
ScienceSearch: Enabling Search through Automatic
Metadata Generation

Gonzalo P. Rodrigo, Matt Henderson, Gunther H. Weber, Colin Ophus, Katie Antypas, Lavanya Ramakrishnan
Lawrence Berkeley National Lab

Berkeley, CA 94720, USA

{gprodrigoalvarez, mhenderson, ghweber, clophus, kantypas, lramakrishnan}@lbl.gov

Abstract—Scientific facilities are increasingly generating and
handling large amounts of data from experiments and sim-
ulations. Next-generation scientific discoveries rely on insights
derived from data, especially across domain boundaries. Search
capabilities are critical to enable scientists to discover datasets
of interest. However, scientific datasets often lack the signals
or metadata required for effective searches. Thus, we need
formalized methods and systems to automatically annotate sci-
entific datasets from the data and its surrounding context.
Additionally, a search infrastructure needs to account for the
scale and rate of application data volumes. In this paper, we
present ScienceSearch, a system infrastructure that uses machine
learning techniques to capture and learn the knowledge, con-
text, and surrounding artifacts from data to generate metadata
and enable search. Our current implementation is focused on
a dataset from the National Center for Electron Microscopy
(NCEM), an electron microscopy facility at Lawrence Berkeley
National Laboratory sponsored by the Department of Energy
which supports hundreds of users and stores millions of micro-
graphs. In this paper, we describe a) our search infrastructure
and model, b) methods for generating metadata using machine
learning techniques, and c) optimizations to improve search
latency, and deployment on an HPC system. We demonstrate
that ScienceSearch is capable of producing valid metadata for
NCEM’s dataset and providing low-latency good quality search
results over a scientific dataset.

I. INTRODUCTION

Scientific discovery is becoming increasingly dependent on

deriving insights from the growing amount of data collected at

scientific facilities. While the data collected is valuable to the

scientists running an experiment, the same data might also be

useful to other scientists not involved in its production. Search-

ing and sharing data can enable new scientific discoveries

across disciplinary boundaries. Searching also provides access

to historical data allowing users to compare it with data from

a future experiment, that can sometimes reveal new insights

from an old data set. For example, recent work [12] has

shown that the existence of the Higgs Boson could have been

confirmed through new analyses of previously collected LEP

(Large Electron-Positron Collider [23]) data, which would

have been significantly more cost-effective than building a new

accelerator and running months of new experiments.

Search capabilities are fundamental to enable scientists to

discover datasets of interest. However, datasets often lack

the signals or metadata required for effective search since

metadata generation is largely a manual and tedious task. The

growth in scientific data volumes is making this even more

tedious and complicated.

Our approach to automate scientific data exploration is

inspired by the breakthroughs that enabled web search to trans-

form our access to online information. Search engines, such as

Google, rely on crawling and indexing large volumes of data

in their cluster farms and use efficient algorithms to improve

search for their end-users. Traditionally, Google relied mostly

on algorithms such as PageRank, where the rules/signals

were controlled by humans. However, more recently Google

has started using machine learning (i.e., RankBrain [30]) to

produce metadata and deliver search results.

In this paper, we present ScienceSearch, a generalized

scalable search infrastructure that uses machine learning to

capture metadata from data, context, and surrounding artifacts.

Our current implementation focuses on the dataset from the

National Center for Electron Microscopy (NCEM), a Depart-

ment of Energy (DOE) facility at Lawrence Berkeley National

Laboratory. NCEM’s data contains millions of micrographs

produced by hundreds of scientists. In this context, we iden-

tify multiple artifacts surrounding NCEM’s data, including

project proposals, publications, and the file system structure.

ScienceSearch enables efficient search on NCEM data based

on automatically generated metadata. Scientists can express

their data needs as a text query in a web interface and receive a

list of relevant micrographs, proposals, and publications within

seconds. The internal search model aggregates metadata from

multiple sources and balances their importance.

New methods to generate metadata and search results can

only be improved with user verification and feedback. Sci-

enceSearch incorporates user feedback by allowing users to

explore the data and curate metadata—verifying existing data

or providing new annotations that can be used to bootstrap

the machine learning process. Additionally, user choices are

recorded to improve search behavior.

The ScienceSearch infrastructure and methods are general

and can be extended to apply to other domains or datasets.

The novelty of ScienceSearch lies in its capacity to offer

search for scientific datasets by analyzing the environment

and artifacts surrounding them. Specifically, we make the

following contributions:

U.S. Government work not protected by U.S. copyright

93

2018 IEEE 14th International Conference on e-Science

978-1-5386-9156-4/18/$31.00 ©2018 IEEE
DOI 10.1109/eScience.2018.00025

• We describe our system architecture and a simple, yet

powerful search model.

• We describe our methods for generating metadata using

machine learning techniques from a number of artifacts

including proposals, publications, file system structures,

and features extracted from images.

• We describe our implementation, associated optimiza-

tions to improve search latency and its deployment on

HPC systems. Our search infrastructure is deployed in

production and allows users to search data produced by

the TEAM I microscope at NCEM.

The remainder of this paper is organized as follows. First,

we describe NCEM and its processes in Section II. We provide

an overview over the ScienceSearch architecture in Section III,

metadata generation methods in Section IV, and NCEM im-

plementation details in Section V. We review related work in

Section VI and finally present conclusions in Section VII.

II. NATIONAL CENTER FOR ELECTRON MICROSCOPY

The National Center For Electron Microscopy (NCEM) is an

electron microscopy user facility at the Molecular Foundry at

Lawrence Berkeley National Lab. NCEM operates 11 electron

microscopes, offering a wide range of capabilities for high

resolution material characterization such as in-situ nanoinden-

tation, spin-polarized low-energy microscopy, or tomography

[4].

Scientists apply for microscope time at NCEM through

a competitive process whereby a scientist writes a proposal

describing research goals and experimental plans. The ap-

plication is peer reviewed and, if accepted, the scientist is

given a time slot during which he or she can use one of

the microscopes to photograph samples. Images taken by a

microscope are known as micrographs and they are the main

type of data produced at NCEM. This data is stored on a

network-connected file storage system and organized by the

scientists utilizing the microscope time at NCEM. However,

the micrograph files rarely include any metadata apart from

microscope capture settings (e.g, exposure, contrast, signal

voltage). Instead, users store metadata in diverse ways, e.g.,

in physical paper notebooks belonging to the individual sci-

entists, elaborate naming conventions of files and directories,

or simply by memory. This methodology (or lack of) does

not facilitate the preservation of knowledge on the data. As a

consequence, older micrographs slowly become more difficult

to use due to the lack of information on the experiment.

At the time of this publication, NCEM stores terabytes of

micrographs in millions of files and a significant percentage

of them lack metadata.

ScienceSearch aims to provide search over NCEM’s data set

to help users to find micrographs of interest. ScienceSearch

generates new metadata by analyzing four main knowledge

sources that we identify in NCEM: 1) storage file structure,

capturing user’s logic to organize data; 2) proposals and

publications related to the images, which describe the purpose

and goal of the micrographs; 3) image data, which can be

modeled to identify common patterns between them; and

4) user feedback, which can add detailed information to a

micrograph image. These four sources of information are

selected since they provide valuable contextual information

for search. Currently, only data that is public is included

in ScienceSearch. ScienceSearch does not provide privacy

or access controls. We assume data is only imported into

ScienceSearch if it can be widely available.

III. SCIENCESEARCH ARCHITECTURE

ScienceSearch provides a generalized infrastructure to per-

form search over scientific data and artifacts. End users use

a web-based interface to interact with the ScienceSearch

infrastructure. They can search across data, publications and

proposals, and provide feedback on the automatically gener-

ated tags.

ScienceSearch architecture is composed of four primary

components that provide the functions required for data search

(Figure 1). The four components include data import or in-
gestion, metadata extraction, search engine and user feedback.

The Data ingestion component identifies the individual pieces

of data and stores it in a database (center of the figure).

There is a detailed representation that describes every data

item in the database. Also, it includes metadata intrinsic to

the data and a pointer to the file system where the data is

located. The metadata required to enable search is produced

by metadata generation. In the metadata generation, we use

machine learning analysis on the data entries and artifacts (i.e.,

elements surrounding data that provide hints about it). We

obtain text labels or tags that describe the purpose, scientific

value, or production conditions of the data entries. The user
feedback component gathers user input for the automatically-

generated metadata tags. A user can curate and evaluate

metadata produced by the generation process through a web

interface. Users can explore data-entries, modify metadata

tags, or provide new tags. User generated metadata also is

used as a training dataset for the machine learning process

that creates and refines the automated label generation. The

search component provides search capabilities using a search

model that relies on the generated metadata and crawled data

entries.

A. Data ingest

The ScienceSearch infrastructure first curates the data that

needs to be available through search. The data ingest compo-

nent creates a database entry for each data item (e.g., an image)

and captures information or metadata that is already accessible

with the data. In the case of the NCEM dataset, an image is

identified uniquely by its location on the NCEM file system.

It is imported along with a few intrinsic metadata labels

stored with the image file such as an acquisition timestamp,

the dimensionality of the image, a json representation of the

internal metadata generated by the microscope, and a URL

pointing to a preview image of the micrograph. The exact

data model in the database is domain-specific. Currently, we

import SER, DM3, and DM4 formats from the micrograph

files available at NCEM. We use parallelism to efficiently

94

Fig. 1: ScienceSearch infrastructure includes components for data ingestion, metadata extraction, search, and user interface.

Data entities are represented by square boxes, data flows by arrows, and components by round boxes.

Fig. 2: Sources of metadata for NCEM’s micrographs. Con-

tinuous arrows connect strong metadata sources with the

semantics they express. Dotted arrows connect weak sources.

import NCEM’s micrographs including exploring the file sys-

tem structure, parsing the micrograph files, and creating the

corresponding model entries.

Our current data model is unique to the NCEM dataset

and must be recreated to support a different dataset. However,

our implementation provides an easy reference point for other

projects to easily add this component for other scientific

datasets.

B. Metadata generation

The metadata generation tool extracts elements from the

data and its environment that can provide hints about the data

entries. We categorize these metadata sources in the following

ways: 1) artifacts, any operational data that is part of the

dataset creation workflow (including administrative); 2) data
store structural data, logic and keywords from a scientist’s

effort to organize the dataset on the file system; 3) data
characteristics that allows the data to be classified or grouped;

and 4) expert users, that can provide direct knowledge on the

data or curate metadata produced by other sources.

The metadata format produced by all methods is a tu-

ple that contains (metadata type, relevance score, text tag,

pointed object). The metadata type indicates the source,

pointed object is the object (image, proposal, paper) associ-

ated with this metadata tuple, text tag is a text string that

describes the semantics of the metadata, and relevance score is

a real number expressing the relevance of text tag to represent

pointed object. The elements of this tuple are used by the

search engine process. Our generic metadata format allows us

to easily plug-in other data sources and/or data from other

domains into the ScienceSearch infrastructure.

The artifacts in the scientific ecosystem provide a rich con-

text for the data. Each of the metadata sources may create tags

or labels that are useful for searching the data. In particular,

metadata sources help describe the content of data (what),
the creation conditions (how), the owner or user (who), the

research context (why), and scientific field (goal) of searchable

data. The tags and labels created by each metadata source,

may provide different degrees of certainty and accuracy in

the context of search. For example, in NCEM, metadata tags

derived from a proposal provide strong overall information

about the project and context for the project micrographs.

However, proposal descriptions are very general in their nature

and tend to be a weak source of information on the actual

contents of a particular image.

Figure 2 describes the sources that we identified in the

context of the NCEM use case. We classify the sources by

semantic content and strength based on information gathered

from our users and early analyses of the data sources. The

classification provides a high level guideline as to what

can be expected from each data source. Quality or strength

of individual artifacts might be variable. NCEM’s file sys-
tem structural information associates each micrograph with

a file system path, which contains project and user names

(who/strong), often the name of the sample (what/strong), and,

in some cases, parameters of the image acquisition that are

95

Fig. 3: ScienceSearch’s search model: words in query are compared with metadata, producing ”hits”. Precise enough hits are

grouped by image. Images search scores are the weighed sum of the score of their hits.

relevant (how/weak). Application proposals and publications
are artifacts associated with images and describe the moti-

vation (goal/strong) and research methodology (why/strong)

to produce the micrographs. They might also contain some

details on samples imaged (what/weak) and how they are

captured (how/weak). Feature detection analysis models the

relationship between known metadata and images. Feature

models might capture the content of the images (what/strong)

and characteristics of their capture (how/weak) such as the res-

olution or instrument configuration. Finally, users can provide

feedback to curate existing metadata or provide new metadata.

Users know data and describe its content (what/strong) and

capture conditions (how/strong). Also, they might provide

information on the overall methods (why) and purpose of the

project (goal), but their knowledge on an particular image

might be limited (weak). The metadata extraction methods are

described in detail in Section IV.

C. Search

ScienceSearch utilizes the metadata extracted from the

artifacts to provide search. In NCEM, search is provided over

micrographs, facility proposals, and associated publications.

Users submit a text query to a web interface, and the search

engine returns a list of results ordered by their relevance.

Inspired by common search engine’s architecture [29], we

designed a model for ScienceSearch’s search in three stages

(Figure 3): 1) parsing user query; 2) comparison of the query

with metadata; and 3) aggregation of the query comparison

results. We describe the design and implementation of these

stages in the context of ScienceSearch. Specifically, we de-

scribe it for the case of micrograph search, but they are also

applicable to search on proposals and publications.

Query parsing. A user query is a string that is divided

in words and each word is transformed to its lemma form.

Transforming to a lemma form converts all syntactic variations

of a word to the same string (i.e., the base or root form of

a word). This simplifies the query term and metadata term

comparison. For example, the lemma form of “looking” and

“looked“ is “look”. Next, only nouns are retained, because the

quality of the search results observed was higher if only nouns

are taken into account in the queries and metadata. These steps

are accomplished with the text annotation functions of the NLP

library Spacy [7]. In Figure 3, the query string is transformed

into stem, image, wet (as it can map to wetness), etching,
battery, and research.

Hits calculation. Once the query is parsed, the resulting list

noun lemmas (cardinality m) are compared with the text tag

of metadata entries in the database (cardinality n) producing

a list of m × n hits. Each hit is a tuple of (hit score,

metadata type, relevance score, text tag, pointed image). In

this tuple, hit score is calculated using a lexicographic dis-

tance between the lemma of the the text tag of the hit. This

distance is a measure of the similarity of two strings. In

particular, ScienceSearch uses the ”Jaro-Winkler” [31] (J-K)

lexicographic distance. The J-K similarity between two words

is smaller if more characters need to be changed to transform

one string into the another. However, character changes at

the beginning of the string are considered more semantically

important and make the similarity value even smaller than if

they were positioned at the end. Figure 3, presents some of

the comparisons between query terms and metadata in the hit
calculation phase. For example, the query terms “wet’ and

“etching” produce two aggregated hits of similarity 1.0 with

“wet etching” because now, the strings are identical. However,

the hit of “etching” on “etch” produces a low hit score because

three letters must be changed to transform one string into the

other.

After the hit calculation, the engine keeps the hits that

score higher than an empirically set threshold to filter out

irrelevant metadata for the user’s query. Following the example

96

Fig. 4: Screen capture of the search function with a query

searching for ”atomic resolution gamma”

in Figure 3, only the hits for “stem”, “wet etching”, and

“battery” are kept for the next phase.

Hits aggregation and search score calculation. The final

score of each tuple is calculated as the product of hit score,

relevance score, and a weight that depends on metadata type.

This calculation merges the significance of the hit score

(similarity between query and metadata) and relevance score

(large if the tag is important to the pointed object). Metadata

weights are system configuration parameters to control the

effect of the metadata types on the search results. In the

example of Figure 3, user tags and file system tags have larger

weights, so their tags score will be amplified in the image score

calculation.

Once the final scores of the tuples are calculated, tu-

ples are grouped by the micrograph they are pointing to

(pointed image). Finally, all the final scores in each group are

summed to produce the search score of the pointed image. The

result of the search is the list of micrographs in descending

order of their search scores.

Search quality adjustments based on user feedback. The

search engine records which search results are selected by the

users. This information is used to produce a report of how deep

in the result list users explore to find their desired results.

Search quality adjustments based on user feedback will be

a long term research goal of the project. In the future, we

propose to build a system that analyzes this feedback to infer:

1) a set of metadata weights that could produce search results

that would raise the position of the desired results; 2) if the

quality of the metadata is good enough to serve the correct

search results.

D. User Interaction

Users interact with ScienceSearch through a web interface1

in two ways - a) they submit queries to search the data and b)

they provide feedback on the metadata tags generated by the

system.

1https://sciencesearch-ncem.lbl.gov

Search user interface. The search engine offers a web

interface where users can submit queries and explore results.

In the NCEM implementation, micrographs, proposals and

papers can all be searched. Figure 4 presents the search results

interface. On the top, the search box allows a user to input

new text queries. Results can be explored in three tabs, one

for each of the searchable data types: micrographs, facility

proposals, and publications. Just under the search box (detail

in Figure 5), the most relevant matching tags for a query are

listed. The search results return a list of thumbnails and file

system locations of the micrographs that best match the query.

The user can click on any thumbnail image to explore a more

detailed view. This view includes a higher resolution preview

image, intrinsic file metadata, and hints that help the user

understand why the search resulted in that image.

User validation of Metadata. ScienceSearch relies on auto-

mated machine learning methods that require feedback from

users to improve and bootstrap learning. In commercial sys-

tems, user interactions with search results, although weak in

semantics, are numerous and constitute enough feedback data

to drive the learning [19]. Contrary to this, ScienceSearch’s

user base is small, but the users are experts and have the

capability to provide highly semantic data that can generate

additional metadata labels and provide feedback on existing la-

bels. ScienceSearch includes a tagging tool to capture a user’s

high quality feedback. Before the users interact with Science-

Search’s tagging tool, an administrator loads the metadata set

to to be evaluated. Tags are loaded under two categories:

assigned (when the relationship between the metadata tag

and data item is certain) or suggested (when the relationship

between the metadata tag and the data item is less certain).

Figure 6 shows the interface for NCEM data tagging. A user

can select a data entry, such as an image or micrograph, to

add new tags, validate a tag (confirm it as assigned or move a

suggested tag to the assigned state), or invalidate an assigned

tag. To simplify working with NCEM’s large dataset, the

ScienceSearch tool includes navigation features (route selector

on top of the page) to limit the tagging and reviewing activities

to a sub-folder of the file system. The navigation features are

especially important from a user’s perspective since images

are typically grouped by experiment.

Once the metadata tags have been evaluated by users, the

ScienceSearch tool produces new metadata tags that merge

user feedback with existing metadata tags by removing tags

invalidated by users, and adding new suggested ones. It also

produces a report on which metadata tags have been rejected

Fig. 5: ScienceSearch’s search box. It presents the metadata

that is relevant for the first results of the query.

97

Fig. 6: Screen capture of the user tagging tool

and from which source, such that the ScienceSearch learning

models can be further refined.

IV. METADATA EXTRACTION METHODS

In this section, we present the methods used in Science-

Search to extract formatted metadata for different types of

artifacts. The extraction methods operate on specific data

sources and outputs the metadata tuple format described in

Section III-B. Each generated tag includes: 1) pointed object,

the object (image, proposal, paper) associated with this meta-

data tuple; 2) text tag, a text string that describes the semantics

of the metadata; and 3) relevance score, a real number ex-

pressing the relevance of text tag to represent pointed object.

In this section, we describe the methods in ScienceSearch

to extract metadata from various sources of data.

A. File system information

Scientific datasets are typically stored in shared file

systems organized in folders and sub-directories. Scientists

often encode metadata in the file names and the file system

structure to help locate and find data. For example, in the

following file path:

“TEAM I/jdoe/20120523-STEM/05 FocalSeriesImages Def -

4nm -25eV 5eVslit.dm3” the folder directory names can be

used as metadata text tag for the image. From this directory

structure (and hence metadata tags), we can infer that the

pointed micrograph was taken at the TEAM I microscope,

was captured by the jdoe user (replaced for privacy), was

taken on date 20120523, and used a technique called ’STEM’

to capture the data. In this example, we also observe

that higher folders correspond to the site organization and

provide more general information (e.g., microscope, user).

Meanwhile, deeper levels includes more specific semantic

information that users chose to find and identify their own

data (e.g., STEM, and capture parameters). The file name

also includes rich information on the sample. For example,

“05 FocalSeriesImages Def -4nm -25eV 5eVslit.dm3”

includes relevant terms such as the content of the image

(FocalSeries), the order in some series (05), and parameters

that would appear to be related to the capture parameters of

the image (-4nm, -25eV, 5eVslit). To extract these semantics,

the analysis module adds one tag for each the substrings

in the filename split by common separators (e.g., “ ”, “-”,)

together with the complete filename (to support exact filename

search). Similarly, other scientific collaborations often have

specific formats for file structure to capture metadata. In its

current implementation, relevance scores are set to the same

value in all tags. In future implementations, we will explore

how directory hierarchy affects relevance.

B. Text artifacts

Text artifacts, such as proposals and papers, can be as-

sociated with data, such as micrographs, to provide another

set of important metadata tags. In the case of NCEM, users

write proposals to gain access to the facility. Microscope

access is organized in the form of a calendar with time slots

assigned to proposals. Also, users write papers that include the

produced images. ScienceSearch provides search over various

text artifacts. The system includes models to import and

capture the three text artifacts in NCEM: papers, proposals,

and calendars. Many of these methods will directly apply

to other domains, possibly including some domain-specific

customization on context.

Proposals. The proposals data model includes title, submitter

name, PI name, start date, end date, and staff contact. Also, it

includes the proposal text which describes its significance, re-

quired NCEM capabilities, work tasks, and a project summary.

The summary contains semantic information on why, how, and

what the proposal is about. As a consequence, the proposal

text is analyzed with Natural Language Processing methods

to extract metadata tags that can describe image data related

to a given proposal. Each proposal is uniquely identified by a

serial number stored in the model. Proposals and their serial

numbers are provided by NCEM in a formatted file that is

imported into the ScienceSearch engine.

Calendar. Calendar entries map a user to a specific instrument,

at a given time slot. This information is used to map an

image capture timestamp with an instrument slot, and its

corresponding proposal. This relationship allows the metadata

tags generated from a proposal to be associated with the

relevant micrograph images.

Papers. In ScienceSearch, papers are modeled to capture

relevant information of the publication. The paper model

includes title, authors, citations, publication venue, text body,

and a URL pointing to the download page of the paper.

Metadata on the paper is produced by analyzing the text

body with NLP analysis, and papers can be connected to

proposals (and thus images) by comparing their respective

authors. NCEM provides a JSON-formatted list of publications

98

titles acknowledging the facility. A system was built to locate,

download, parse, and import the articles in that list. Paper

location and download was implemented over the “So Paper,

So Easy” [34] (fetch) and Science Parse [9] (PDF parsing)

libraries. Fetching functions extend browser-emulation fetch-

ers that use Selenium [8] to interact with JavaScript based

journal sites. Added fetchers work with the sites of American
Chemical Society, American Physical Society, IEEE, Institute
of Physics, Nature, National Institutes of Health, Royal Society
of Chemistry, Science Direct, Scitation.org, and Wiley online
library. To transform the PDFs into importable raw text,

ScienceSearch utilizes “Science Parse” [9], a PDF parsing tool

specific for scientific papers. Its output in JSON format is

imported into ScienceSearch, together with the URL of the

PDF. At this point, 2306 of the 3000 paper titles provided

by NCEM have been located, downloaded, and imported. The

metadata of a paper is extended to a proposal and its images if

a correlation between authors and described work exist. This

correlation analysis will be included in future deployment of

ScienceSearch.

Natural Language Analyses. NLP analysis extracts and ranks

the most relevant metadata in a paper or proposal. In each

artifact, all text expressions are extracted and their relevance

in the text ranked (i.e., how representative they are of the

text). Then, ranks of the expression are adjusted, increasing

the score of those more unique and decreasing the score of

more common ones. This score correction promotes metadata

that is better at differentiating data, which is a feature needed

in metadata powering search. The NLP analysis employs the

following techniques:

Individual ranked text expressions extraction is performed

with the TextRank technique [22]. TextRank extracts a list

of the most multi-word relevant expressions together with a

score of their relevance in the text. This analysis is performed

using the pytextrank library [25], which constructs a graph

that connects words in expressions, expressions in sentences,

and sentences into the whole text. Expressions are identified

by their repeating appearance in the text, and their relevance

is calculated similarly to Google’s PageRank [27], i.e., the

relevance of an expression is the sum of the relevance of the

expressions pointing to it.

Context aware noun ranking is used to correct the expres-

sions score in the context of a given artifact. Each text in an

artifact (e.g. proposals) is parsed with a text analysis library

(Spacy [7]) to extract each word and identify its function

(verb, noun, adjective, adverb, or preposition). The method

only keeps the nouns in their lemma form (e.g., for houses,

the root form is house). Noun importance is calculated using

a term frequency-inverse document frequency metric (Tf-idf).

This metric expresses the capacity to differentiate a text piece

within an artifact. Tf-Idf will be larger for more frequent

terms, but smaller if the terms are frequent in all the analyzed

artifacts. Tf-Idf’s formula was adapted for its implementation

in ScienceSearch to:

tfidf(w, i) = wi ∗ log(1 + n)

1 +
∑n

i=1 wi
(1)

where w is a word, i is a text id, wi is the frequency of w in

text i and n the number of texts in the corpus.

The final metadata for a particular expression tag is pro-

duced by correcting its score; by multiplying it by the average

Td-Idf score of its nouns. This adjustment combines the power

of TextRank to isolate expressions in a text and assess their

differentiating importance within the text corpus.

C. Feature detection in images

In addition to the contextual information, we also extract

metadata from the image data. Many scientific datasets are 2D

images or can be visualized as such. In the current iteration,

we use deep learning methods to suggest tags for new images,

based on features learned from a manually labeled image

subset, since they show promise.

Our automatic labeling approach considers each tag individ-

ually and trains a binary classifier to decide whether this tag

applies to a new image or not. We use manually labeled images

for which we know for certain whether that tag applies or not

as training data. After training, we use the classifier to predict

labels for all remaining images. The manual tagging tool

presents these predictions as new, suggested labels, enabling

users to confirm a prediction or to remove the label. User

decisions are used to increase the size of the manually tagged

training data set for subsequent automated labeling runs.

The classifier also returns its confidence in its label pre-

diction, i.e., the estimated probability that the tag applies to

the image. The search engine uses the predictions along with

confidence information to identify and rank relevant images

for a query containing this tag.

Creating an appropriately sized training data set. Manual

labeling is a time-consuming process. Hence, we currently

have only access to approximately 300 manually labeled

images, an insufficient training data set size to choose an

appropriate classifier or train all layers in a convolutional

neural network (CNN). Due to operational procedures at

NCEM, images using two operating modes of a microscope—

transmission electron microscopy (TEM) and scanning trans-

mission electron microscopy (STEM)—are saved using two

different file formats. We can label images as TEM or STEM

based on the file format. We use this method to generate a

training and validation data set consisting of 500 TEM and

500 STEM images each, totaling 1000 images for each training

and validation data set.

Implementing the classifier as convolutional neural net-
work. We use a deep convolutional neural network (CNN)

as binary classifier. To preserve important features in mi-

croscopy images, we cannot reduce the image resolution below

512× 512 pixels. For deep learning, this is a relatively large

input image size, compared, e.g., to ImageNet applications that

pre-process images to 256×256 pixels. Due to the large input

image size, we choose a simple CNN architecture, consisting

of a few convolution layers, followed by a pooling layer and a

few densely connected layers, to keep memory and processing

power requirements for training at reasonable levels.

99

Input image
512x512x1

Convolution
16x16 kernel

Feature
Maps 64

Convolution
8x8 kernel

Feature
Maps 64

Convolution
4x4 kernel

Feature
Maps 64

Max-pooling
16x16 kernel

Feature
Maps 64

Hidden
units 1024

Flatten
Dense

Outputs
2

Dense

Fig. 7: Convolutional neural network architecture for trans-

ferring labels: Three convolution layers with kernel sizes of

16, 8 and 4 and a feature vector length of 64 are followed

by a pooling layer with kernel size 16. The output of the

pooling layer is flattened and used as input for a single densely

connected layer comprised of 1024 neurons. The output of the

network consists of two neurons for true and false.

In the current deployment of this work, we perform an

extensive parameter search over networks with varying number

of convolution and densely connected layers using an automat-

ically generated training data set, to identify an appropriate

CNN architecture.

Based on the results of this parameter search, we use the

CNN architecture shown in Figure 7 for classification. We use

a single dropout layer (dropout probability of 0.01) between

the fully connected layer and the output layer for regularization

and a batch size of 25 images. In the current deployment,

for the TEM vs STEM classification task, we achieved a

classification accuracy of approximately 80% on the separate

validation dataset. Applying the resulting CNN to all images

collected by the microscope achieved a similar accuracy.

Transfer learning. We use transfer learning to re-use the

trained CNN in predicting other image tags. Specifically, we

re-use the convolution layers of the CNN trained on TEM

vs STEM classification and use the output values of the

pooling layer as input of a new neural network that consists

only of densely connected layers. If we use only a single

densely connected layer with 1024 neurons, this approach is

equivalent to “freezing” the values of the convolution layer and

changing only weights of the densely connected layer. Using

the output of the dropout layer allows us to pre-compute these

output values for all images and subsequently train a much

simpler neural network, reducing computational cost per label.

Theoretically, this has the potential to reduce the minimum

training set size required by the classifier. In future work that

is outside the scope of this paper, the user feedback on the

tags produced by this classifier will be analyzed to determine

the quality of its predictions.

Estimating probabilities. To determine the probability that a

given label applies to an image, we use the softmax function

on the output of the CNN. The softmax function normalizes

output values such that each value is in the range zero to one

and that all entries add up to one. The softmax function is

generally used to translate the output of a neural network into

probabilities. Applied to the output of the binary classifier,

using the vector value for an output of “true” this results in a

probability estimate that a label applies to the given image.

Fig. 8: ScienceSearch deployed in NERSC’s Spin. Docker

containers (round blue boxes) can access internal (rancher fs)

and external HPC (project) storage.

V. IMPLEMENTATION AND OPTIMIZATIONS

ScienceSearch is implemented as a web service wrapping

a set of modules that can also be run independently. In this

section, we describe the software and resources required to

run ScienceSearch including details of its implementation and

performance.

A. Software infrastructure

Each of ScienceSearch’s components run within containers

that provide portability, isolation, and scaling. For NCEM’s

ScienceSearch, containers are deployed in Spin, a service plat-

form at the National Energy Research Scientific Computing

(NERSC) Center that provides Docker container execution

and has access to large-scale storage resources connected

to NERSC supercomputers. Figure 8 shows the schema of

the containers of ScienceSearch running in Spin (containers:

round blue boxes; storage elements: white square boxes).

When a user visits NCEM’s ScienceSearch site, the browser

connection lands in a container that hosts Nginx, a high

performance load-balancer. This instance, provides SSL ter-

mination (certificates auto-generated with EFF’s Letsencrypt)

and balances the connections across the appropriate containers.

During the first launch, the connection is redirected by Nginx

to one of the Apache containers that serves the user interface

files of ScienceSearch.

The user interface is implemented with ReactJS (v. 16) and

Bootstrap (v. 4). ReactJS is a Javascript library that simplifies

providing a smooth interactive user interface by enabling

construction of reusable components, offering flexibility when

incorporating additional libraries, and implementing a virtual

DOM to quickly render updates to the browser [6]. The

Bootstrap Javascript/HTML/CSS library simplifies templating,

arranging, and styling of page content by offering pre-built

UI components and a grid system for supporting responsive

content [5]. The interface communicates with the backend

container through HTTPS. This container is implemented

over Django (v 2.) and exposes search and tagging functions

through a REST API. Django is a Python-based framework

that offers data models to abstract database representations,

functions to develop REST APIs, and integration of external

modules [1]. This container can import data from an external

file system and is the only one with access to the PostreSQL

container. PostreSQL (v.10) is used for data storage, since it

is a reliable object-relational database that supports in-node

parallelization [2]. This container uses Spin’s internal storage,

i.e., Rancher-fs, for its persistent files.

100

Fig. 9: Two preview images of the same micrograph of a

carbon structure without (left) and with (right) correction.

B. Resources and scalability

Our current implementation of ScienceSearch in Spin uti-

lizes compute and storage resources from NERSC. Copies and

preview images of datasets is stored on NERSC’s project file

system. This GPFS [28] file system offers high capacity (50

TBytes quota), high read and write bandwidth (1̃30GB/s), and

it is accessible from the facility’s supercomputers, Spin infras-

tructure, and science gateways. Simple scalability is possible

because all containers, except PostgreSQL, are stateless and

can be replicated on demand. PostgreSQL supports concurrent

access and, if needed, it can be easily replicated to serve read

only queries.

C. Micrograph parsing and visualization

NCEM data is available in multiple formats including SER,

EMI and DM3/DM4 and are represented as an array of num-

bers of variable dimensions. A library developed by NCEM

(openNCEM [26]) was used to extract data. We extended the

library to add memory caching to improve its performance by

100 times when reading from remote and parallel file systems.

For each imported micrograph, its internal metadata is

captured, a human readable image (preview) is stored, and an

entry for the image is inserted in the database. Generating

previews for the micrographs requires different approaches

depending on formats and data dimensions. One dimensional

SER and DM3/DM4 micrographs (i.e., spectrum or sequence

of numbers) are represented as a plot generated with a data

analysis library (Hyperspy [13]). For data with two ore more

dimensions, ScienceSearch creates a RGB bitmap preview

accurate enough for a user to identify the micrograph. For

two dimensional images, the preview is generated directly,

However, micrographs with more than two dimensions (e.g.,

tomographies, movies) are sliced at middle points of each

extra dimension. For example, if the micrograph captures

the structure of cube (three dimensions), the preview image

represents a horizontal section of the cube at half of its height.

Different image processing techniques were required for

different file types. SER files are mapped on a bitmap directly

because their value range is similar to the one in RGB bitmaps.

However, DM3 and DM4 data have to be corrected because

of the high range of its values. Otherwise, the data might be

compressed and the resulting image might be hard to interpret

due to poor contrast (Figure 9-left), To correct this, micrograph

data is processed before mapping. First, the pixel value’s

mean and standard deviation are calculated. Then, the mean is

subtracted from all the pixels and then divided by the standard

deviation. Finally, values are capped to the range [−3, 3] (i.e.,

no value diverges more than three times the standard dev. from

the mean, skewing the mapping). Figure 9 shows a visually

unrecognizable image if no correction is applied (left side),

and how information reveals itself if applied (right side). These

implementations highlight some of the challenges in working

with scientific data of different formats. Our implementation is

specific to NCEM’s file formats and will be different for other

sources of data. ScienceSearch’s architecture separates the data

ingest from the data format to enable the infrastructure to be

used for multiple different domains with different file formats.

D. Efficient data ingestion

NCEM’s dataset is large in size and number of files.

For example, the micrographs from the TEAM I microscope

occupy five terabytes of space in half a million files. We

use parallelization and high performance computing resources

from NERSC to handle the large dataset import. To parallelize

this process, n instances of the ScienceSearch software are run.

Each instance is instructed to import the files in a different

location of the NCEM file system. All the instances access a

single PostreSQL database that ensures data consistency while

avoiding any blocking of the ScienceSearch instances.

Even if run in parallel, this process is very intense in

terms of compute and I/O. We run it on Cori, a Cray XC40

supercomputer at NERSC with 64 hardware threads per node

that has high speed access to the project file system where

the dataset copies are stored. By using Shifter (NERSC’s

technology for HPC containers) [15], the Docker containers

of ScienceSearch run in the supercomputer nodes without

requiring major changes. After the processing is completed,

new entries are loaded in bulk in the active instance of

ScienceSearch in Spin. Combining both strategies, NCEM’s

TEAM I dataset can be ingested into ScienceSearch in less

than 10 hours.

E. Search engine implementation optimizations

The search model’s implementation is based on a module in

the Django framework and its capabilities are exposed through

a REST API. In its implementation, a number of optimizations

were added to reduce search latency and resource require-

ments.

In a first approximation, the search model complexity is

O(n×m), where n is the number of terms in the query and

m is the number of metadata entries that the model searches

over. This quadratic complexity usually presents small values

of n (no more than ten), but large values of m (millions), so

each search operation implies millions of data retrievals and

comparisons. We details the other optimizations that aim to

reduce n, m, and the cost of each individual operation.

Index of text tag. To reduce m (metadata entries in search),

a table with an index on metadata text tag was created,

101

Fig. 10: Search metadata is sliced and processed by n workers

that retrieve data, calculate hit scores, and image scores.

Intermediate scores are aggregated to produce search results.

containing k entries, one for each unique text tag. The hit

calculation stage is performed against the index first, with a

complexity of O(n × k). For NCEM micrographs, k is one

order of magnitude smaller than m, as a consequence, since

k << m, O(n×k) << O(n×m). This optimization reduces

significantly the number of operations in the hit calculation

phase but increases the operations in the hit aggregation

phase (Figure 3). Performance characterization experiments

presented in Section V-E show that this secondary increase

is not significant and search latency is greatly reduced with

this optimization.

Multiprocess Parallelization. The hit calculation and hit

aggregation operations are parallelized by dividing the input

metadata in r slices processed by r worker processes running

in the same node (Figure 10). A search worker reads its slice,

calculates hit scores, and corresponding image scores for those

which pass the threshold. When all workers end, intermediate

image scores are aggregated to produce the final result. The

search latency of this parallel approach is the runtime of the

slowest worker plus the aggregation time. With r workers, the

size of a metadata slice is 1
r of the total size, and the runtime

of each worker should be at most 1
r of the runtime if r = 1.

The resulting search latency is bound by O(n×k
r) where r is

the number of parallel processes employed.

Limited results and caching. Search query response might

include tens of thousands of results, however the user interface

can only present a limited number of results in a usable way.

This allows for two optimizations. First, the search response

returned through REST only includes a small number of

results, reducing its size and the cost of micrographs data

retrieval. Second, search results are cached in the engine for a

period of time. If the same query is received while the cached

copy is still valid, the cached result is served. This is especially

important to support pagination, i.e., the interface requests new

data each time users advance through the search results one

page at a time. However, the complete search calculation is

only executed the first time.

Search Performance. We measure search performance for

a particular query to analyze the effects of the optimizations.

The search is performed over 11,261,844 tags and 1,184,851

entries in the text index for 557,195 images. Experiments

run over the production instance of ScienceSearch NCEM

in Spin. The search engine and database run in the same

Fig. 11: Box-plot analysis of image search latencies for a query

on a user name with different search optimizations in action.

Cached queries are the fastest. Search latency is reduced by

parallelization. Use of text index reduces search latency.

compute SPIN node to avoid network bottlenecks. In the SPIN

node, services shared two CPUs with 24 cores each, and two

hardware threads per core (96 total) running over 256GB of

RAM.

The test query is the name of an NCEM scientist who has

authored many images. This query results in 4,968 micro-

graphs which represents 1% of the total dataset (although all

the metadata is utilized). Query latency is measured in five

repetitions of the search for each optimization configuration.

The load of the system is considered to be minimal at the

time of experimentation. In Figure 11, we present a box-

plot analysis of the observed query latencies. Results that are

cached are returned within one tenth of a second. If results

are not cached, the worst case (median 30s) is when no text

indexing is used and only one worker calculates the search

(W1, No Index). Increasing the number of workers reduces

latency significantly. We observe that adding 10 workers,

reduces the latency to values close to 14s (W11, No index).

Increasing the number of workers, reduces the latency further

until 44 workers. The use of the index over text tag, reduces

the latency too. For one worker, text indexing divides the

latency by two (W1, No Index vs. W1). With text indexing,

we also observe performance gains by increasing parallelism,

again until 44 workers.

Finally, search latency over proposals (1,1650 tags for 45

proposals) and papers (297,768 tags for 2203 papers) is always

under to 0.5 seconds.

VI. RELATED WORK

In this section we present work related to search models,

metadata generation, and initiatives to organize scientific data

to make it more accessible.

Search engines have organized and made internet data

accessible for more than 20 years. In most engines and in

ScienceSearch, search algorithms compare query terms to tags

associated with search objects [29]. Classical models such

as PageRank [27] analyze relationships between data objects

to measure their relevance. However, current models rely on

machine learning methods to assess this importance [30].

Metadata extraction on non-scientific data has also been

extensively studied. Natural Language Processing (NLP) pro-

102

vides the capacity to understand [33] and summarize [14],

human language. Methods like frequency analysis [18] and

TextRank [22] identify and rank key expressions and terms in

text. Machine learning provides the capacity of identifying

and modeling data patterns (e.g., feature detection [17]).

ScienceSearch relies on text tokenization [7], frequency anal-

ysis, TextRank analysis, and feature detection to create new

metadata.

There has been numerous efforts to organize scientific data.

For example, Mathematica [32] and Jupyter Notebooks [20]

allow a user to attach runnable analysis methods, figures,

and text to datasets. However, their interactivity with other

systems (e.g., a search engine) is limited. Massive, human

driven data annotation has been made possible by initiatives

like Zooniverse [3], a crow-sourcing online platforms where

anonymous users tag massive scientific datasets. Although

powerful, scientific datasets often need expert user tagging and

general crowd-sourcing techniques might not be sufficient.

There are notable efforts to build field-specific search en-

gines. For example, the Materials Project [16] aims to accel-

erate materials discovery by providing search over individual

material features. The KBase project [10] offers a unified

search portal for DOE’s biological data. Bioassayexpress [11]

provides search over bioassays (experimental protocols in

biology) and includes users as source the metadata and data

curation. As a general effort, Apache Lucene [21] is an open-

source search engine popular to build scientific portals. All

these projects provide powerful search tools, however they

are either narrow in their objective, focused on text-only data,

and do not analyze the context of the data to infer metadata,

limiting their capacity.

Finally, Google recently released Dataset Search, a general

search engine for scientific data [24]. This engine provides

dataset search across scientific fields and its algorithms are

adapted to the keywords used in science. However, in contrast

to ScienceSearch, Dataset Search does not include tools for

semantic discovery that analyze data content or context. For a

dataset to be included in this engine, scientists must manually

separate each data set and provide metadata tags that describes

it.

VII. CONCLUSIONS

In this work, we present the architecture of ScienceSearch, a

generalized scalable infrastructure to provide search over sci-

entific datasets. We use different methods including machine

learning to extract metadata from four sources of metadata

identified – proposals and publications, file system structure,

image features, and user input in the context of NCEM.

Our performance evaluation shows that ScienceSearch is

capable of executing simple queries on a single node, over

11 million metadata tags in less than five seconds. Early

testing by expert users of NCEM indicate that result quality

matched with the expected results for their test queries. Future

work will improve our search model and explore methods to

algorithmically assess search quality results.

ACKNOWLEDGMENT

This material is based on work supported by the U.S.

Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research (ASCR) and resources used at

the National Energy Research Scientific Computing Center,

a DOE Office of Science User Facility, supported by the

Office of Science of the U.S. Department of Energy, both

under Contract No. DE-AC02-05CH11231. We thank NCEM’s

staff for their help in providing data and insights that made

this work possible. We also thank NERSC’s Spin team for

supporting the deployment of this work.

REFERENCES

[1] Django project. https://www.djangoproject.com/.
[2] What is PostgreSQL? https://www.postgresql.org/docs/current/static/intro-

whatis.html.
[3] Zooniverse: People-powered research.
[4] NCEM Capabilities & Tools, http://foundry.lbl.gov/facilities/ncem/expertise.

html.

[5] Bootstrap · The most popular HTML, CSS, and JS library in the world,
https://getbootstrap.com/.

[6] React - A Javascript library for building user interfaces,
https://reactjs.org/.

[7] Industrial-Strength Natural Language Processing, https://spacy.io/.
[8] Selenium, browser automation, https://www.seleniumhq.org/docs/03

webdriver.jsp.
[9] Allen Institute for Artificial Inteligence. Science parse.

[10] A. P. Arkin, R. L. Stevens, R. W. Cottingham, S. Maslov, C. S. Henry,
P. Dehal, D. Ware, F. Perez, N. L. Harris, S. Canon, et al. The doe
systems biology knowledgebase (kbase). bioRxiv, page 096354, 2016.

[11] A. M. Clark, B. A. Bunin, N. K. Litterman, S. C. Schürer, and U. Visser.
Fast and accurate semantic annotation of bioassays exploiting a hybrid
of machine learning and user confirmation. PeerJ, 2:e524, 2014.

[12] K. Cranmer and I. Yavin. Recast—extending the impact of existing
analyses. Journal of High Energy Physics, 2011(4):38, 2011.

[13] F. de la Peña et al. Hyperspy 1.3.
[14] G. Erkan and D. R. Radev. Lexrank: Graph-based lexical centrality as

salience in text summarization. journal of artificial intelligence research,
22:457–479, 2004.

[15] L. Gerhardt, W. Bhimji, S. Canon, M. Fasel, D. Jacobsen, M. Mustafa,
J. Porter, and V. Tsulaia. Shifter: Containers for hpc. In Journal of
Physics: Conference Series, volume 898, page 082021. IOP Publishing,
2017.

[16] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek,
S. Cholia, D. Gunter, D. Skinner, G. Ceder, et al. Commentary: The
materials project: A materials genome approach to accelerating materials
innovation. Apl Materials, 1(1):011002, 2013.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. In Proceedings of the 22nd ACM international
conference on Multimedia, pages 675–678. ACM, 2014.

[18] T. Joachims. A probabilistic analysis of the rocchio algorithm with tfidf
for text categorization. Technical report, Carnegie-mellon univ pittsburgh
pa dept of computer science, 1996.

[19] T. Joachims. Optimizing search engines using clickthrough data. In
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 133–142. ACM, 2002.

[20] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al.
Jupyter notebooks-a publishing format for reproducible computational
workflows. In ELPUB, pages 87–90, 2016.

[21] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in action:
covers Apache Lucene 3.0. Manning Publications Co., 2010.

[22] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In
Proceedings of the 2004 conference on empirical methods in natural
language processing, 2004.

[23] S. Myers and E. Picasso. The design, construction and commissioning
of the cern large electron–positron collider. Contemporary Physics,
31(6):387–403, 1990.

[24] G. Natasha Noy. Making it easier to discover datasets.
https://www.blog.google/products/search/making-it-easier-discover-
datasets/.

103

[25] P. Nathan. Pytextrank, a python implementation of textrank for text
document nlp parsing and summarization. https://github.com/ceteri/
pytextrank/, 2016.

[26] NCEM. openncem, https://github.com/ercius/openNCEM.
[27] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation

ranking: Bringing order to the web. Technical report, Stanford InfoLab,
1999.

[28] F. B. Schmuck and R. L. Haskin. Gpfs: A shared-disk file system for
large computing clusters. In FAST, volume 2, 2002.

[29] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: A language
model-based search engine for complex queries. In Proceedings of the
International Conference on Intelligent Analysis, volume 2, pages 2–6.
Citeseer, 2005.

[30] Wikipedia. Rankbrain, https://en.wikipedia.org/wiki/RankBrain.
[31] W. E. Winkler. The state of record linkage and current research

problems. In Statistical Research Division, US Census Bureau. Citeseer,
1999.

[32] S. Wolfram. The mathematica. Cambridge university press Cambridge,
1999.

[33] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic
taxonomy for text understanding. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, pages 481–
492. ACM, 2012.

[34] Y. Wu. So Paper, So Easy, https://github.com/ppwwyyxx/SoPaper.

104

