
Research Software Discovery: An Overview

Alexander Struck
Research IT

Cluster of Excellence Image Knowledge Gestaltung – An Interdisciplinary Laboratory at Humboldt-Universität zu Berlin
Berlin, Germany

Alexander.Struck@hu-berlin.de

Abstract—Research software is an integral part of scientific investi-
gations. The paper identifies challenges, risks and new opportunities in
research software publication and discovery. The diverse code discovery
landscape is mapped and agents with their business models identified.
Examples for discovery tools and strategies are given to support the
classification. Reproducibility of research and reuse of code may improve
if software discovery was easier. Researchers conducting a search for
existing software in the context of a state-of-the-art report or a software
management plan could use this paper as a guideline for their information
retrieval strategy.

Index Terms—Information retrieval, scientific computing, sustainable
development, research software, communities.

I. INTRODUCTION

Writing software has been and is increasingly a large part of

scientific research [1] but external reuse is still a challenge. This

is partly due to a legacy code base where modern frameworks

would require expensive refactoring, although small task solutions

(e. g. I/O) see some reuse [2]. State-of-the-art reports or software

management plans are sometimes asked for in grant proposals but

finding and evaluating existing relevant software requires significant

resources. Reviews on existing tools for a particular task require

use of a diverse range of platforms to cover it extensively. Here we

aim at a mapping of the existing landscape for software discovery

and describing some of the agents. The documentation hereafter

shall improve our understanding of discoverability by offering a

classification and providing examples.

A. On publishing research results

Research has long been communicated via letters, articles and

books. Priority is an important aspect of claiming (fame for) a

particular result, most notoriously in patents. Societies and commer-

cial publishing houses created the infrastructure for fast and wide

distribution. The business model of some publishers and service hosts

limits the availability of research results to those academics associated

with a resourceful organization. These developments spawned the

Open Access movement to make articles and books freely available,

sometimes in self-hosted infrastructure. At the same time research

results are mostly published as written text and are condensed, either

for marketing purposes or due to e. g. page restrictions, that make

reproducibility cumbersome. This may have had some influence on

the so-called “reproducibility crisis” in several disciplines that (in

parts) influenced requests to publish research data. Research software

gains more attention as an important part of creating the results and

is therefore investigated for its usage [3] and reusability.

Although we see increasing numbers of DOIs being minted for

software [4] developing software to solve research problems is not

The author would like to thank the German Research Foundation (DFG)
for funding the Cluster of Excellence Image Knowledge Gestaltung – An
Interdisciplinary Laboratory at Humboldt-Universitaet zu Berlin.

recognized as an academic achievement [1]. Knowledge on “licens-

ing, persistent referencing and citation of research software” requires

training [1].

B. On publishing research software

Anecdotal evidence suggests that software developers are some-

times invited to co-author papers where software played a role in

achieving the results. This enables citation credit for research software

engineers which is still a valid currency in academic circles, useful

for careers and general progress. And with journals like Journal

of Open Research Software (JORS)1 the centuries-long tradition of

article publications is expanded onto software [5]. Citeability is a

prerequisite of recognition in this academic tradition, achieved either

by article publications or recent developments like CodeMeta2 and

the Citation File Format (CFF) [6]. Research organizations like the

German Max Planck Society promote the publication of software as

a repository dump, combined with a persistent identifier (e. g. DOI),

made available in a long-term archive [7].

Recent developments in the world of software repositories [8]

made more researchers considering the assumed business model of

their favorite code hoster [9]. The GitLab3 software for hosting local

code repositories with added functionality is popular in academic

circles but administrators in universities are sometimes shy to enable

external authentication methods. This may decrease collaboration on

and sharing of research software or it may lead cross-institutional

research groups to turn to commercial service providers.

Requests for research proposals slowly recognize non-textual mat-

ter to be a relevant part of a research result and in turn, programs

like Horizon 2020 or selected UK funding proposals (e. g. Software

for the future II4) started requiring a data or software management

plans including information on publication of such result.

C. Research Software Discovery

The F in FAIR stands for findability. Reuse of software would prob-

ably enhance sustainability due to increased attention and community

building. But relevant research software is scattered over many places

and the knowledge thereof is limited. We lack defined criteria on

how many repositories one would have to consult and what search

strategy to follow in order to conduct a comprehensive state-of-the-

art report. Those reports are supposed to prevent lavish allocation

of taxpayers’ money to e. g. fund new software development. And

we yet have to invent criteria for the evaluation of research software

and its reusability, although this kind of evaluation is receiving some

attention (by e. g. binder5, Containerization and hosts like CodeO-

1https://openresearchsoftware.metajnl.com
2https://codemeta.github.io
3https://about.gitlab.com
4https://epsrc.ukri.org/funding/calls/softwarefuture
5https://mybinder.org

33

2018 IEEE 14th International Conference on e-Science

978-1-5386-9156-4/18/$31.00 ©2018 IEEE
DOI 10.1109/eScience.2018.00016

cean6). Software requirement specification could help in identifying

existing solutions but is hardly possible due the exploratory nature of

the research process [10]. “[T]he lack of established repositories for

research software makes it difficult to find existing software solutions,

potentially resulting in the unnecessary duplication of development

work” [1]. Such redundant work may also be caused by mistrust

in third-party code or the lack thereof in closed-source applications

[11]. Users are asked to make an informed choice on the solutions

available [1] but have problems understanding the inner workings.

Some rely on personal recommendation or perceived quality when an

article publication describes the software in a peer-reviewed journal

[12]. Some consult their favorite search engine to identify software

that may solve their problem, assuming a sufficient search index

coverage of relevant software resources. Some research projects need

to inquire with their local IT department due to rules and regulations

on what software is allowed to run on their machines. Others admit

that looking for and evaluating existing research software requires

too many resources and is not considered in cost calculations of a

project.

II. AGENTS IMPROVING DISCOVERY

A. Researchers

After positive evaluation of (third-party or self-written) code re-

searchers may share recommendations in forums or social media en-

vironments like StackExchange7 which are not necessarily research-

oriented. Some enthusiasts will create lists out of perceived necessity

to cover a certain field and share useful resources. This could be

a review article like [13] or take the form of a curated website.

Some projects may get funded to do research on data or software

repositories like re3data.org8.

B. Funding and Supporting Agency

Although recognition of research software development as an

academic achievement is still low funders provide money for software

development and may suggest or require publication of code. Some

do not mentioned code at all, like the Horizon 2020 program9. Some

(funding) organizations may provide a repository for publication and

archiving.

• Numfocus10

• Research Software Directory11

• Science Gateways Catalog12

C. Publishers

Some academic publishing houses started to request the deposition

of data relevant to a text publication (e. g. PLOS ONE guidelines13).

Some recommend particular discipline-specific repositories, other

publishers encourage deposition of data within their commercial

environment (e. g. Elsevier with Mendeley Data14). While submission

requirements have been rolled out for data relevant for an article

in the first place, we are seeing some uptake regarding software

submission [14]. Some specialized outlets like the IPOL journal [15]

6https://codeocean.com
7https://softwarerecs.stackexchange.com
8https://www.re3data.org
9https://ec.europa.eu/research/participants/docs/h2020-funding-guide/cross-

cutting-issues/open-access-dissemination en.htm
10https://www.numfocus.org/sponsored-projects
11https://www.research-software.nl
12https://catalog.sciencegateways.org/#/home
13http://journals.plos.org/plosone/s/data-availability
14https://www.elsevier.com/connect/authors-update/set-your-data-free

go even further. We quote from IPOL policy15: “the publication of

each algorithm is fourfold and includes:

• a manuscript containing the detailed description of the published

algorithm, of its bibliography, along with commented examples

and a failure case analysis;

• a software implementation of the algorithm in C, C++ or Matlab;

• an online demo, where the algorithm can be tested on data sets

uploaded by the users;

• an archive containing extensive online experiments.”

This obviously requires reviewers to be computationally literate.

Most journals focused on research software (e. g. JORS & JOSS)

follow similar strategies in their policies or guidelines (e. g. JORS

recommendations16 respectively JOSS author guidelines17). These

journals incentivize to market research software by writing an article

about it, in parts due to the established recognition system of article

citations.

III. TOOLS AND THEIR OFFERINGS

A. Code Aggregators

Source and binary code is hosted in several locations. If there is a

chance to aggregate code from several platforms and present it under

a common metadata schema, it may ease its discovery. A promising

attempt is currently under way by Software Heritage18 [16]. This

archive aims at preserving code by crawling from several repositories

and assigning persistent identifiers [17]. Their sources are:

• live and updated regularly: GitHub, Debian

• one shot archival: Gitorious, Google Code and GNU

• in progress: Bitbucket

This should cover a good amount of publicly available research

software and acts as an archive, so that code is not lost when

depublished in its original repository.

B. Search Engine Approach

The Bielefeld Academic Search Engine (BASE)19 is one of many

platforms harvesting (mixed-content) repositories and offering one UI

for information retrieval [18]. Unfortunately they only index metadata

and not the full text or source code. But they offer SOLR-based

indexing for you to discover more than 100,000 research software

projects. The GUI offers to use doctype=software and qualifiers for

licenses. Search engines like Google may offer even more recall (e. g.

from project home pages) but lower precision when searching for

software. Here, source code search engines fill a niche, examples

being sourcegraph20, OpenGrok21 and krugle22.

C. Programming Language Package Repository

Some researchers using a particular language may package their

functionality in a library or package, made available via built-in pack-

age managers which connect to repository platforms like CRAN23.

The R community created an ecosystem around the language to

support developers. Software discovery examples that may also exist

for other programming languages are:

15http://www.ipol.im/meta/policy
16https://openresearchsoftware.metajnl.com/about/#repo
17https://joss.theoj.org/about#author guidelines
18https://www.softwareheritage.org
19https://www.base-search.net
20https://about.sourcegraph.com
21https://oracle.github.io/opengrok
22http://www.krugle.com
23https://cran.r-project.org

34

• Rseek24

• METACRAN25

• Crantastic26

D. Commercial Software Providers

Scientific (high performance) computing may be a profitable field.

We see several vendors with their products in the market (with more

or less lock-in). Examples are:

• Revolution Analytics27 (now belonging to Microsoft)

• Matlab28

• Mathematica29

E. Code Repositories

Public platforms hosting code and offering some basic management

functionality include:

• GitHub30

Here, the long-lasting question for a sustainable business model

has been answered by Microsoft. The competitor GitLab sent a

congratulation note31.

• Google Code32

Google decided to discontinue this service but still offers the

archive33.

• Sourceforge34

is still active and is being recommended as a research software

repository but lost some of its reputation due to questionable

business model decisions [19].

• Bitbucket35

owned by Atlassian is another code management platform which

is popular due to feature-rich UI and free unlimited private

repositories, because not every researcher wants to have code

published publicly.

Search functionality varies but may include language and license

filters. Some of these platforms facilitate(d) contribution and reuse.

F. Application Repositories

Some research requires tools developed for mobile devices. Exe-

cutable binaries can be found in repositories like Apple’s AppStore

for iOS or Google’s Play Store. Source code would need to be

made available via other channels. The availability of tools is subject

to terms of service and at the hands of uploaders. The long-term

availability is unknown.

G. Executable Environment Hosts

As argued before, evaluation of third-party code is expensive

and requires some level of literacy. But a successful evaluation

may increase reuse and save taxpayer’s money. It may also benefit

reproducibility of articles introducing new software (algorithms), e. g.

[20]. Here, some providers start to offer such environments, utilizing

container technology popularized by Docker and Singularity. Code

24https://rseek.org
25https://r-pkg.org
26https://crantastic.org
27http://revolutionanalytics.com/
28https://www.mathworks.com/products/matlab.html
29https://www.wolfram.com/mathematica
30http://github.com
31https://about.gitlab.com/2018/06/03/microsoft-acquires-github
32code.google.com
33https://code.google.com/archive
34https://sourceforge.net
35https://bitbucket.org/

Ocean calls their Docker containers “Capsules36”. Biocontainers.pro37

is another service with similar offerings. Jupyter notebooks [21] can

be published in environments like “binder38”.

H. Research (Data) Repositories

There are many public research results repositories that offer

functionality for text, media, data and/or software. Some of them

specialize in particular content features, others offer mixed content

functionality (e. g. netlib39). Publicly funded repositories include

Zenodo40, a privately owned platform would be Figshare41 and we

see many repositories in university environments. Some organiza-

tions decide to reuse existing repository software like DSpace42 or

develop their own CMS like the Research Software Directory43 or

Software Archiving for Research Artefacts44, both reusing repository

infrastructure like Zenodo or GitHub. A variety of business models,

funding schemes and API definitions require extensive evaluation for

the maintainer and the users of such repositories.

I. Curated Web Lists and Catalogs

These platforms catalog software but do not host code. Some are

focused on a particular discipline, some link to resources not limited

to software code. Funding and maintenance are crucial for this type

of resource. The following listing exemplifies the range of existing

features and problems.

• Ideas45

is a catalog in the field of economics. From their about page46:

“RePEc (Research Papers in Economics) is a collaborative

effort of hundreds of volunteers in 99 countries to enhance the

dissemination of research in Economics and related sciences.

The heart of the project is a decentralized bibliographic database

of working papers, journal articles, books, books chapters and

software components, all maintained by volunteers.”

• openscience.org/software47

offers: “Collecting links about and providing a home for Open

Source scientific software projects”. The software listing has not

been updated since March 2017 and is run by one person.

• 101 Innovations48

is a project investigating the creation and use of research tools,

including software. They use a Google Spreadsheet to display

information and gather user input. The tools are assigned to

and sorted by predefined research process phases. Unfortunately

unformatted user-provided input does not match the intended

indexing of tools.

• Connected Researchers49

This is another website run by one person who takes suggestions.

The latest postings were announced in November 2017 and the

comment section of this WordPress blog has entries from the

recent past.

36https://help.codeocean.com/?q=Capsule
37http://biocontainers.pro
38https://mybinder.org
39http://www.netlib.org
40https://zenodo.org
41https://figshare.com
42https://duraspace.org/dspace
43https://github.com/research-software-directory
44https://www.sara-service.org
45https://ideas.repec.org/i/c.html
46http://repec.org/
47http://openscience.org/software
48https://101innovations.wordpress.com
49http://connectedresearchers.com/online-tools-for-researchers

35

• DiRT directory50 is a well-known repository but has problems

with metadata quality. It continues to be funded by the Andrew

W. Mellon Foundation and receives contributions, e. g. via

Twitter mentions.

• swMath51 stands out here as it connects papers with software

in both ways, publications related to the introduction of new

software of papers mentioning (the reuse of) existing mathe-

matical software. This continues to be funded and maintained

by a research organization.

Some individuals feel the need to create such lists but allow contribu-

tion via git on e. g. GitHub. Some of these examples border on meta

catalogs. These are all mixed content resources which may include

software itself.

• Awesome Awesomeness52

offers two categories: language and general, that point to re-

sources in research software development

• awesome.re53

is another community curated list of links to resources not

related to a particular subject.

• Awesome Hacking54 and Awesome OCR55

are examples of a subject area meta listing.

J. Meta Catalogues

Some projects receive funding for complex attempts to make

repositories (and other useful resources) more accessible by listing

and indexing them. One example is re3data56 which is a registry

of research results repositories. Some of the listed repositories may

only contain software and others mixed content. This registry tries

to solve the challenge for researchers that data and software may

exist somewhere but the sheer amount of repositories makes iden-

tification of reusable results hard. Such a registry could also prove

helpful in identifying a suitable location to publish code and/or data.

Unfortunately the implementation of re3data leaves much room for

improvement, due to too many false positives and a questionable

classification. Take the DBpedia entry57 as an example, where content

is classified as:

• Databases

• Scientific and statistical data formats

• Software applications

• Source code

• Standard office documents

• Structured text

• other

DBpedia is a graph database offering Linked Data triples gathered

from Wikimedia projects.

Science Gateways Catalog58 is another noteworthy attempt to

catalog such resources.

K. Software Citation

A part of the challenges to discover relevant research software is

the lack of citations or heterogeneity to cite (pieces of) software.

This is currently being investigated by the research community

50http://dirtdirectory.org
51http://www.swmath.org/about contact
52https://github.com/bayandin/awesome-awesomeness
53https://github.com/sindresorhus/awesome
54https://github.com/Hack-with-Github/Awesome-Hacking
55https://github.com/kba/awesome-ocr
56http://re3data.org
57https://www.re3data.org/repository/r3d100011713
58https://catalog.sciencegateways.org

[22]. Clean documentation and tooling on how to cite a particular

language or library, as exemplary implemented by [23], may encour-

age and increase citations in other research output like papers. We

are seeing standards development59, service offerings like converter

tools60 between different formats and pages dedicated to educate the

community, e. g. https://research-software.org/citation61. Furthermore,

platforms like “Generation R” publish articles on the topic62 which

may increase awareness for software citation in general, assuming

citations increase discoverability.

IV. CONCLUSIONS

Research software still lacks the recognition as actual research

achievement. Some research software is published but it is not

trivial to find relevant tools. This is in part due to business models,

information silos and lack of trust in third-party code. Evaluation is

expensive and hardly undertaken, even if journal articles introduce

new software. Steps towards easing evaluation are taken by e. g.

platforms offering executable environments. Attempts to register and

index software repositories (resp. “science gateways”) are undertaken

but remain to prove beneficial for the “end-user developer” and should

be coordinated. Some discipline-specific platforms or websites, driven

by the research community, have gathered a significant amount of

resources and are widely used by the respective community. Software

may also get lost due to de-publication or retired platforms but code

aggregation tries to minimize the loss.

V. OPEN QUESTIONS AND FUTURE WORK

We currently lack an understanding of how well research software

is findable, given the tools to solve a particular problem may

be scattered over many locations. We still have to determine and

understand how many places a researchers should search in order to

satisfy his/her own interest, or the reviewers questions and the funders

quality assurance measures. We can assume that the business model

of some platforms may influence visibility of certain code or projects

but would require more empirical investigation. The overlap between

certain tools regarding their features is likely to be significant. We

probably have to accept redundant developer work due to a variety

of reasons but lack an understanding of economical consequences for

funded research projects. And it might be interesting to investigate

how Current Research Information Systems (CRIS) may become

helpful in identifying relevant research software. If indexing reposi-

tories and other locations proves to be beneficial, a study should be

undertaken to determine a metadata schema.

REFERENCES

[1] M. Katerbow and G. Feulner, “Recommendations on the development,
use and provision of research software,” 2018. [Online]. Available:
https://zenodo.org/record/1172988

[2] V. R. Basili, D. Cruzes, J. C. Carver, L. M. Hochstein, J. K.
Hollingsworth, M. V. Zelkowitz, and F. Shull, “Understanding the high-
performance-computing community,” IEEE software, vol. 25, no. 4, pp.
p29–36, 2008.

[3] K. Li, E. Yan, and Y. Feng, “How is r cited in research outputs?
structure, impacts, and citation standard,” Journal of Informetrics,
vol. 11, no. 4, pp. 989–1002, nov 2017. [Online]. Available:
https://doi.org/10.1016/j.joi.2017.08.003

[4] M. Fenner, D. S. Katz, L. H. Nielsen, and A. Smith, “Doi
registrations for software,” 2018. [Online]. Available: https://blog.
datacite.org/doi-registrations-software/

59https://fairsharing.org/bsg-s001271
60https://github.com/citation-file-format/citation-file-format
61https://research-software.org/citation/
62http://genr.eu/wp/category/themes/software citation/

36

[5] N. C. Hong. In which journals should i publish my
software? [Online]. Available: https://www.software.ac.uk/index.php/
which-journals-should-i-publish-my-software

[6] S. Druskat, R. Haines, and J. Baker, “Citation file format (cff)
- specifications,” 2018. [Online]. Available: https://zenodo.org/record/
1242911

[7] S. Janosch. (2017) How to assign a doi to software within
mpg. [Online]. Available: http://www.de-rse.org/blog/howto/2017/05/
08/how-to-assign-a-doi-to-software-within-mpg.html

[8] D. Bass and E. Newcomer. Buying github
would take microsoft back to its roots. [On-
line]. Available: https://www.bloomberg.com/news/articles/2018-06-03/
microsoft-is-said-to-have-agreed-to-acquire-coding-site-github

[9] D. Oberhaus. 13,000 projects ditched github for gitlab monday morning.
[Online]. Available: https://motherboard.vice.com/en us/article/ywen8x/
13000-projects-ditched-github-for-gitlab-monday-morning

[10] J. Segal and C. Morris, “Developing scientific software,” IEEE
Software, vol. 25, no. 4, pp. 18–20, jul 2008. [Online]. Available:
https://doi.org/10.1109/ms.2008.85

[11] R. Sanders and D. Kelly, “Dealing with risk in scientific software
development,” IEEE Softw., vol. 25, no. 4, pp. 21–28, Jul. 2008.
[Online]. Available: http://dx.doi.org/10.1109/MS.2008.84

[12] L. N. Joppa, G. McInerny, R. Harper, L. Salido, K. Takeda, K. O’hara,
D. Gavaghan, and S. Emmott, “Troubling trends in scientific software
use,” Science, vol. 340, no. 6134, pp. 814–815, 2013.

[13] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3, pp. 75–174, 2010. [Online]. Available: https:
//arxiv.org/abs/0906.0612

[14] A. Editor, “Does your code stand up to scrutiny?” Nature,
vol. 555, no. 7695, pp. 142–142, mar 2018. [Online]. Available:
https://doi.org/10.1038/d41586-018-02741-4

[15] M. Colom, B. Kerautret, N. Limare, P. Monasse, and J.-M. Morel,
“IPOL: A new journal for fully reproducible research; analysis of
four years development,” in 2015 7th International Conference on
New Technologies, Mobility and Security (NTMS). IEEE, jul 2015.
[Online]. Available: https://doi.org/10.1109/ntms.2015.7266500

[16] R. Di Cosmo and S. Zacchiroli, “Software Heritage: Why and How to
Preserve Software Source Code,” in iPRES 2017: 14th International
Conference on Digital Preservation, Kyoto, Japan, Sep. 2017. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01590958

[17] M. Gruenpeter, “Software preservation: A stepping stone for
software citation,” 2018. [Online]. Available: http://genr.eu/wp/
software-preservation/

[18] D. Pieper and F. Summann, “Bielefeld academic search engine
(BASE),” Library Hi Tech, vol. 24, no. 4, pp. 614–619, oct 2006.
[Online]. Available: https://doi.org/10.1108/07378830610715473

[19] Gluster. How far the once mighty sourceforge
has fallen... [Online]. Available: https://www.gluster.org/
how-far-the-once-mighty-sourceforge-has-fallen/

[20] F. Olivieri. (2017) Generation of private sound with
a circular loudspeaker array and the weighted pressure
matching method. [Online]. Available: http://doi.org/10.24433/co.
692f87c0-7d3b-4608-ba4f-59a923d9faa8

[21] K. Thomas, R.-K. Benjamin, P. Fernando, G. Brian, B. Matthias,
F. Jonathan, K. Kyle, H. Jessica, G. Jason, C. Sylvain, and et al.,
“Jupyter notebooks - a publishing format for reproducible computational
workflows,” Stand Alone, vol. 0, no. Positioning and Power in Academic
Publishing: Players, Agents and Agendas, p. 8790, 2016. [Online].
Available: http://doi.org/10.3233/978-1-61499-649-1-87

[22] A. M. Smith, D. S. Katz, and K. E. N. and, “Software citation
principles,” PeerJ Computer Science, vol. 2, p. e86, sep 2016. [Online].
Available: https://doi.org/10.7717/peerj-cs.86

[23] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2016. [Online]. Available: https://www.R-project.org/

37

