for accessing their data

while ensuring robust file transfer and storage methods that

evolve with the file store.

HDC has a file-system monitor, which will be referred to

as the “file watcher” for the rest of this paper. Its task is to

compare the state of the file system to that of the database

storing the metadata and modify each of them to reach a

consistent state. The file watcher is triggered by file-system

events to analyze a particular folder and checks every folder

in the system at regular intervals. All folders on a defined level

are considered datasets in the database. Information about the

datasets’ files is stored in hidden sub-directories of the data

folder. With the help of this information, HDC can determine

and differentiate between additions, removals, renames and

copies on a folder and file level [4], [11]. Another functionality

provided by the file watcher is the automatic execution of plug-

ins if specific file-types are added. This allows extending the

capabilities of the file watcher further by interfacing with other

external software [4].

III. THE IMAGE MANAGEMENT SYSTEM

In this section, we will explain how we created Mata by

modifying HDC. HDC implements a variety of features for the

management of data, most of which were deemed useful for

medical research. For Mata, we retained the Windows server

to integrate with companies’ Windows networks, as well as

the Structured Query Language (SQL) database used by HDC

for metadata storage. The layout of the database was copied

since it already implemented the versatility required for this

project.

Other parts of HDC were considered unnecessary for this

particular implementation. Specifically, the Microsoft Share-

Point3 interface was removed and replaced with a more

lightweight PHP (PHP: Hypertext Preprocessor) website.

SharePoint integrates well with Microsoft environments since

it is part of the Microsoft Office suite. The number of third-

party applications for SharePoint is limited and integration of

custom plug-ins, though possible, requires programming them

in .NET or finding another way of implementing them. The

original interface was built with SharePoint 2010 and .NET

3.5. That version of SharePoint is out of date, and we found

it to be slow. We did not use many of the SharePoint features

that were implemented with the HDC front-end, either. Instead

of reimplementing the SharePoint front-end in a more recent

release, we created a PHP site for Mata that was easier to

3Official site: www.sharepoint.com/ (last accessed: 22/05/2018)

prototype and is fully open source. The use of PHP also

allowed easy reimplementation of essential features, such as

the editing of user permissions and dataset metadata.

The rest of this section will address various parts of the

management system and the corresponding solutions we have

developed. We will briefly discuss feature re-implementations

of HDC and then introduce any additions made to the system

for each part. We distinguish between the following modules

of the management system: editing of metadata, visualization

and searching of metadata, visualization of datasets, and

system security.

A. Editing of Metadata

Metadata here refers to key-value pairs [4], which we refer

to as tags in order to match users’ expectations. Tags allow

users to assign metadata to datasets. Tags can help maintain

information about data that is important to medical researchers

but cannot be stored as part of the image file. For example,

a tag can describe the species seen in the image, which may

be a human, a sheep, or a zebrafish. As with HDC, editors of

the dataset are allowed to sort tags in a particular order and

create hierarchies for them. These hierarchies allow users to

structure the tags according to their needs.

A challenge faced when allowing users to edit the metadata

is the lack of consistency, which makes a comparison of tags

more challenging [12]. We used two solutions to overcome

this problem.

One solution we adapted from HDC to avoid users using

different terms to describe the same thing involved the ability

to import tags from parents. It assumes that users will tend to

use this functionality to save the effort of copying common

tags. When importing tags from a parent, all tags from that

parent, where the key has not yet been assigned any value

for the dataset, are copied over to the dataset. This approach

ensures consistency among tags between different datasets,

users, and sites. Not copying values of keys which have already

been defined avoids overwriting data or having duplicate keys.

In addition, Mata implements a dictionary to guide users

into using the same tags for describing the same features [13].

The advantage is that synonyms can be avoided. In this project,

a dictionary has been implemented for guidance to avoid

typographical errors and reduce the number of grammatical

variations of the same term. The system suggests existing tags

to users based on the user’s input. Tags that have been used

more often have been ranked higher amongst the suggested

tags.

B. Visualization and Searching of Metadata

One of the main requirements of a data management system

is the ability to look up data in an efficient manner. Our

solution provides three different options for finding datasets:

a basic search, tag clouds, and relation networks.

1) Basic Search: One functionality re-implemented is a

basic search function which looks for the exact phrase in

the datasets title, description and tags. It returns any matches

found in the order of the number of matches of the search term

106

Fig. 1. Screenshot showing the rectangular tag cloud for a small number
of tags. Entries are in alphabetical order. More common tags have a larger
font-size than less common tags.

found in the database. This search function can be expanded

to be more sophisticated if needed [14]–[17].

2) Tag Cloud: A page with all of the different tags was

created, to enable users to browse the tags. Tags were arranged

in an elementary rectangular tag cloud as shown in Fig. 1, to

aid users in finding important tags quicker. The implementa-

tion of more sophisticated tag clouds is possible and has been

discussed in many papers [18]–[20]. We implemented our own

tag cloud here and will outline it in the following paragraphs.

In order to prioritize tags in a tag cloud, they are represented

in different font sizes, colours, or layouts. Tags that appear

more often are larger, such that specific, unusual tags or

typographical errors that only appear for a few datasets are

smaller and less noticeable.

We assume that more frequently used tags are more likely

to be of interest to a common user and therefore should be

larger and easier to find. Meanwhile, to help users searching

for specific tags, we minimized the variation of font size

between tags. We used Zipf’s Law [21] to map the occurrence

of specific tags to a linear distribution. We also maintained an

alphabetical ordering of tags to help users find specific tags

[19].

3) Relation Network: When editing a dataset, users can

define parent datasets, meaning datasets which the current

dataset was derived from [4]. Examples are a segmentation

of a scan or follow-up data, which can be linked to the

original image dataset. By default, a dataset is expected to

have precisely one parent unless it is an original scan, in which

case it does not have any parent. In some cases, several images

may be combined into one. An example is the correlation of a

single photon emission computed tomography (SPECT) image

and a computed tomography (CT) image. Areas of abnormality

found by a SPECT can be located relative to internal organs,

detected by the CT [22]. In such cases, more than one parent

may exist. Having the origin of an image defined ensures

that they can be traced back. A network graph (see Fig. 2)

is generated, using recursion to search for all related datasets

in the database and vis.js4 for display. In this graph, each node

represents a dataset and arrows connecting the nodes indicate

their relation, as seen in Fig. 2. This graph helps users finding

4Accessible at http://visjs.org (last accessed 22/05/2018)

other datasets derived from the same scan with just a few

clicks.

This view has also been combined with the tags explained

in the previous section. As a result, it can display a hierarchy

of tags for a folksonomy [12], [23] by assuming that two tags

are equal, if their keys, their values, and child tags are all the

same. The order of the children is disregarded.

As seen in Fig. 2, the datasets “Sample CT002” and “test-
Merge of twins CT” are tagged with the same patient, as all

the child tags related to “Patient” are the same. However, they

are different from the patient of “Sample CT001”, as they only
share a single attribute.

Fig. 2 also illustrates the limitation of this strict definition

of equality, since the “Patient” in “Sample CT001” and “Sam-
ple CT001-Copy” are considered different even though they

describe the same person. Not all child tags of “Patient” are the
same, because the researcher in one dataset listed the species

as part of the “Patient” information. The gravitational physics

model behind vis.js solves this issue by ensuring that such

tags, which are almost equal, will remain close together since

they share many children.

The rather strict definition avoids false positives. In

medicine, critical metadata, such as the patient, have multiple

identifiers. This reduces the chance of tags falsely being

identified as equal.

The comparison of tags and their children, as mentioned

before, occurs over several levels. As a result, the tag “Imag-
ing” may include subcategories, for example, “Scan settings”,
containing a list of settings such as the exposure rate and

projections. In the web interface, every tag (for example a

single patient) links to a page that shows all datasets containing

that tag.

C. Visualization of Datasets

Microfocus X-ray computed tomography (μCT) data and

resulting processed data need to be available to medical re-

searchers in a secure, accessible, and meaningful way. One of

the critical demands identified was fast previewing of images.

It allows users to decide which images are worth analyzing

before retrieving the full image from a remote storage onto

their systems for processing. In order to display files over

the web, we used the Multiresolution Computed Tomography

Viewer (MCTV) [5] and Viewstl and integrated them as shown

in Fig. 3.

1) Adding a 2D Volumetric Image Viewer: MCTV allows

the viewing of extra-large 3D CT files in a web browser

without requiring plug-ins [5]. It can also present 2D images

as a special case of a 3D image stack. On the presentation

layer, it can be directly embedded into Mata without additional

installations. On the back end, a script had to be implemented

to automatically create previews and metadata required by

MCTV. The HDC file watcher already had a functionality to

allow a script to be executed when a dataset changes. This

was used by Mata to trigger a script creating a preview for a

dataset each time it changes, as shown in Fig. 3.

107

Fig. 2. Screenshot of a dataset relation network graph using fictional datasets for demonstration purposes. It allows to find all datasets (blue) related to the
currently selected dataset (red). We invented patient names and details to make it easier to follow the example.

The process of creating tiles requires a large number of

read and write operations and is therefore relatively slow. This

means that it is likely that a dataset is being changed while a

preview of the old version is still being created. For example,

when a dataset comprising a stack of 2D image files is first

uploaded, the file watcher triggers the plug-in for each file

upload. When the first file is being uploaded, the file watcher

starts the tile-creating script (the tiler). By the time the second

file reaches the Mata file store, the tiler has not yet finished, but

the file watcher starts another instance of it. For a 3D image

with 2000 slices, this would mean that millions of duplicate

tiles would be created.

Therefore the script needed to cope with processing large

images. The approach we took was to split the task of

creating tiles into several subtasks which can then be canceled

remotely. To implement this, a local queue was set up to

enable local deployment, as shown in Fig. 4. Celery version

3.1.25 was used for the queue as it is the latest version

compatible with Windows. Scripts interacting with the queue

were implemented in Python.

HDC executes a script that sends a job request to “read-

dir” to the queue. The “readdir” function first checks if the

command has been executed for the same directory before and

revoke any outstanding jobs. As this version of Celery does not

support accessing information about tasks in the queue, it was

necessary to save the job identifications (IDs) in a separate file.

The Python code will then read any metadata files it finds and

attempts extracting remaining information such as the global

minimum and maximum pixel values from the image files.

For extracting the minimum and maximum pixel values, only

a selection of the image files is read (or a random set of points

taken from a raw file) and evaluated to reduce the overall time

it takes to execute the script. Finally, one tiling-job request is

created for each image slice, and the job ID is written to a

file. The tiler then splits the image into smaller tiles and saves

the tiles to disk [5]. The tiler jobs are started with a lower

priority than that of the job reading the directory, to ensure

that revoking jobs gets priority over working on other jobs.

This reduces the overall queue length and avoids images being

tiled more often than necessary.

It is important to make images accessible in a way mean-

ingful to the medical researchers who are used to 2D images.

With the script for creating the tiles in place and having it

linked as shown in Figs. 3 and 4, MCTV is able to read the

108

User/ software
image access

Image
metadata

Tile creation

SQL reference database

Data pre-view storeImage file store

HDC
file watcher

User image
viewing

MCTV ViewstlWebsite front end

Fig. 3. The new proposed system using HDC. The image file store, HDC file watcher and SQL reference database are taken from the original HDC
implementation. The website front-end, the implementation of visualization tools and related data pre-processing scripts are newly created for this paper.

Celery queuerequester.pyHDC
file watcher

readdir

tile

Data pre-view store

Tile creation

job @readdir

@tile

@readdir

revoke @tile

jobs @tile

image tiles

metadata
& job IDs

Fig. 4. Schematic of the queue implemented for the tiler in Fig. 3

tiles from the server file store and present them to the user as

shown in Fig. 5. Users’ access to the tiles is restricted through

the permissions on the network file share.
2) Adding a 3D Surface Image Viewer: The viewer pre-

sented in the previous section enables the viewing of volumet-

ric images in the form of 3D image stacks and 2D images. It

cannot deal with 3D viewing or with the viewing of surface

files. The data which are inherently 3D also requires a 3D

visualization in order to enable the analysis of 3D structures

not represented in a 2D viewer. It was therefore decided to

add Viewstl5 to display stereo-lithography (STL) and object

5Official site: http://www.viewstl.com/ (last accessed 22/05/2018)

(OBJ) files.

As with MCTV, Viewstl does not require special plug-ins

but works with JavaScript. Files are loaded into client-side

memory and are not processed by any third party.

In order to use the encrypted version of the Hypertext

Transfer Protocol (HTTP) for all resources, a local copy

of Viewstl was created and modified to use the encrypted

protocol.

To integrate the viewer, an HDC file-watcher plug-in has

been created, which is executed for STL and OBJ files. It calls

a Python script which uses the same queue as the MCTV tiler

but only creates a file with the name of the first STL file in

109

Fig. 5. Screenshot of a dataset containing a TIF-stack viewed in Mata. The
panel on the left shows the tags and related datasets. On the right a slice of
a μCT scan of a lung biopsy can be seen with a planar and cross-sectional
view as explained in [5].

Fig. 6. Screenshot of a dataset containing an STL file, viewed in Mata. The
layout is the same as in Fig. 5 but MCTV is replaced with Viewstl showing
the surface of a vascular structure from a lung biopsy.

the datasets folder. On the web page for viewing a dataset,

PHP is used to check if the dataset contains a 3D surface file

and if the user has read permission. If this is the case, Viewstl

is loaded and is passed the file name, which is then displayed

as shown in Fig. 6.

Through the use of Viewstl, the ability to view 3D surface

files over the web via Mata was demonstrated. The secure

implementation of an external viewer also shows that, due to

its modularity, Mata can be extended very easily.

D. System Security

The importance of security for medical databases has been

highlighted through recent incidents [24], [25]. For the se-

curity of a service, various functional components have to

be considered and evaluated. This is particularly important

when dealing with sensitive medical data. Components that

could be vulnerable include the user authentication and the

database. Most of these components have been discussed in

[4], [11]. The specific permissions in Mata were kept the

same as in the case of HDC. Everyone can list folder content

but access to file content is limited to certain users. The

owner (the creator) of the dataset can decide whom to give

access to, and people with access can preview and edit the

data apart from their permission in a browser. HDC also

forwards the permissions as read and write permissions to the

server file store and the connected network file share.The file

access on the network file share is secured through Windows

Authentication. Applications, such as the PHP interpreter,

running on the server responsible for the website need elevated

permissions in order to access the database and other data.

Further, the website authentication has to be re-implemented

with PHP.

When webpage content is generated, it is essential that

confidentiality of the data is maintained. Accordingly, when

rendering the content of a webpage, PHP needs to know

who is allowed to view or edit individual content and who

is accessing the website. HDC synchronizes folder and file

permissions between the database and network file share. As

PHP has access to the database, it can look up if a user

has permission to access specific data. Additionally, Windows

Server and Microsoft Internet Information Service (IIS) enable

the use of the same authentication for websites and file access.

This enables single sign-on (SSO), so that users only need one

account and password to access both, the network file share

and the website of Mata as well as other systems connected

to the domain. PHP can read the session’s details from the

server and therefore knows who is accessing the webpage. The

user identification is the same as the one HDC synchronized

between the servers’ file store and database. As a result, PHP

knows the users’ permissions.

The primary reasons for choosing SQL as the main database

type was the well-established security it offers in comparison

to not only SQL (NoSQL) databases [26]–[28]. The use

of well-established systems, like Windows Server, Windows

authentication, SQL and PHP enables system administrators

to set up a secure implementation throughout the whole data

management system.

E. Summary

In this section, we introduced the medical image man-

agement system Mata. We discussed the underlying software

and presented various parts of the management system. This

included the editing of metadata, visualization and searching

of metadata, visualization of datasets and system security.

Metadata is created by users and the editing of it is guided

through the use of a dictionary. A tag cloud and dataset relation

networks allow additional navigation options apart from a

basic search. We also showed the implementation of a 2D

and a 3D viewer, and explained how we secured the system.

A comparison of HDC and Mata is given in Table I.

IV. USE CASES

Though it is applicable to any sort of data, Mata was

tested using a scenario modelled after a research project on

lung diseases, at the University of Southampton. This project

evaluates the use of μCT scanners for the analysis of biopsies

in a non-destructive way.

This section presents the use cases for this scenario to show

how the tools discussed can integrate with an existing image

workflow. The use cases are illustrated in Fig. 7.

110

TABLE I
COMPARISON OF HDC AND MATA.

HDC Mata
Operating system Windows Server Windows Server
Server Microsoft IIS Microsoft IIS
Database SQL Server SQL Server
Middleware Sharepoint 2010/

.NET 3.5
PHP 7.1

Data access Network file share Network file share
Synchronisation File watcher File watcher (from

HDC)
SSO authentication � � (partially reimple-

mented)
Metadata editing � � (reimplemented)
Metadata import � � (reimplemented)
Metadata suggestion � � (ranked dictionary)
Basic search � � (reimplemented)
Tag cloud � �
List of direct relatives � �
Relation network � � (graph of all rela-

tives)
CT slice viewer � (but 2D viewer) � (MCTV)
3D surface viewer � � (Viewstl)

imaging

a

storing

b

selecting

c

preparing

d

sharing

e

discussing/
evaluating

f

Fig. 7. Simplified overview of the use cases. Dashed parts are important to
the project and the image workflow but not part of the presented system. Each
of the steps (a) to (f) are described in more detail in sections IV-A-IV-E.

As part of this scenario, a large number of images needs to

be created using a newly developed μCT scanner. Matching

microscopy images are retrieved, and images are processed to

enhance the contrast. μCT and microscopy images are then

aligned in 2D and 3D using point-based registration based on

the scan conditions. Matching image areas are presented to

experts to assess both biological content and image quality.

Images of microscopy slices and μCT slices are then assessed

for technical quality or biological data content by image

experts or histopathologists.

A. Storing New Scans

Use case: An image has been scanned on the μCT, and
the scan operator wants to store the image. (Fig. 7 a, b)
By using Mata developed in section III, it is possible to store

the images generated by the newly developed medical μCT

scanner by simply copying the image files into the network

file share.

The file watcher detects the new files and creates an entry in

the database. It also triggers the code for creating a preview of

the image. The operator can add file permissions and metadata

as appropriate. In many practical scenarios, it will be beneficial

to add an HDC plug-in which reads out metadata from files

and adds it automatically as described in [4].

If metadata are created in a consistent way by the scanner,

a plug-in for the file watcher can be written, to automatically

add this metadata to the database as soon as the image

gets uploaded. DICOM devices can also be supported by

adding a DICOM receiver. An administrator is required to

set permissions for any received data since DICOM does not

transfer user information during file exchange. This is due to

DICOM being patient centred.

B. Finding Relevant Images

Use case: A medical researcher tries to find and get hold
of images relevant to the project. For that, they want to
find images of a lung taken by μCT and preview them
to confirm that they align with the projects requirements.
(Fig. 7 c)
The researcher has various options of finding relevant images,

as discussed in section III-B. A basic search for a relevant

keyword or browsing through the tags can help obtaining

a list of relevant datasets. If images are not in the desired

format or processing stage, it is possible to find related datasets

through the network graph. With the help of MCTV and

stlviewer (section III-C), it is possible to preview images

before downloading them, even if their size of several tens of

GB exceeds the machine’s Random Access Memory (RAM).

Download of images can be conveniently achieved through the

file explorer.

C. Finding Related Images

Use case: The researcher wants to retrieve the mi-
croscopy scan of the same sample. (Fig. 7 c)
The researcher has various options to find a related dataset.

The two images are likely to share a tag, like the sample

identification number. The researcher can therefore find the

data by searching for this tag. A more direct approach is to

look at the relationship network graph. Any linked dataset can

be found and accessed in this way.

D. Processing Images

Use case: The researcher found a relevant image and
tries to process it for presentation to the experts. (Fig. 7 d)
After relevant images have been found, they can be processed

using any suitable processing software.

Since the images are accessible via network file share, any

processing software the researcher wants to use can read the

files directly from the remote storage.

After the processing, the new data are stored in a new folder

on the network file share to create a new dataset in Mata

and share them with other, specified researchers. Newly found

metadata can also be added to Mata, and a custom HDC plug-

in for importing this metadata can be developed if suitable.

E. Sharing Images

Use case: A set of images is to be shared with an expert
for evaluation. (Fig. 7 e, f)

111

In order to share a dataset with an expert, the web link to that

dataset can be sent to the other person. Provided that the other

person is a user of Mata, they can access the dataset as soon

as the owner has added them to the list of viewers/editors of

the dataset through the web interface.

F. Summary

In this section, we introduced a possible scenario for the

use of an image management system in medical research. We

showed how Mata can be used as a management system for

this scenario by discussing different use cases based on the

scenario. We demonstrated that Mata can tackle the various

steps involved for image management in medical research. All

of the steps can be achieved without programming scripts or

plug-ins to link external software to the system.

V. CONCLUSION

It is essential to provide access in an user-friendly way, to

enable e-Scientists in medicine to access data without requir-

ing programming skills. Current image management systems

are restrictive in the way they incorporate other software.

We took a data curation system that gives users direct access

to their data through a network file share, eliminating the need

for special software to access the data. It also simplifies the

use of new software for image processing and visualisation

with the existing system, without requiring custom plug-ins to

load image data via a non-standard API. Since most software

can read files from a file store, no additional programming

is required to allow them to use image data stored in our

management system.

We added a website front-end to the system, which allows

medical researchers to fulfill common use cases. This includes

the management of metadata through the web-interface as well

as different ways of visualizing and searching metadata and

datasets. We showed how additional data visualization tools

can be implemented. We used well established standards all

along the way to ensure that the system is easy to transfer to

and secure in a different environment.

Future work involves the addition of an API to allow

scripts to access metadata through code. It would be beneficial

for the biomedical image community to develop a standard

for research images similar to DICOM for clinical, medical

images. Declaring an existing API, like the one used by

OMERO or BisQue, as a standard may well be an option for

this. We will also show how this management system fits into

the bigger workflow of images in medical research.

ACKNOWLEDGMENT

We would like to thank Anna Scott for providing her dataset

as an example figure for this paper. All data supporting this

study are openly available from the University of Southampton

repository at https://doi.org/10.5258/SOTON/D0430.

REFERENCES

[1] C. Allan, J. M. Burel, J. Moore, C. Blackburn, M. Linkert et al.,
“OMERO: flexible, model-driven data management for experimental
biology,” Nat. Methods, vol. 9, pp. 245–253, 2012.

[2] K. Kvilekval, D. Fedorov, B. Obara, A. Singh, and B. S. Manjunath,
“BisQue: a platform for bioimage analysis and management,” Bioinfor-
matics, vol. 26, no. 4, pp. 544–552, Feb 2010.

[3] J. Dryndos, A. S. S. Kazi, D. Langenberg, H. Löh, and R. Stark,
“Collaborative virtual engineering for smes: Technical architecture,” in
IEEE Int. Technol. Manag. Conf. Lisbon, Portugal: IEEE, Jun 2008,
pp. 1–8.

[4] M. Scott, R. P. Boardman, P. A. Reed, and S. J. Cox, “Managing
heterogeneous datasets,” Inf. Syst., vol. 44, pp. 34–53, 2014.

[5] L. Wollatz, S. J. Cox, and S. J. Johnston, “Web-based manipulation of
multiresolution micro-CT images,” in Proc. 11th Int. Conf. eScience.
Munich, Bavaria, Germany: IEEE, Sep 2015, pp. 308–311.

[6] E. Lawrence, “File upload and download limits,” Mar 2011, accessed
on 06/12/2017. [Online]. Available: https://blogs.msdn.microsoft.com/
ieinternals/2011/03/10/file-upload-and-download-limits/

[7] Ephox, “Plupload: Multi-runtime file-uploader frequently asked
questions,” 2017, accessed on 06/12/2017. [Online]. Avail-
able: http://www.plupload.com/docs/v2/Frequently-Asked-Questions#
when-to-use-chunking-and-when-not

[8] D. S. Marcus, T. R. Olsen, M. Ramaratnam, and R. L. Buckner, “The
extensible neuroimaging archive toolkit,” Neuroinformatics, vol. 5, no. 1,
pp. 11–33, Mar 2007.

[9] NEMA, Digital Imaging and Communications in Medicine (DICOM)
Standard, National Electrical Manufacturers Association Standard
2018a, 2018. [Online]. Available: ftp://medical.nema.org/medical/
dicom/2018a/

[10] M. J. Warnock, C. Toland, D. Evans, B. Wallace, and P. Nagy, “Benefits
of using the dcm4che DICOM archive,” J. Digit. Imaging, vol. 20, no.
Suppl. 1, pp. 125–129, Nov 2007.

[11] M. Scott, “Research data management,” Thesis, University of Southamp-
ton, May 2014.

[12] S. A. Golder and B. A. Huberman, “Usage patterns of collaborative
tagging systems,” J. Inf. Sci., vol. 32, no. 2, pp. 198–208, 2006.

[13] A. Noruzi, “Folksonomies - why do we need controlled vocabulary?”
Webology, vol. 4, no. 2, Jun 2007.

[14] S. Dessloch and N. Mattos, “Integrating SQL databases with content-
specific search engines,” in Proc. 23rd VLDB Conf., Athens, Greece,
1997, pp. 528–536.

[15] W. Kießling and G. Köstler, “Preference SQL: design, implementation,
experiences,” in Proc. 28th Int. Conf. Very Large Data Bases (VLDB
’02). Hong Kong, China: VLDB Endowment, 2002, pp. 990–1001.

[16] Y. Tsuruoka, J. Tsujii, and S. Ananiadou, “FACTA: a text search engine
for finding associated biomedical concepts,” Bioinformatics, vol. 24,
no. 21, pp. 2559–2560, Nov 2008.

[17] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale
hypertextual web search engine,” Comput. Networks, vol. 56, no. 18,
pp. 3825–3833, Dec 2012.

[18] B. Y.-L. Kuo, T. Hentrich, B. M. Good, and M. D. Wilkinson, “Tag
clouds for summarizing web search results,” in Proc. 16th Int. Conf.
World Wide Web (WWW ’07). New York, New York, USA: Association
for Computing Machinery (ACM), 2007, pp. 1203–1204.

[19] M. J. Halvey and M. T. Keane, “An assessment of tag presentation
techniques,” in Proc. 16th Int. Conf. World Wide Web (WWW ’07). New
York, New York, USA: Association for Computing Machinery (ACM),
2007, pp. 1313–1314.

[20] C. Seifert, B. Kump, W. Kienreich, G. Granitzer, and M. Granitzer, “On
the beauty and usability of tag clouds,” in Proc. 12th Int. Conf. Inf. Vis.
(IV 2008). London, UK: IEEE, Jul 2008, pp. 17–25.

[21] G. K. Zipf, Human Behaviour and the Principle of Least-Effort. Cam-
bridge, MA: Addison-Wesley, 1949.

[22] G. Soo and T. Cain, “SPECT-CT scan,” Jul 2017, accessed on
25/05/2018. [Online]. Available: https://www.insideradiology.com.au/
spect-ct-scan/

[23] A. Mathes, “Folksonomies - cooperative classification and
communication through shared metadata,” 2004, accessed
on 25/05/2018. [Online]. Available: http://www.adammathes.com/
academic/computer-mediated-communication/folksonomies.html

112

[24] TrapX Research Labs, “MEDJACK.2 hospitals under siege,” TrapX
Research Labs, Tech. Rep., 2016, accessed on 25/05/2018.
[Online]. Available: https://media.scmagazine.com/documents/242/
trapx medjack2 60312.pdf

[25] T. Fox-Brewster, “Medical devices hit by ransomware for the
first time in US hospitals,” May 2017, accessed on 04/07/2017.
[Online]. Available: https://www.forbes.com/sites/thomasbrewster/2017/
05/17/wannacry-ransomware-hit-real-medical-devices/#741ce643425c

[26] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and J. Abramov, “Security
issues in NoSQL databases,” in Proc. Int. Jt. Conf. IEEE Trust. ICESS-
11/FCST-11, IEEE. IEEE, 2011, pp. 541–547.

[27] A. Ron, A. Shulman-Peleg, and A. Puzanov, “Analysis and mitigation of
NoSQL injections,” IEEE Secur. Priv., vol. 14, no. 2, pp. 30–39, 2016.

[28] D. Chahal, L. Kharb, and M. Gupta, “Challenges and security issues
of NoSQL databases,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.,
vol. 2, no. 5, pp. 976–982, 2017.

113

