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Abstract—Face recognition has been successfully deployed in
real-time applications, including secure applications such as bor-
der control. The vulnerability of face recognition systems (FRSs)
to various kinds of attacks (both direct and indirect attacks) and
face morphing attacks has received great interest from the bio-
metric community. The goal of a morphing attack is to subvert
an FRS at an automatic border control (ABC) gate by present-
ing an electronic machine-readable travel document (eMRTD)
or e-passport that is obtained based on a morphed face image.
Since the application process for an e-passport in the majority
of countries requires a passport photograph to be presented by
the applicant, a malicious actor and an accomplice can generate
a morphed face image to obtain the e-passport. An e-passport
with a morphed face image can be used by both the malicious
actor and the accomplice to cross a border, as the morphed face
image can be verified against both of them. This can result in a
significant threat, as a malicious actor can cross the border with-
out revealing the trace of his/her criminal background, while the
details of the accomplice are recorded in the log of the access con-
trol system. This survey aims to present a systematic overview
of the progress made in the area of face morphing in terms
of both morph generation and morph detection. In this arti-
cle, we describe and illustrate various aspects of face morphing
attacks, including different techniques for generating morphed
face images and state-of-the-art morph attack detection (MAD)
algorithms based on a stringent taxonomy as well as the avail-
ability of public databases, which allow us to benchmark new
MAD algorithms in a reproducible manner. The outcomes of
competitions and benchmarking, vulnerability assessments, and
performance evaluation metrics are also provided in a compre-
hensive manner. Furthermore, we discuss the open challenges and
potential future areas that need to be addressed in the evolving
field of biometrics.

Index Terms—Attack detection, biometrics, face recognition,
morphing attack, vulnerability.

I. INTRODUCTION

B IOMETRICS is a technique for recognizing an individ-
ual based on unique biological (e.g., face, fingerprint,

and iris) or behavioral (e.g., gait and keystroke style) char-
acteristics [37], [60]. With the drastic improvement in deep
learning techniques, biometric-based person identification and
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verification has emerged as a popular technique that can be
widely used for many secure access control applications. The
ease of capture and the suitability of face biometric char-
acteristics have further driven face recognition as a popular
biometric modality in such applications. Face recognition
systems (FRSs) are widely deployed for various applications,
especially in secure access control for person identification
and verification purposes. Among several other applications,
such as healthcare, law enforcement, and e-commerce (bank-
ing), one of the most relevant applications is the border control
process, where the facial characteristics of a traveler are com-
pared with a reference in a passport or visa database to verify
the claimed identity.

Although an FRS effectively distinguishes an individual
from other subjects, the FRS’s risk of being attacked to mis-
lead or conceal an actual identity is a major concern. As
with all applications, the FRS is prone to various attacks,
such as presentation attacks, which have the goal of subvert-
ing the FRS by presenting an artifact [89], where various
types of attacks, such as electronic display attacks, print
attacks, replay attacks, and 3-D face mask attacks, can be
used [25], [26], [35], [38], [46], [47], [54], [61], [86], [89].
In addition to these attacks, the morphing attack has emerged
in the recent past as a severe threat to the enrolment pro-
cess that successfully undermines FRS capabilities [48]. Face
morphing is defined as “a seamless transition of a facial
image transforming a facial image into another” [9] in the
context of biometrics; two or more facial images can be
combined to resemble the contributing subjects. Morphing
attacks raise a major concern, as the morphed image repre-
sents the facial characteristics of both individuals contributing
to the morphing process (for instance, an accomplice and
a malicious actor). Ultimately, the resulting morphed facial
image can successfully be verified with probe images from
both contributing subjects, making it practically usable for
various malicious actions. Therefore, this attack breaks the
rule of single ownership; for instance, an identification docu-
ment such as a passport or electronic machine-readable travel
document (eMRTD) [8] has a unique link to the data sub-
ject for whom the document was issued. The facial image
stored in the eMRTD or passport is compared with the
person claiming identity document ownership while cross-
ing the border. If the enrolled facial image is determined
as a match with the live image, the data subject can cross
the border. Thus, an individual with malicious intent can
exploit the face morphing attack and obtain illegal access.
Hence, a malicious person can easily cross a border using
an eMRTD or passport if he/she has contributed to the
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Fig. 1. Example scenario illustrating the vulnerability of FRSs to morphed images in border control.

morphed image that was used in the passport application
process.

Fig. 1 illustrates an example scenario in border control
where the facial image of a malicious person is morphed with
that of a look-like accomplice. As several morphing software
programs are freely available, even a nontechnical person can
perform morphing with ease. The accomplice can submit the
generated morphed image for passport enrolment at the pass-
port issuance office. As the morphed image’s facial features
resemble those of the applicant’s face, the passport officer
approves the application. Ultimately, a malicious person can
successfully use the genuine passport, allowing him/her to
achieve all foreseeable purposes (e.g., crossing a border).

In most countries, the applicant submits a printed facial
image to the passport office, allowing the possibility of pro-
viding a morphed image after printing and scanning. However,
some countries, such as New Zealand, Estonia, and Ireland,
also accept a digital facial image for passport renewal [3].
Hence, an applicant can submit a digital facial image to the
Web portal. This practice raises a further severe concern, as
there is no trusted supervision while uploading the digital
facial image, and this opens the possibility of uploading a
morphed image. The B1/B2 visa application for the United
States also allows the applicant to upload a digital facial image
through the Web portal [23]. An applicant can use this oppor-
tunity to upload a morphed image with the intent to perform
illegal activity.

All such vulnerabilities of FRSs have made morphing
research crucial in recent years to avoid probable security
lapses. Thus, several research projects have been funded by
the European Union and national research councils (e.g.,
SWAN [22], ANANAS [4], SOTAMD [10], and iMARS [18])
to focus extensively on developing morph attack detection
(MAD) algorithms. Motivated by the momentum of the
problem of morphing and its criticality, a dedicated confer-
ence has been initiated by Frontex, the European Border, and

Coast Guard Agency [6], where a MAD interest group gath-
ered to discuss the challenges and advancements of MAD
techniques [53]. Furthermore, the U.S. National Institute of
Standards and Technology (NIST) is, in parallel, conducting
testing of MAD technology within the framework of the Face
Recognition Vendor Test (FRVT) under Part 4: MORPH—
Performance of Automated Face Morph Detection [80]. Both
industrial and academic institutions are invited to submit
their MAD algorithms to benchmark the accuracy [80].
Similarly, the University of Bologna, as part of the SOTAMD
project [69], introduced a parallel face morphing evalua-
tion platform to benchmark the performance of the MAD
techniques on a sequestered dataset.

The rest of this article is organized as follows. Section II
presents a brief introduction to face morphing attacks, and
Section III discusses the face morph generation techniques.
Section IV describes face morphing datasets, including private
and public datasets, Section V discusses human perception
capabilities in detecting morphed face images. Section VI
presents various automatic morphing attack detection tech-
niques, Section VII presents the performance metrics that
are widely used to benchmark the performance of MAD
methods as well as the vulnerability of generated morphed
images. Section VIII discusses the public evaluation and
benchmarking of MAD. Section IX discusses open chal-
lenges and potential future work and Section X gives the
conclusion.

II. FACE MORPHING ATTACK

The morphing process can be defined as a special effect
that transforms one image into another image. Fig. 2
illustrates the facial morphing process, where two facial
images are combined to generate a single morphed image.
Morphing can be achieved easily by using one of the numer-
ous and freely available tools, such as MorphThing [20],
3Dthis Face Morph [13], Face Swap Online [17], Abrosoft
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Fig. 2. Impact of face morphing on an FRS. As noted in the figure, the
morphed image can be verified equally against both contributing subjects with
a high similarity score from the FRS (1 being high similarity).

Fig. 3. Taxonomy of face morph generation techniques.

FantaMorph [14], FaceMorpher [16], and MagicMorph [19].
The morphed image possesses near-identical features to those
of both subjects contributing to generating the morph when
subject preselection is applied (e.g., look-alike mode) [90].

Furthermore, when processed with care, the morphed image
does not possess many visible artifacts, and thus, a human
observer may fail to detect image manipulation based on mor-
phing. In practice, this leads to a situation where a passport
officer may not be able to detect the morphing attack despite
being an expert in facial comparison [64], [97]. This makes
it reasonable for a criminal with malicious intent to be able
to use a passport enrolled with a morphed image and cross a
border without challenge. Fig. 1 illustrates the vulnerability of
FRSs when attacked with morphed images in a border control
scenario.

III. FACE MORPH ATTACK GENERATION

Face morphing has been widely used for more than a
decade, especially in the video animation industry [2], but the
attack potential against FRSs has been noted recently [48].
Morphs can be generated using various techniques, from sim-
ple image warping to recent generative adversarial networks
(GANs) [27], [33], [34], [65], [67], [85], [127], [129], [130].
The most widely used morph generation methods are based on
the landmark-based technique [11], [51], [91], [103], where
morphing is carried out by combining the images with respect
to corresponding landmarks. Recent works eliminate the con-
straints of landmarks by simply relying on deep network
architectures [41], [130]. Fig. 3 shows a taxonomy of face
morphing generation methods that indicates the broad classi-
fication of the available techniques as (a) landmark-based and
(b) deep learning-based approaches.

A. Landmark-Based Morph Generation

Landmark-based morph generation works by obtaining land-
mark points on facial regions, e.g., the nose, eye, and mouth.

Fig. 4. Illustration of face morph images generated using different methods.

These landmark points obtained from both faces are warped
by moving the pixels to different, more averaged positions.
Different procedures for warping exist, including free-form
deformation (FFD) [66], [119], deformation by moving least
squares [101], deformation based on mass-spring models [36],
and Bayesian framework-based morphing [31]. Ruprecht and
Muller [100] proposed performing warping by moving the
pixel points of both contributing subjects to the nearest land-
mark point. Delaunay triangulation was later proposed, where
the pixels of both contributing facial images are distorted
and moved to different directions to generate triangles [56],
[72], [105], [107], [112], [128]. Images that are to be mor-
phed are blended by considering the blending factors or
the morphing factor. Face morphing applications employ a
morphing factor of 0.5 to generate high-quality and useful
morphs that can resemble both contributing subjects equally,
to which the COTS FRS is vulnerable [90]–[92]. As the
morphing process translates landmarks and the associated tex-
ture, there may be some misaligned pixels that contribute
to noise generating artifacts and ghost-like images and mak-
ing the images unrealistic in appearance (i.e., easy for a
human observer to detect). Hence, certain post-processing
steps, such as image smoothing, image sharpening, edge cor-
rection, histogram equalization, manual retouching, and image
enhancement improve the brightness and contrast and can
reduce or minimize the artifacts generated during the morphing
process [32], [112], [125].

Face morph generation using open-source resources, such as
GIMP/GAP and OpenCV, also relies upon landmarks. While
open-source software based on GIMP/GAP and OpenCV
can generate morphs, significant effort must be made to
post-process the generated images to eliminate artifacts.
Several commercial solutions, such as Face Fusion [108] and
FantaMorph [14], can also be used to generate large-scale
morphed images with reasonable post-processing effort. The
reader is further referred to Scherhag et al. [108], where all
the publicly available morphing tools (both open-source and
commercial) are listed.

B. Deep Learning-Based Morph Generation

Recent improvements in deep learning-based techniques have
given rise to morph generation approaches based on GANs [41],
[124]. In general, GAN-based methods synthesize morphed
images that are generated by sampling two facial images in
the latent space of the deep learning network. The MorGAN
architecture for morph generation basically employs a gener-
ator that consists of encoders, decoders, and a discriminator.
The generator is trained to generate images with dimensions of
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TABLE I
FACE MORPHING GENERATION METHODS: ADVANTAGES AND LIMITATIONS

64 × 64 pixels. Another recent approach based on StyleGAN
architecture [24], [124] has improved the morph generation pro-
cess both by increasing the spatial size to 1024×1024 and by
increasing face quality. The pretrained StyleGAN achieves this
by embedding the images in the intermediate latent space. The
use of identity priors to enable high-quality morphed face gen-
eration was also proposed in [130] and illustrates the increased
threat to FRSs by GAN-based morphs. Fig. 4 provides sample
facial morphs generated using the landmark-based technique
and MorGAN- and StyleGAN-based methods. It can be noted
from Fig. 4 that deep learning-based approaches, especially
with MIPGAN-I and MIPGAN-II, indicate a superior quality
of the morphed face image compared to that of landmark-based
morphed face generation.

IV. DATABASES FOR MORPHING ATTACK DETECTION

Given various kinds of attack generation mechanisms
and the relevant attack potential determination metrics,
many datasets have been generated, ranging from public to
sequestered datasets with various attack strengths. This section
summarizes the different face morph databases that are used
in the existing works. A summary of the different datasets is
provided in Table II from existing works that are typically
used to benchmark both the vulnerability of FRSs and the
performance of MAD techniques.

The first face morph database was introduced by
Ferrara et al. [48], in which the authors employed landmark-
based face morph generation using GIMP/GAP tools. This
dataset has a small set of digital images consisting of only
14 morphed images generated from 8 bona fide subjects,
including both male and female participants. The morphed
images in this database are only in digital format and the
database is not available publicly. This dataset was extended
by Ferrara et al. [49] using the landmarks and GIMP/GAP
tools. The extended dataset consists of approximately 80 mor-
phed face images, with 10 male and 9 female participants. The
database is in digital form and is not publicly available.

The first large database with different ethnicities (Caucasian,
Asian, European, American, Latin American, and Middle

Eastern) was introduced by Raghavendra et al. [91] and
employs facial landmarks and the GIMP/GAP morph genera-
tion technique using the GNU image manipulation tool. This
database consists of 450 morphed face images generated using
110 subjects of different ethnic backgrounds. This database
contains only digital images and has not been made public.

Makrushin et al. [72] employed automatic morph generation
tools to generate high-quality morph images. They employed
a triangulation method based on 68 facial landmarks extracted
using the dlib library [15]. Two different morph generation
techniques, namely, complete morph (consisting of the facial
geometry of both facial images) and splicing morph (the pix-
els representing the face are clipped out from the input faces),
were used. A splicing morph is generated to address the
pixel discontinuity caused by warping two images in com-
plete morphs. This database consists of approximately 1326
complete morphs and 2614 splicing morphs generated from
52 data subjects consisting of 17 females and 35 males. This
database consists of face morph images in digital format only
and has not been made public.

The first print-scan face morph database was presented by
Scherhag et al. [105]. The authors employed the landmark-
based GIMP/GAP technique for morph generation. This
database consists of 231 morphed images generated from
462 bona fide images. This database is private and contains
digital and print-scan (or redigitized) images, for which HP
Photosmart 5520 and Ricoh MPC 6003 SP printers were
employed.

Raghavendra et al. [90] later introduced a new face morph
dataset consisting of both digital and print-scan images. The
face morphs were generated using an automatic tool, OpenCV,
that is publicly available. This database generates morphed
face images along with averaged face images and hence has
a set of 1423 + 1423 morphed face images. Along with the
database, Raghavendra et al. [90] provided an evaluation pro-
tocol by defining independent sets for development, training,
and testing partitioning. The print-scan morphed face images
were obtained by employing a Ricoh MPC 6003 SP printer.
This database is private. This dataset was extended to 2518
morphed face images and 1273 bona fide images [93].
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TABLE II
PUBLIC AND PRIVATE FACE MORPH IMAGE DATABASES

Gomez-Barrero et al. [55] introduced a new face morph
dataset that consists of 840 morphed face images generated
from 210 subjects. This database is private and has only digital
morphed face images.

Ferrara et al. [50], [52] introduced a face morph database
based on the Sqirlz morphing technique. This dataset has 100
morphed images in both digital and print-scan forms. This
database has not been made public for research purposes.
Scherhag et al. [103] introduced a face morphing dataset
that was generated using different morphing tools, such as
OpenCV, FaceFusion, and FaceMorpher. This is a private
database that consists of both digital and print-scan sam-
ples of morphed images and is composed of 964 + 964 +
529 morphed face images generated from subjects contained
in the FRGCv2 and FERET databases. Another database
by Scherhag et al. [109] employs landmark-based morph
generation techniques that include OpenCV, FaceMorphed,
FaceFusion, and the UBO morphing method. This database
consists of approximately 791+3246 morphed face images
from the FERET and FRGCv2 databases. This private database
consists of morphed face images in both digital and print-scan
formats. Another database by Ferrara et al. [51] employs trian-
gulation with the dlib landmark method of morph generation.

This is a private database that consists of 560 digital morphed
face images. The only publicly available morphed face dataset
was introduced by Biometix [12], which consists of 1082 mor-
phed face images in digital form. However, information on the
morphed image generation method involved is not available.

Singh et al. [115] provided another database that employs
the OpenCV-based morph generation technique to generate
facial morphs. This was the first dataset introduced for probe
images captured live from automatic border control (ABC)
gates with different lighting conditions, which is relevant for
differential morphing attack detection. This database consists
of both digital and print-scan enrolment images generated
using an EPSON XP-860 printer and scanner. This dataset
consists of 90 morphed face images and is not available to the
public.

Damer et al. [41] introduced the first face morphing
database consisting of deep learning-based morph images.
The generated deep learning-based database is compared with
landmark-based morphs. The authors employed 68 landmark
points extracted from dlib for landmark-based morph gener-
ation and GAN architecture for deep learning-based morph
generation. This database consists of 1000 morphed face
images; however, the GAN-based morphs are of size 64×64,
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Fig. 5. Taxonomy of MAD techniques.

which does not meet ICAO standards. This database is private
and has only digital morphed face data. Another database by
Venkatesh et al. [124] employs deep learning-based morph
generation. The authors employed the StyleGAN network to
generate synthetic morph images by mapping the input images
into the latent space. This database consists of 2500 morphed
images generated using 1270 bona fide images. It has only
digital morphed face images and is not publicly available.

Venkatesh et al. [123] introduced another database that con-
sists of morphed face images under ageing as the first database
of its kind. The authors employed the UBO morphing method
from the University of Bologna that employs dlib and 68 land-
mark points for morph generation [51]. This database consists
of 14 305 (10538+3767) morphed face images aged by 2 to 5
years. This database has morphed face images in digital form
and is not open to the public.

Raja et al. [95] presented the sequestered Bologna-
SOTAMD face morphing dataset used in a recent public com-
petition and benchmarking on the Bologna Online Evaluation
Platform (BOEP), following the FVC-onGoing series [1]. The
dataset comprises images from 150 data subjects collected in
three different geographic locations with varying ethnicity,
gender, and age. Face morphing is carried out using six
different techniques followed by automatic and manual post-
processing to override the artifact results from face morphing.
The dataset also includes printed and scanned versions with
different printers, and the enrolment images follow the ICAO
standards for passport images. The probe images are taken
from various ABC gates and gate emulations. The database
consists of 5748 morphed face images and 1396 bona fide
face images.

A. Discussion

Although there exist several morphing datasets, the major-
ity of them are private due to data protection regulations and
licensing conditions. Even for publicly available face databases
that are used to create face morphing datasets, the licensing
conditions limit the redistribution of the generated morphed

face datasets; therefore, most of the above datasets are not
openly available. For the time being, the best way to com-
pare new morphing detection methods with already published
approaches is to submit the methods to the two ongoing bench-
marks, either the SOTAMD benchmark at the university of
Bologna, which was reported by Raja et al. [95], or the
U.S. NIST-FRVT-MORPH benchmark, which was reported by
Mei et al. [75]. Note that in both cases, a sequestered dataset
is used.

V. HUMAN PERCEPTION AND MORPHED FACE DETECTION

The threat of morphing attacks is known for border cross-
ing and ID management scenarios. Therefore, the success of a
morphing attack depends on deceiving human observers, par-
ticularly ID experts and border guards. A practical scenario
for a border crossing includes border guards, who compare the
passport of a traveler containing a photograph (printed from a
data page or digitally extracted from a chip) with the physical
appearance of the traveler. Thus, the border guard considers
the facial similarity of the traveler to the reference data in
the passport to make his/her final decision. Several studies
in the literature have indicated the effectiveness of morphed
images in deceiving expert human observers [49], [59], [64],
[72]–[74], [97], [98], [126]. Early investigations on human
perception analysis of morphed images were reported by
Jäger et al. [59], where different experiments were performed
to benchmark the ability of human observers to detect face
morphing and its dependency on various parameters (i.e., dif-
ferent alpha/morphing factors). While this was an interesting
study, the human observers in the experiments were students
who were not trained to compare human faces. Furthermore,
this work was based on only a single image and did not pro-
vide any reference images for the human observers. A similar
analysis was provided by Kramer et al. [64], where a single
image was provided before requesting a decision on morphing.
Despite being different in terms of the underlying benchmark-
ing mechanism, both works reported difficulty in detecting
morphed face images for human observers.
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Investigating the impact of morphing on FRSs and human
observers simultaneously, Ferrara et al. [48] studied the detec-
tion ability of human observers and correlated it with auto-
matic FRSs. Unlike the previous work, the human observers
in the work of Ferrara et al. [48] included both trained bor-
der guards and nonspecialists who were asked to compare a
morphed face image with a bona fide face image to make
the decision. The analysis reported a challenge in detecting
morphs even when the examiner, for instance, a border guard,
was trained. Robertson et al. [97] further studied the morph
detection ability of humans by comparing live face images to
morphed face images with and without rudimentary training.
The study reported improved performance in morph detection
by human observers when provided with rudimentary train-
ing in detecting artifacts [98]. Similarly, Kramer et al. [64]
investigated the role of face image quality (of the morphed
image produced) on human perception and concluded that
high-quality morphed images are more difficult for humans
to detect.

A similar Web-based experiment simulating border control
was presented by Makrushin et al. [73], who studied human
perception analysis by both skilled and unskilled humans and
further extended [74] to obtain more unbiased and realistic
images. In both cases, skilled humans (who have knowledge
of morphed face images) show the best performance in detect-
ing a morphed face image. Summarizing the works on human
perception analysis, it is noted that both skilled and unskilled
human observers often fail to detect morphed face images.
However, it is also noted that considerable training of human
observers can improve morphed face detection [74], [98].

VI. FACE MORPH ATTACK DETECTION TECHNIQUES

Noting the limitations of human observers, a number of
automatic MAD approaches have been proposed in the recent
past. In this section, we summarize the MAD techniques
since the introduction of face morphing attacks on FRSs [48].
The available MAD techniques can be classified into two
major types: 1) single image-based MAD (S-MAD) and
2) differential image-based MAD (D-MAD). Fig. 5 shows the
taxonomy of approaches in both MAD categories reported to
date.

A. Single Image-Based MAD

The goal of S-MAD is to effectively detect a face morph-
ing attack based on a single image presented to the algorithm.
Fig. 6 illustrates a real-life example for S-MAD in a passport
application scenario, where a facial image is submitted by the
applicant for biometric enrolment in the passport application
process. This submitted image is checked to potentially detect
a morph of a suspect image. The passport application can be
initiated by the applicant either physically or when submitting
his/her facial image through a Web service [3], [5], [7], [21].
Thus, depending on the use case, the morphed image can
be one of two types: 1) digital or 2) redigitized (also com-
monly referred to as print-scan). S-MAD is challenging, as it
is expected to be robust to image quality variations, different
types of sensors (cameras), different types of morph gener-
ation tools, and different types of print-scan processes (e.g.,

Fig. 6. Example illustrating single-image-based MAD in a passport
application scenario.

the equipment and parameter set chosen for the printing and
scanning process).

As shown in Fig. 5, the existing S-MAD techniques can
be further classified into five subtypes based on the features
employed: 1) texture feature-based S-MAD; 2) quality-based
S-MAD; 3) residual noise-based S-MAD; 4) deep learning-
based S-MAD; and 5) hybrid approaches for S-MAD. Table III
summarizes the existing S-MAD techniques. In the next sec-
tion, we briefly discuss the existing S-MAD techniques for the
convenience of the reader.

1) Texture Feature-Based S-MAD: The first work on using
texture features was presented by Raghavendra et al. [91].
Following the initial work, several approaches were proposed,
as indicated in Table III. The popular texture-based methods
include local binary patterns (LBPs) [82], local phase quan-
tization (LPQ) features [83], and binarized statistical image
features (BSIFs) [62]. Furthermore, these texture features were
extracted for different color channels [90] to obtain a robust
detection performance. Variants of LBPs and BSIFs as well
as histogram of oriented gradients (HOG) features, scale-
invariant features (SIFT) [68] and speed-up robust features
(SURF) [30], [63], [70], [105], [106] have also been widely
explored in the reported works. The use of micro-texture-based
methods has shown reasonable performance on both digital
and print-scan types of S-MAD. While superior accuracy has
been reported for digital S-MAD with texture-based features,
the main limitation of these techniques is in their generaliz-
ability across different image qualities, imaging sensors, and
print-scan processes [95].

2) Quality-Based S-MAD: The quality-based techniques
largely analyze image quality features by quantifying the
image degradation to identify a given image as morphed
or bona fide [45], [56], [57], [103], [110]. Several features,
such as double-compression artifacts, photograph response
nonuniformity (PRNU), corner and edge distortions, reflection
analysis, and meta information in the images, are commonly
used to detect distortion in a morphed image. Although these
techniques have shown good performance on digital data,
they have limited performance on print-scan data. However,
the generalization ability of these techniques has yet to be
studied for different print and scan versions in the current
literature [95], [103].
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TABLE III
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3) Residual Noise-Based S-MAD: Residual noise-based
methods are designed to analyze pixel discontinuities that may
be greatly impacted by the morphing process. The basic idea
of this approach is to extract noise patterns by subtracting the
given image from the denoised version of the same image. The
noise patterns obtained are further analyzed to detect morph-
ing. The first work in this area was introduced in [122] based
on CNN-based denoising on color channels. Furthermore,
the residual noise is effectively captured using the deep
CNN approach [121]. The use of residual noise has shown
considerably good performance in terms of generalization
capabilities across different digital datasets. However, these

techniques have not been evaluated on print-scan face morphed
datasets.

4) Deep Learning-Based S-MAD: The success of deep
learning approaches for image classification tasks has moti-
vated researchers to embrace deep convolutional neural
networks (CNNs) for face MAD. All existing works are based
on pretrained networks and transfer learning. The first work in
this direction was based on using pretrained networks, such as
AlexNet and VGG18, in which the features are fused and clas-
sified to detect a morphing attack [92]. Following this, several
deep CNN pretrained networks, such as AlexNet, VGG19,
VGG-Face16, GoogleNet, ResNet18, ResNet150, ResNet50,
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Fig. 7. Example illustrating differential image-based morphing attack
detection (D-MAD) in a passport control scenario.

VGG-Face2, and OpenFace [43], [52], [70], [106], [107],
[111], [111], [112], [121], have been explored. Although deep
CNNs have shown better performance than hand-crafted tex-
ture descriptor-based MAD methods on both digital and print-
scan data, the generalization capability of these approaches is
limited across different print and scan datasets [109].

5) Hybrid S-MAD: Hybrid approaches are based on
multiple feature extractors or classifiers that are combined to
detect face morphing attacks. Several approaches have been
proposed that combine features, morphing detection scores
or decision scores [43], [70], [93], [94], [106], [120]. As
these approaches combine more than one feature extractor
and classifier, the MAD performance is generally superior to
that of single-mode MAD techniques. Despite the superior
performance, the computational cost is high, and generaliza-
tion of the approach is not well established with respect to
different types of print-scan processes.

A summary of advantages and limitations is given in
Table IV for all types of S-MAD techniques for reference.

B. Differential Image-Based MAD (D-MAD)

The objective of D-MAD approaches is to make a decision
regarding whether a suspect image is morphed or bona fide
when a corresponding image captured in a trusted environ-
ment is available. The D-MAD technique is well suited to the
border crossing scenario, where the suspected morph image
can be obtained from the passport and can then be compared
against the live captured face image (or trusted image) from
the ABC gates [84]. Fig. 7 illustrates the application of D-
MAD, specifically in a border control scenario. A taxonomy
of D-MAD techniques is presented in Fig. 5, and they can
be divided into two broad types: 1) feature difference-based
D-MAD and 2) demorphing. Table V summarizes the existing
D-MAD techniques, which are briefly discussed as follows.

1) Feature Difference-Based D-MAD: The basic idea of
this approach is to subtract the features computed on both
the suspected morph image and a live image captured in a
trusted environment. The features are further classified by
computing the difference in the feature vectors to detect
a morphing attack. To this end, several feature extraction

techniques are studied, which involve texture information, 3-D
information, gradient information, landmark points, and deep
feature information [39], [43], [102], [109], [115]. Based on
the reported results, the deep CNN features have shown the
best performance [109]. The majority of the existing works
are reported for use cases with digital images, except for a
recent work in which a print and scan dataset was explored
with improved results [80], [109].

2) Demorphing: Face demorphing techniques invert the
morphing procedure and reveal the component images that
are used to generate the morphed image. The first proposal in
this area was that of Ferrara et al. [50], which was designed
to work with landmark-based morph generation. Recent work
along these lines is based on using deep CNNs [84], [87].
These techniques are robust when the image quality is good;
however, the detection performance degrades when a face
image is captured in real-life conditions with pose and light-
ing variations that are commonly encountered in ABC gates.
Table VI presents the advantages and limitations of existing
D-MAD techniques.

VII. PERFORMANCE METRICS

In this section, we discuss the performance evaluation
metrics that are widely used in the literature and publicly
available competitions to benchmark the performance of MAD
techniques.

A. Vulnerability Assessment of FRSs

For a morphed image to be deemed a significant threat to
an FRS, it is necessary to establish the threat potential. Most
works determine the threat potential by measuring the vul-
nerability of FRSs. We therefore provide a brief overview
of suitable metrics for establishing the relevance of morph
attacks through vulnerability metrics. The goal of face vulner-
ability analysis is to measure whether the generated morphed
face image can be verified against all contributory data sub-
jects. Thus, when a morphed face image is enrolled into an
FRS and probed with another image from a contributing sub-
ject, the FRS must successfully verify all contributory subjects
corresponding to the preset verification threshold. In most
works, the threshold of the FRS is adjusted to correspond to
a false match rate (FMR) of 0.1% following the guidelines of
FRONTEX [53].

Fig. 8 illustrates an example of the vulnerability plots that
represent the scattered data of comparison scores from FRSs.
The sample vulnerability plot is simplified for visualization
purposes to provide an illustration of the vulnerability analysis.
Fig. 8 can be interpreted using four different quadrants. The
first quadrant (bottom left quadrant) Q − I indicates that the
morphed image is not verified as belonging to either of the two
contributing data subjects. Thus, a large number of comparison
scores in the first quadrant indicates that the morph generation
method is not strong enough to deceive the COTS FRS (in
other words, the morphed image is not a severe threat). The
second quadrant (top left quadrant) Q − II indicates that the
morphed image can be verified as data subject-2 (one of the
contributing subjects) only. Therefore, the morphed images pose
an intermediate-strength threat. The third quadrant (top right
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TABLE IV
S-MAD TECHNIQUES: ADVANTAGES AND LIMITATIONS

quadrant) Q−III indicates that the morphed image is verified as
both contributing data subjects (subject-1 and subject-2). Thus,
the larger the number of comparison scores in this quadrant,
the greater the threat and vulnerability of the analyzed FRS
with respect to morphed images. The fourth quadrant (bottom
right quadrant) Q−IV indicates that the morphed image can be
verified as data subject-1 only. Therefore, the morphed images
again pose an intermediate-strength threat to the FRS.

To mathematically quantify the vulnerability of an FRS to
morphed face images, the metrics below have been developed
and adapted in the literature.

1) Mated Morph Presentation Match Rate: Mated morph
presentation match rate (MMPMR) metric was initially
proposed by Scherhag et al. [104]. It defines the pro-
portion of morphed images verified with its contributing
images

MMPMR = 1

M

M∑

m=1

[
min

n=1...Nm

Sn
m

]
> τ (1)

where M is the number of morphed images and Nm is the
total number of subjects contributing to morph m. Sn

m is the

comparison score for mated morph for morph m of the nth
subject, and τ is the threshold of the FRS at a chosen FMR.

The rationale of MMPMR is that a morphing attack suc-
ceeds if all contributing subjects are verified successfully
against the morphed image. MMPMR considers multiple com-
parisons, which are related to multiple authentication attempts.
This may not always be the case. A successor of the MMPMR
metric named the fully MMPMR (FMMPMR) was introduced
by Venkatesh et al. [123] to address the quadrants employed
for vulnerability assessment, as shown in Fig. 8. The details
of the FMMPMR are provided below.

2) Fully Mated Morph Presentation Match Rate: This met-
ric defines the proportion of morphed images verified with
their contributing subjects again under the condition that the
morphed image is verified successfully against both contribut-
ing subjects [123]. This metric further takes into account both
pairwise comparisons of contributing subjects and the number
of attempts compared to MMPMR and is described as follows:

FMMPMR = 1

P

∑

M,P

(
S1P

M > τ
)

AND
(
S2P

M > τ
) · · ·

AND
(
SkP

M > τ
)

(2)
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where P = 1, 2, . . . , p represents the number of attempts made
by comparing all probe images from the contributing subject
against the Mth morphed image, K = 1, 2, . . . , k represents
the number of data subjects contributing to the constitution of
the generated morphed image (in our case, K = 2), SkP

M rep-
resents the comparison score of the Kth contributing subject
obtained in the Pth attempt (in this case, the Pth probe image
from the dataset) corresponding to the Mth morph image and τ

represents the threshold value corresponding to FMR = 0.1%.

The FMMPMR metric verifies the morphed image with its
contributing subjects and takes into account the number of
attempts. It is therefore a relevant and realistic metric to quan-
tify the vulnerability and establish the true attack strength of
a morph generation method.

3) Joint Evaluation of FRS and Vulnerability to Morph
Attacks: In addition to Fig. 8, we note that the FRS can have
a high recognition accuracy (i.e., biometric performance) but
can also have a high vulnerability to morphing attacks. It is
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Fig. 8. Threats of morphed images with respect to comparison scores against
both contributing subjects. The figure illustrates that morphed images crossing
the threshold of 0.5 (i.e., those lying in quadrant Q-III) are effective attacks
with a more severe threat to the FRS than those in Q-II and Q-IV.

Fig. 9. Illustration of morph attacks in conjunction with the strength of the
FRS. As noted from the figure, the genuine and impostor distributions of the
comparison scores are clearly separated, indicating the strength of the FRS
while indicating the vulnerability to morph attacks, as most of them cross the
predefined threshold of 0.5 at a chosen FMR = 0.1%.

therefore essential to first evaluate the biometric performance
of the FRS according to international standard ISO/IEC 19795-
1 [57] and subsequently evaluate its vulnerability by using the
preset threshold (e.g., FMR = 0.1%). We illustrate a chosen
COTS FRS in Fig. 9, where one can see the success of the mor-
phing attack for a selected threshold (τ ) of 0.5, corresponding
to FMR = 0.1%. We conclude that the real strength of an FRS
cannot be established unless good recognition performance
and robustness with respect to morphing attacks are analyzed
and reported. For this reason, Scherhag et al. [104] established
a relative measure that combines the recognition accuracy with
vulnerability measures, and this metric is referred to as the
relative morph match rate (RMMR(%)). Specifically, when τ

Fig. 10. Sample illustration of the detection accuracy of MAD algorithms
at different operating points with a detection error tradeoff curve (DET). As
noted from the figure, MAD Algorithm 3 performs best at a chosen APCER
of 5% or 10%.

is employed to obtain either the MMPMR or FMMPMR, as
discussed earlier, the RMMR can be defined as follows [104]:

RMMR(τ )MMPMR = 1 + (MMPMR(τ ))

− [1 − FNMR(τ )] (3)

RMMR(τ )FMMPMR = 1 + (FMMPMR(τ ))

− [1 − FNMR(τ )] (4)

where FNMR indicates the false rejection rate (FNMR) of the
FRS under consideration obtained at the threshold τ .

B. MAD Performance Metrics

The robustness of MAD algorithms is measured using the
performance metrics defined in the International Standard
ISO/IEC 30107-3 [58] and is applicable to reporting the
morphing attack detection performance. Since the MAD
performance can be visualized as a binary classification
problem, the following metrics are widely used to benchmark
MAD algorithms.

1) Attack presentation classification error rate (APCER)
defines the proportion of attack samples incorrectly
classified as bona fide face images.

2) Bona fide presentation classification error rate (BPCER)
defines the proportion of bona fide images incorrectly
classified as attack samples.

However, it is not possible to optimize both the APCER
and BPCER jointly; it is thus natural to set (or fix) either the
BPCER or APCER and report the result with a dependency of
the other metric (either the APCER or BPCER). Most works
have reported results by setting a predefined security level
(e.g., indicating the maximum proportion of morph accepts
they can tolerate) and then fixing the APCER accordingly at
values of @1%, 5%, or 10% [80], [92], [95]. As shown in
Fig. 10, MAD Algorithm 3 would be preferred at a given
APCER of 5% or 10% in the benchmark compared with the
other two algorithms.
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C. Joint Evaluation of MAD Algorithms and Vulnerability

In a real-life scenario, an FRS may operate with a MAD
subsystem in integrated processing. For a successful attack,
it is therefore important that the morphed face image can
invade the enrolment process and can match to probe images
from the contributing subjects. To quantify the vulnerability in
the presence of a MAD, a metric called the Actual MMPMR
(AMPMR) was recently proposed in [88] and can be written
as follows:

AMPMR
(
thfa, thmad

) = 1

N

N∑

i=1

(((
min

j=1,..Mi
SCij

)
> thfa

)

AND (SCmad−i > thmad)

)

(5)

where the total number of morphed images is denoted by
N. SCij is the face recognition score of the ith morphed
image when compared to a probe sample of the jth contribu-
tor. Mi is the number of contributors to the morphed image.
SCmad−i is the MAD score of the ith sample. Based on these
metrics, higher values of the AMPMR indicate more severe
vulnerability.

VIII. PUBLIC EVALUATION AND BENCHMARKING

In this section, we summarize evaluations that publicly
benchmark morphing attack detection performance. At the
time of this writing, there are two such benchmarks: 1) the
FRVT Part 4: MORPH—Performance of Automated Face
Morph Detection [75] and 2) Bologna-SOTAMD: Evaluation
of Differential MAD and Single Image MAD [95]. These
benchmarks have provided a common platform that includes
datasets, evaluation protocols, and the computational envi-
ronment. The platforms provide a trustworthy assessment of
submitted algorithms. Below, we briefly describe the databases
used in each platform and the performance achieved by various
algorithms that are presented.

A. NIST-FRVT Part 4: MORPH—Performance of Automated
Face Morph Detection

The FRVT MORPH test was introduced in June 2018 to
provide a common platform for independent testing of MAD
face technologies and to ensure a common assessment method-
ology. The dataset used in the evaluation was created using
different morphing methods with the objective of identifying
low-quality morphing (generated using freely available tools),
automated morph generation (generated using an automatic
tool without human intervention), and high-quality morph gen-
eration (generated with commercial morphing software and
additional post-processing that is carried out to mask poten-
tial artifacts). The evaluation is carried out for both S-MAD
and D-MAD techniques. However, the probe data used in the
D-MAD evaluation are not effectively obtained from ABC
gates. Several algorithms are evaluated, and the majority of
the participants in the competition to date are from academic
institutions. Most of the submissions for S-MAD are based on
texture features, while for D-MAD, both face demorphing and
differential feature-based techniques are evaluated. Based on
the recent evaluation report, it can be noted that:

1) none of the algorithms has indicated a reliable detec-
tion performance meeting the FRONTEX operational
requirement [53], and thus, face morphing attack detec-
tion remains a challenging task;

2) the quality of morph generation has a direct impact
on the performance of both S-MAD and D-MAD
techniques.

In the S-MAD category, the use of hybrid features [94] has
shown better performance than other MAD methods, while
among the methods in the D-MAD category, the approach of
latent feature differences based on ArcFace features [109] has
attained the best detection performance.

B. Bologna-SOTAMD: Differential Morph Attack Detection

The Bologna-SOTAMD benchmark was opened for eval-
uation in 2019 and provided a common evaluation platform
to benchmark D-MAD techniques. The Bologna-SOTAMD
D-MAD benchmark consists of a database collected in the
European SOTAMD project [10] using real ABC gates. The
morphing was carried out using automated approaches with
both open-source and commercial software. Several MAD
techniques have been benchmarked, which include both face
demorphing and feature difference methods, and the details of
the evaluation protocol and the performance of various sub-
mitted algorithms can be found in [95]. Among the multiple
algorithms evaluated, it can be noted that the existing D-MAD
techniques are not robust enough to detect face morphing
attacks in accordance with the FRONTEX operational require-
ment [53], highlighting the challenge of MAD again. The use
of the feature difference-based D-MAD technique shows bet-
ter performance than face demorphing techniques. The best
result, a detection equal error rate (D-EER) of 3.36%, has
been reported on digital data, and D-EER = 3.36% has been
reported on print-scan data.

C. Bologna-SOTAMD: Single Morph Attack Detection

The Bologna server has also hosted a public benchmark
for S-MAD since 2020. The S-MAD dataset was constructed
using high-quality passport images similar to those used in
real passports. The morphed images were generated using
both commercial (FantaMorph, FaceFusion) and open-source
(triangulation with facial landmarks) face morphing software.
Post-processing was carried out using automatic and man-
ual processes to reduce the artifacts generated using the face
morphing software. For more information on the database
and evaluation protocol, (see [95]). As evaluation started
only recently, few algorithms have been benchmarked on the
Bologna S-MAD platform. The baseline performance reported
a D-EER of 37.10% and 38.99% on print-scan and digi-
tal morphed images. These preference measures indicate the
challenges in detecting face morphing images using S-MAD
techniques.

D. Discussion of Public Evaluation

Based on the above discussion of publicly available bench-
marks and competitions, it can be noted that the reliable
detection of face morphing attacks remains challenging. The
performance of S-MAD is severely degraded compared to that
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of D-MAD. This can be attributed to the availability of addi-
tional information (another image) that can be used to make
the final decision. The interesting outcomes of these competi-
tions indicate that the use of the hybrid feature-based S-MAD
technique has shown improved generalizability across various
morph generation methods. At the same time, the feature dif-
ference method used in the context of D-MAD has shown a
more robust performance on both benchmarks.

IX. OPEN CHALLENGES

The research topic of face morphing and detection has
received great interest from both research and governmental
stakeholders. This has resulted in intensive research activi-
ties around studying the vulnerability of COTS FRSs and the
development of several MAD techniques to reliably detect
such attacks. However, there are still several challenges and
open issues that need to be addressed. In the next section, we
present these challenges and open issues in the field of face
morphing attack detection.

A. Unavailability of Large-Scale Public Datasets With
Variation

The unavailability of large-scale face morphing datasets
reflecting real-life scenarios hinders the development of robust
MAD. Furthermore, considering the different modes of morph
attacks (digital and print-scan), it is necessary to generate and
evaluate MAD algorithms on digital and print-scan datasets.
However, the generation of large print-scan databases is quite
expensive and tedious. Additionally, these databases cannot
be shared publicly due to licensing restrictions or to privacy
and general data protection regulation (GDPR) [81] concerns.
Hence, there is a limitation in accessing the existing morphing
databases. Although the publicly available benchmarks now
host large-scale databases, those datasets can only test submit-
ted MAD algorithms. They cannot aid the further development
of MAD algorithms. However, the systematic generation of
morphed face images with various types of morphing soft-
ware combined with different types of print-scan processes
must result in large-scale databases that will become avail-
able for researchers in order to achieve significant progress in
MAD.

B. Generalizability of MAD Techniques

The generalization of MAD techniques is crucial in achiev-
ing reliable performance in real-life border control scenarios.
However, the existing MAD techniques are evaluated only
on known types of face morph generation techniques and
known sources of redigitization (printer and scanner types),
except in NIST-FRVT Part 4: MORPH—Performance of
Automated Face Morph Detection and Bologna-SOTAMD.
Fig. 11 illustrates the variation in morphed image quality due
to different types of printers and scanners. The performance
reported in the benchmarking study [1], [75], [95] also indi-
cated the degraded performance of MAD techniques on both
D-MAD and S-MAD when tested on unknown sources of gen-
eration. More significant degradation is noted with S-MAD
methods, which is attributed to learning-based systems that
can learn a decision policy based on known data. These fac-
tors limit the applicability of learning-based MAD techniques

Fig. 11. Example of print-scan images and post-processed images. The
variation in the data quality across different printers and scanners is notable,
which challenges the MAD algorithms.

if they are not trained on a large-scale dataset with all real-life
variants. Thus, it is essential to devise a MAD approach that
is robust in detecting face morphing attacks.

C. Selection of Data Subjects for Morphing

In earlier studies, morphed images were generated by
randomly selecting the contributing data subjects. It is a
well-established assumption that a morphing attack will be
more successful with both human observers and machines
(FRSs) if the candidate data subjects are selected based on a
look-like measure. Some recent works [42], [90], [99], [123]
describe the selection of data subjects in the morphing process.
However, in the systematic study of these existing meth-
ods regarding the impact on FRS vulnerability, the detection
performance of both human observers and automatic MAD
detection methods still needs to be investigated.

D. Variation With Face Co-Variates

The critical aspect that is not systematically studied with
MAD is the role of face co-variates, which include age, gender,
ethnicity, identification factors, image post-processing, and
image quality. A preliminary study on the effect of aging on
morphing vulnerability and detection was presented in [123]
and has revealed the influence of aging on face morphing
vulnerability. The variation of face co-variates has a greater
influence on S-MAD techniques, while for D-MAD tech-
niques, the imaging quality plays a vital role. As the images
are captured using an ABC gate in D-MAD, the influence of
varying illumination due to day and night light settings needs
to be investigated. Additionally, images captured live at an
ABC gate may be acquired with eyeglasses or hair occlusions,
and this has not yet been investigated. Thus, it is essential to
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benchmark both D-MAD and S-MAD techniques in a real-
life scenario with all those co-variates. Another aspect that
has not yet been investigated with regard to its impact on
MAD is potential face beautification. It is expected that face
images are beautified prior to applying for a passport in many
countries [96]. As the beautification process changes the image
properties, it is essential to understand both vulnerability and
MAD for this particular problem.

E. Performance Metrics

Considering that face morphing attack detection is emerg-
ing as a new operational problem, there has been only
a slow convergence toward harmonized testing and report-
ing. Publicly available benchmarking and competitions have
employed ISO/IEC metrics [58] to benchmark the detection
performance of MAD techniques. However, there are no stan-
dardized metrics yet to evaluate the vulnerability of FRSs with
respect to morphing attacks. Furthermore, the available vul-
nerability metrics, such as FMMPMR and MMPMR, are not
feasible for use in operational scenarios, including ABC gates
and passport application scenarios. Therefore, there is a strong
need for a standardized vulnerability evaluation metric incor-
porating experience from both practitioners and researchers
working on face MAD. The availability of an international
standard using ISO/IEC, together with commonly used vul-
nerability metrics, is discussed in Section VII, and this needs
further effort.

F. Component-Based Morphing

Almost all literature has studied face morphing as a holistic
problem with full-face image morphing. Qin et al. [88] intro-
duced partial face morphing, including a preliminary study on
morphing only specific regions of the face. Extensive experi-
ments indicate that partial morphing of the eye and nose poses
a severe threat to commercial FRSs [88]. However, the sys-
tematic evaluation of high-quality face images has yet to be
studied together with the impact on human expert observers
(e.g., border guards and super-recognizers).

G. Identical Twins and Look-Alikes

The influence of morphing on identical twins and look-
alikes is an interesting problem that needs systematic study
within the scope of morphing. The vulnerability of FRSs
to face morphing images generated from identical twins and
similar subjects needs to be studied on large-scale databases.

H. User Convenience

The design of user-convenient (or user-friendly) MAD
systems plays a crucial role in making detection subsystems
deployable in real-time applications. Thus, there is a need to
design face MAD systems that allow minimal user interven-
tion (from both operators and applicants). This fact needs to
be considered when designing D-MAD techniques that are
tailored for ABC systems.

X. CONCLUSION

FRSs have gained a large amount of trust for security-related
applications. However, morphing attacks on FRSs can be a

hindrance to establishing a secure society. Furthermore, vari-
ous morphing attack detection techniques have been proposed
by several researchers to effectively detect morphed images.
However, improvements in deep learning and machine learn-
ing techniques have resulted in the generation of high-quality
morphs using various new techniques. Hence, generalizing
MAD methods is still predicted to be far in the future consid-
ering the basic challenge of obtaining large public databases
with variations and different morph generation techniques. In
this article, we detail the advancement of different types of
morph generation techniques. Along with a brief overview of
the different types of morphing attack detection techniques, the
corresponding performance metrics are reported. We also pro-
vide a brief discussion of the challenges faced in this field in
developing a robust technique to detect morphs, which serves
as a reference for future work.
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