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Abstract—Deep learning has revolutionized the detection of
diseases and is helping the healthcare sector break barriers
in terms of accuracy and robustness to achieve efficient and
robust computer-aided diagnostic systems. The application of
deep learning techniques empowers automated AI-based utilities
requiring minimal human supervision to perform any task related
to medical diagnosis of fractures, tumors, and internal hem-
orrhage; preoperative planning; intra-operative guidance, etc.
However, deep learning faces some major threats to the flourish-
ing healthcare domain. This paper traverses the major challenges
that the deep learning community of researchers and engineers
faces, particularly in medical image diagnosis, like the unavail-
ability of balanced annotated medical image data, adversarial
attacks faced by deep neural networks and architectures due to
noisy medical image data, a lack of trustability among users and
patients, and ethical and privacy issues related to medical data.
This study explores the possibilities of AI autonomy in health-
care by overcoming the concerns about trust that society has in
autonomous intelligent systems.

Index Terms—Adversarial attacks, computer-aided diagnostic
systems, convolutional neural network, data augmentation, deep
learning, medical image analysis.

I. INTRODUCTION

ARTIFICIAL intelligence (AI) has become one of the most
ground-breaking fields that has revolutionized health-

care [1], remote sensing [2], robotics [3], autonomous driv-
ing [4], and other interdisciplinary domains over the past
decade. Over time, machine learning (ML) algorithms have
been used by researchers and engineers to solve many biomed-
ical tasks as well as simple data processing tasks [5], [6].
ML accomplishes a job by learning and utilizing previously
obtained task-specific data. While machine learning algorithms
excel when dealing with simple linear data, they do less well
when handling complicated medical data [7]. Over time, deep
learning, a subtype of AI has surpassed machine learning in
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the diagnosis of medical images [8], thanks to its improved
accuracy, capacity for deep feature learning, and flexibility in
tackling challenging diagnostic issues. However, the use of
deep learning has been met with some difficulties, including
the lack of annotated medical image data, lossy medical image
data with attenuations and artefacts, user mistrust of deep
learning-based tools like computer-aided diagnostic (CAD)
systems, and ethical and privacy concerns regarding the data.
Researchers and engineers are very concerned about these
issues, given that they are hindering the advancement of deep
learning in the medical field.

Image artefacts and noise are considered adversarial attacks
as they result in a biased and wrong prediction. While motion
artefacts are common in magnetic resonance imaging (MRI)
scans [9], computed tomography (CT) scans frequently exhibit
ring artefacts, beam-hardening, scatter artefacts, and metal
artefacts [10]. Further, a blend of speckle, Poisson, and
Gaussian noise is the most prevalent form of noise observed
in radiological medical images like X-rays [11]. Deep learn-
ing practitioners in the medical domain must denoise image
data manually to generate a clean dataset for training and test-
ing. However, this procedure necessitates more time and space,
which drives up the price of creating the CADs.

While the availability of annotated medical image data
is low, large datasets are required to train and validate
robust deep learning architectures. The image labelling is a
tedious task that requires supervision by medical profession-
als, making it expensive and time-consuming. This crunch
in data generates a big challenge for training deep neural
networks. Further, any imbalance in data for a particular
class in the dataset could create a bias in the deep neural
network, which could lead to overfitted prediction and diag-
nosis from the model. Modern deep learning techniques use
representation learning algorithms to generate high volumes of
medical images from a small medical image dataset [12], [13].
Although the artificial datasets generated after augmentation
produce good results when training deep neural networks, a
lack of trust towards these methods of data generation prevails
in the community.

Since deep learning models are typically “black box” algo-
rithms, the public has a critical perspective on them. There
are significant risks associated when a black box machine is
employed as a diagnostic tool in healthcare facilities. Even
though deep networks are frequently utilized by doctors and
other medical experts, not everyone accepts the risk, which
makes it difficult to trust these AI approaches. To increase
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user confidence and trust in CADs, it is imperative that the
explainability of deep networks be thoroughly researched and
made available to users.

Privacy and ethical issues are great concerns that prevent
the deep learning community from sharing medical image
data in the open-source domain. It is estimated that by 2027,
cloud computing in health care will be worth 89 billion U.S.
dollars [14], and to ensure the users’ privacy and prevent coun-
terfeiting, certain measures must be taken unless it is deemed
to be open source. Medical data is protected by various interna-
tional regulations in different nations. For instance, to prohibit
the disclosure of sensitive patient health information without
the knowledge or consent of the patient the United, States’
Health Insurance Portability and Accountability Act (HIPAA)
of 1996 created national standards. Since patients’ personally
identifiable information is now legally protected, healthcare
professionals are now compelled to secure, restrict the use
of, and distribute it. Therefore, maintaining the secrecy of
patient identity is one of the main responsibilities of deep
learning engineers, which is challenging. The United Nations
member states adopted the “Sustainable Development Goals”
in 2015 with an aim to achieve 17 goals by 2030, with the
third goal to “Ensure healthy lives and promote well-being
for all at all ages.” Healthcare and diagnosis in rural areas
in some underdeveloped countries face a major barrier due
to a lack of infrastructure. A disruption in healthcare of 92%
global member states of the UN was recorded during the pan-
demic [15]. It created havoc in the healthcare community, and
the major pitfalls of manual, contact-based diagnosis were
noticed by society. Proposals for contact-less diagnosis were
achieved during the latter half of the pandemic using CADs.
As a result, to achieve health supremacy, society must look
up to and trust AI-based diagnostic systems. The shift from
manual healthcare diagnosis to efficient CAD-based diagnos-
tic systems could facilitate a major growth in the healthcare
system by reducing diagnosis time, preventing erroneous diag-
noses, and thus reducing mortality rates. The acceptance of AI
based systems will help society accelerate in the domain of
healthcare and therefore improve the quality of human life.

The primary objective of our research was to explore and
identify the challenges, explainability, trustability, and prospects
of deploying deep learning algorithms to healthcare and medical
image analysis. Specifically, in this paper, we consider:

1) Adversarial attacks in deep networks due to attenuation.
2) Unavailability of data and imbalanced data.
3) Trust issues and explainability.
4) Privacy and legal issues of medical data.
The rest of the paper is organized as follows. Section II

explains the role of explainable AI (XAI) in the CAD systems
related to healthcare. Section III provides the challenges of
deep learning in healthcare. Section IV discusses the ethical
principles and Section V concludes the paper.

II. DEEP LEARNING IN HEALTHCARE

Healthcare organizations and facilities are gradually becom-
ing more inclined toward the methods in which artificial
intelligence can be used to diagnose diseases and treat patients.
In the past several years, deep learning has revolutionized the

ability of machines to analyze and handle data at a very high
speed and with a precision that has never been achieved before.
It is a hierarchical method that utilizes complex and deep struc-
tures and efficiently learns non-linear data with high accuracy
and precision. Deep learning has been investigated in biologi-
cal image processing, the diagnosis of illnesses, and the design
of surgical systems for intraoperative and preoperative support,
and the findings are encouraging. According to a survey [16]
conducted in the U.S., people trust and are aware of AI in
healthcare. A range of patient-facing healthcare technologies
that allow individuals to communicate with clinicians and
access their own medical information are highly acquainted
with and used by more than half of patients (58%), according
to the survey. The fact that 52% of people do trust AI for
their medical requirements was also underlined. This shows
that there is a pressing need to develop high-performance AI
that solves a range of issues.

For artificial intelligence to grow in the healthcare industry,
it is essential to comprehend medical data, discern techniques
for processing it, and use the resulting CADs to provide precise
and trustworthy findings. A proper understanding of medical
data is required to effectively use data and resources in the
healthcare business and to deliver trustworthy outcomes. Fig. 1
represents a typical CAD system and its functionality of diag-
nosing medical image data or real time medical image time
series data in surgical environment.

Once the deep learning model incorporated into the CAD is
trained and perfected by deep learning engineers, the system
takes the medical image as an input and generates the diag-
nosis prediction for the user. The CAD system is trained so
that it is immune to adversarial attacks and attenuations. In the
case of a very corrupted medical image, it could provide the
user with an inconclusive result for the diagnosis. Inclusion of
an XAI module in the CAD, as shown in Fig. 1, gives the user
both a visual and a numerical explanation, upholding the user’s
faith and trust in the outcomes of the CADs. The models’
internal workings and predictions are made openly available
to be adequately interpretable by human analysts to develop
trust in model predictions and find potential defects or limita-
tions in the model. To support the expansion of CAD research,
users contribute their own data to the healthcare facility’s data
storage cloud. The user has the option of reporting an incor-
rect diagnosis to the development team for evaluation. Further,
to avoid misdiagnosis and to gain users’ trust, CADs must be
gradually retrained repeatedly based on real time data and thor-
oughly field tested before they are deployed into the medical
industry. The performance should be assessed under the guid-
ance of medical practitioners, whose expertise and supervision
could be used to validate these AI-based CADs, which would
help them improve.

III. CHALLENGES OF DEEP LEARNING IN HEALTHCARE

A. Adversarial Attacks in Deep Networks Due to Attenuation

Deep neural networks, when subjected to noise, could pro-
duce misclassifications and erroneous results [17]. Medical
image data is not devoid of noise and attenuations; it con-
tains a wide variety of attenuations and motion artefacts.
Multiplicative noise is often present in biomedical imaging,
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Fig. 1. A general overview of a computer aided diagnostic system and how it tackles deep learning challenges.

such as MRI, CT, ultrasound, and positron emission tomog-
raphy (PET) imaging. The denoising varies the spatial and
temporal distribution, and the medical image contrast so a sub-
stantial amount of detail is lost. If the AI systems are not well
protected from malicious attacks, it might bring mistrust in AI
among the common people. If any malicious third party tries
to introduce any form of adversarial attack, the CADs must be
prepared forehand to deal with them. Failure of being resistant
to these attacks will make the users of the technology lose faith
in the CADs. Linear algorithms fail in removing multiplicative
noise which is signal dependent and is described mostly by
complex Rayleigh and Gamma models. Further, since both
noises and edges of medical images contain high frequencies,
linear filters often do not provide sufficient performance when
denoising.

The removal of the artefacts poses a massive challenge to
deep learning researchers, engineers, and biomedical profes-
sionals in the healthcare decision support system. In the early
days of ML usage in healthcare industry, the image process-
ing community engaged in developing pre-processing methods
to root out these artefacts and attenuations in medical data.
Liao et al. [18] presented a bilateral filter (CBF) that when
applied to a smoother version of the image (context), sup-
presses the propagation of noise (PoN) and performs blind
image denoising effectively. Bhonsle et al. [19] used bilateral
filtering of MRI and X-ray images perturbed with additive
Gaussian noise of different variances, and achieved better
results than linear filtering methods like the Wiener filter, mean
filter, etc. There has been a considerable amount of research
exploring the use of deep learning for medical image denois-
ing. Gondara [20] showed that denoising autoencoders using
convolutional layer blocks can be used as effective denoising
tools for medical imaging. The author showed that a small data

volume containing about 300 samples can be sufficient to train
the autoencoder and produce efficient denoising performance.
Jifara et al. [21] proposed a residual learning approach along
with batch normalization to learn the noise directly from noisy
images. In recent years, adversarial training has become more
effective in dealing with lossy data, and it does not manipulate
the lossy data to produce results. A wide range of adver-
sarial training methods using generative adversarial networks
(GANs) [22] were explored by Yi et al. [23]. Although a fair
amount of research has been conducted in the deep learning
community related to adversarial training, very few studies
have been implemented in the medical industry. The basic intu-
ition behind adversarial training is that data is augmented by
adversarial samples, which contain the general features of the
noisy image data. The training data is enforced with accurate
ground truth, and the network is trained so that in the event
of an attack with noisy data, the deep network can be flexible
to the attack and produce accurate results thereby improving
user’s trust [24].

B. Unavailability and Imbalanced Data

An ideal medical image dataset should have the metadata,
the identifier, and an adequate volume of images, be correctly
annotated with ground truth by a medical professional and be
reinforced with a proper license for distribution in the deep
learning research community. Annotations and the data that
is generated using imaging modalities are part of metadata.
Medical images are indeed time-consuming and expensive to
collect. There remains a scarcity of a large volume of authen-
tic annotated medical image data, which prevents the growth
of deep learning in medical image diagnosis. To compen-
sate for the scarcity of medical image datasets, the generation
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Fig. 2. Different Image Augmentation approaches.

of synthetic datasets has begun. This procedure is known as
“image data augmentation,” which includes the generation of
images from the original dataset by manipulation while keep-
ing the important features of the image data preserved. The
deep learning model considers the new image to be alien data
but still increases the effective volume of the image dataset.
There has been a substantial amount of research over the
years on data augmentation techniques. Fig. 2 explores vari-
ous state-of-the-art image augmentation techniques, apart from
the classical image manipulation methods that are widely used
with deep learning methods. Basic image manipulation and
augmentation techniques include image translation and flip-
ping, jittering of image pixel intensity values, random cropping
of images, random rotation, image shearing using affine trans-
formation, adding Gaussian blur and noise, and color space
transformation.

Overfitting is a condition where the AI model associates
itself closely with the training data and may not perform well
when subjected to unseen data. It is usually experienced when
the training data is small and not clean enough, i.e., when it
contains noise.

Image manipulation methods do not generate new images
for that feature space, and since there is structural similarity
with the original data, the deep learning model is overfitted
for using the augmented data. To resolve this challenge, deep
learning methods using autoencoders and generative adversar-
ial networks (GANs) were implemented, which learned the
features of the data for every different class of disease and
generated synthetic images for the respective classes. A GAN
contains two neural networks: a generator and a discrimina-
tor. While synthetic data is generated by the generator from
random noise, the discriminator predicts if the data is real or
synthetic. Both networks get better through training by try-
ing to outperform each other in a min-max game. In a typical
GAN-based augmentation, the generator is trained to generate
synthetic medical image data by training it on a real medi-
cal image dataset. The image dataset, which is generated by
the generator, is used to train or validate deep networks for
medical diagnosis.

Pix2pix [25], Pix2pixHD [26], SPADE [27], are some trans-
lations based GANs that translate images using masks that
improve biological and medical coherence. While GANs like
DCGAN [28] are flexible, the PGAN is good at generat-
ing high-resolution images. Data augmentation [29], [30] and
patch extractions are often used with noise-based generation
models when dealing with small datasets.

Sundaram and Hulkund [30] used GAN generated chest X-
ray images to train and classify lung lesions, fractures, and
pleural effusion categories. Bissoto et al. [31] used GAN-based
augmentation to augment skin lesion medical images and stud-
ied the different synthetic data generated from different GANs.
Their study revealed that for skin lesion image augmentation,
StyleGAN 2 [32] outperformed other contemporary architec-
tures in generating synthetic image data. Frid-Adar et al. [33]
implemented the generation of augmented CT images for liver
lesion classification. A convolutional neural network (CNN)
trained on augmented data from the GAN outperformed the
CNN trained on a real dataset, thus showing the improvement
of the deep network by using augmentation.

Conditional GANs are used by Kyuchkov et al. [34] on CT
images to improve the reproducibility and detection probabil-
ity of pulmonary nodules. For data augmentation, the model
used an open-source CT-GAN network, Wasserstein loss, and
adaptive instance normalization. Minne et al. [35] conducted
experiments for a comparative analysis of the classical and
GAN-based augmentation techniques to augment 3D MRI
data to diagnose and treat Alzheimer’s disease and dementia.
Zhang et al. [36] used a domain adaptation technique to over-
come the unavailability of medical image data by segmenting
medical images using meta-learning [37]. Singh et al. [38]
proposed a “MetaMed” approach aiming to reduce computa-
tion and improve accuracy with small datasets. While there
is a 2–5% improvement in generalization capability, 70%
accuracy was obtained using the hybrid augmentation and reg-
ularization models when tested on three datasets: ISIC 2018,
BreakHis, and Pap smear. While these are some recent encour-
aging findings made by deep learning researchers to tackle the
challenge of data scarcity and variance, integrating patients’
trust information and trust propagation [39] with GANs while
generating new samples improves the performance of recom-
mender systems and patient’ trust.

C. Trust Issues and Explainability

Deep learning training algorithms are mathematically com-
prehensible, but their architectures and the complex mathemat-
ics behind them are more of a “black box” model. Thus, the
prediction of deadly diseases, medical diagnosis for treatment,
or surgical guidance using these AI methods raises ethical con-
cerns for people. The public generally refuse to trust these
CAD systems and their evaluations of the given data. As
a result, the deep learning community in healthcare needs
highly qualified individuals to create these deep learning-based
diagnostic tools.

Accuracy, precision, recall, and the F1 score are the stan-
dard metrics to evaluate a model’s performance in terms of
classification
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Accuracy = (TP + TN)/(TP + FP + TN + FN) (1)

Specificity = TP/(TP + FP) (2)

Sensitivity = TP/(TP + FN) (3)

F1 score = (2 ∗ precision ∗ recall)/(precision + recall)

(4)

where TP is true positive, FP is false positive, TN is true
negative, and FN is false negative.

It is important for the model to have strong F1, precision,
and recall in addition to good accuracy. While sensitivity
corresponds to the accurate identification of the diseased,
specificity corresponds to the correct identification of people
without disease. Since accuracy, precision, and other metrics
usually estimate how well the model performed on the test
set, they could be manipulated and changed to reflect differ-
ent values. AI engineers could readily fabricate the data used
to represent the model’s performance. As a result, users never
have trust in the performance indicators of the model. This
lack of trust led to the demand for XAI, which enables con-
sumers to understand the predictions and diagnoses made by
deep learning algorithms. The wide breach of trust between
the society and the black box deep learning models can be
mended by implementing explainable deep learning in CADs.
Unlike machine learning algorithms, deep learning handles
visual information very explicitly, and visual explainability is
more informative and captivating to the users than numerical
quantifiers. Thus, for society to accept AI, visual explainability
must be actively implemented in CAD systems.

Research on the explainability of deep learning in medical
imaging has been extensively conducted. Magesh et al. [40]
studied the explainability of Parkinson’s disease prediction by
CNNs on DaTscan (dopamine transporter scan) data using
the Local Interpretable-Model Agnostic Explainer (LIME)
method and produced encouraging results. In deep learn-
ing, to explain image classification tasks using CNN, guided
backpropagation, gradient-based class activation maps (Grad-
CAMs) [41], class activation maps (CAMs), and deconvolution
techniques are used. These techniques generally fall into
the category of “visual explanation” of deep learning meth-
ods. Cohen et al. [42] demonstrated the use of Grad-CAMs,
CAMs, and heatmaps to localize infected regions in lungs
of a COVID-19 patient to predict the opacity and extent of
the disease and to produce an interpretable output. Successful
experiments have been conducted by Gu et al. [43] using
a comprehensive attention convolutional neural network and
have achieved remarkable results in skin lesion segmentation
and fetal MRI segmentation based on their explainability and
disease localization. Fig. 3 represents a plot of performance
versus explainability for the various machine learning models,
including deep learning models and Bayesian models.

1) Model Agnostic and Model-Specific Explainability:
Model agnostic XAI methods, by definition, are model or
architecture independent and provide a high level of flex-
ibility. Instead of developing a different evaluation method
for a different model, it has been found that model agnos-
tic methods produce praiseworthy results for different types
of AI architectures and algorithms, from decision trees, sup-
port vector machines (SVM), nearest neighbor classifiers,

Fig. 3. Performance vs explainability plot for various machine learning,
statistical learning, Bayesian learning and deep learning methods.

logistic regression classifiers to some black-box methods like
CNN. A reliable model-agnostic method that is approved by
clinical experts and scientists can be used globally as a stan-
dard method. Once a model is standardized, it can be easily
explained to the common people while comparing with other
reliable methods to ensure the trustworthiness. For exam-
ple, the users would find a linearly explainable algorithm or
a visual representation more promising than statistical val-
ues that they might not be aware of. Unlike model-agnostic
methods, model-specific methods do not explain a large spec-
trum of deep learning models, although their explanations are
much more specific than their model-agnostic counterparts.
For example, with GradCAM tool, using a method that is
specific to visual data-based architectures like CNN, gradient
maps can be generated. The pixels in the image responsible
for a particular prediction can be described, which in turn is
logically understandable by a human being. The deep learn-
ing research community has made significant efforts to bring
model explainability tools to society. Tools such as LIME,
SHapley Additive exPlanations (SHAP), Whatif Tool (WIT),
AI Explainability 360 toolset and Skater, are widely used to
produce reports on a model’s operation and attempt to explain
the algorithm.

2) Post Hoc Explainability: Post hoc explainability is a
technique for analyzing a trained deep network to gain
understanding of the learned mapping. The model-based and
model-specific explanations are different from the post hoc
explanation methods. The former train a deep network and
then attempt to explain the pattern of predictions given by the
black box deep network, whereas the latter try to make the
deep network explainable by various modifications.

D. Privacy and Legal Issues of Medical Data

Medical data is one of the most valuable entities in the
healthcare system; it contains all the valuable health-related
information of everyone who has ever been registered in a
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public or private medical facility for treatment or diagno-
sis. In recent years, medical data has been stored digitally,
and the sharing of this data is protected by various laws.
The Patient Data Protection Act, or Patientendaten-Schutz-
Gesetz (PDSG), was passed by the German parliament (The
Bundestag) in 2020 for the complete digitalization of the
German healthcare system. Several database providers, orga-
nizations, and websites—including Harvard Dataverse, U.K.
Biobank, Kaggle, and IEEE Dataport—have recently made
medical data more accessible. They exchange licensed data
that registered data scientists, machine learning, and deep
learning programs can use. However, these medical databases
can be compromised by external malicious software on the
system, and antivirus programs and individuals demanding
high cybersecurity measures like strong password policies,
firewalls, and penetration testing. If malicious programs can
steal the private health information, the patient might be
subjected to harassment, cyberbullying, paranoia, or men-
tal pain. Thus, the decision to disclose medical information
rests with the data’s owner, or the patient, who frequently
expresses reluctance due to the data’s confidentiality and
integrity. Only a small percentage of patients volunteer to
engage in various data gathering questionnaires and actively
provide their medical information for study. For deep learn-
ing researchers and engineers, getting access to confidential
medical data presents a significant challenge. To remedy
such challenges, researchers could use techniques involv-
ing pseudonymized data or differential privacy rather than
identified data [44]. Privacy audits can ensure patients trust,
appropriate use, and security standards should guard against
unauthorized use.

IV. ETHICAL PRINCIPLES, OPPORTUNITIES AND FUTURE

RESEARCH DIRECTIONS

The world of deep learning in medical image diagnosis faces
the challenges discussed in the previous section, has created
a divide between society and the deep learning community.
The misunderstanding and suspicion that society has towards
intelligent autonomous systems in healthcare and diagnosis
hinders the autonomy of AI-based healthcare systems.

Transparency, explainability, fairness, non-maleficence,
accountability, or privacy are some of the ethical principles
that may be used in the design of deep learning systems to
alleviate patient concerns about data security, confidentiality,
and integrity. Actions are required to address the ethical stan-
dards of AI at various organizational levels, and it should be a
continuous process. The deployment of ethical AI involves
several governance procedures that are not only technical,
and there are many stakeholders involved. Risk assessment,
competence and knowledge building, stakeholder communi-
cation, cross-functional collaboration, data governance, IT
governance, MLOps, and AI design are emerging practices.

Competence and knowledge development, refers to a set
of practices used to promote the abilities, expertise, and
awareness necessary to implement ethical AI. Stakeholder
communication refers to the set of communication practices
organizations use to inform about their ethical AI practices,

algorithms, or data. While the terms “AI design and develop-
ment” and “data and AI governance” both refer to a set of
operational decisions and practices that organizations use to
address ethical concerns regarding the deployment, develop-
ment, and use of AI systems, respectively, the former refers
to the practical methods and practices that make up MLOps.

Building responsible AI systems being prime importance,
the deep learning engineers need to be careful while design-
ing task-specific deep learning systems. The models need to be
carefully assessed for various data and tasks through numer-
ous performance tests and explainability assessments, while
keeping the privacy of the data secure and avoiding any algo-
rithmic bias caused by noisy data or foreign attacks. Further,
robust software should be incorporated into the CADs, and
they should undergo vigorous penetration testing [45].

The following are a few best practices for responsible AI
systems to overcome the limitations of conventional AI in
healthcare:

a. Share information with the greater community, including
research, tools, databases, and other resources.

b. Create trustworthy and efficient user-centered AI
systems while considering machine learning-specific
issues.

c. Keep an eye out for both long-term and short-term prob-
lems, estimate how the system will operate overall, and
predict how users will react to future improvements.

d. Update systems regularly, considering user input and
real-time performance while maintaining a good balance
between simple and optimal solutions.

e. Conduct iterative integration and isolation tests on sub-
systems while considering a range of gold standard
datasets, users, and use cases.

f. Recognize the constraints imposed by the dataset and
model while communicating the depth and breadth of
the training to the users.

g. Use a variety of indicators to understand the trade-offs
between different errors and experiences.

Tools that produce reports on a model’s operation and
attempt to explain it are known as “explainable AI frame-
works.” SHapley Additive exPlanations (SHAP) is a model-
independent approach that uses the shapley values from game
theory to describe models. It illustrates how various features
impact output or what role they play in the model’s conclu-
sion. Local Interpretable Model-agnostic Explanations (LIME)
generates a list of explanations that show how each attribute
affects a data sample’s ability to predict the future. The
Google-developed Whatif Tool (WIT) aids users in compre-
hending the operation of machine learning (ML) trained mod-
els, test performance regarding hypothetical scenarios, various
data attributes, subsets of input data, and various machine
learning fairness measures. IBM created the open-source AI
Explainability 360 toolset to enhance the explainability of
datasets and the interpretability of ML techniques. Skater is a
framework that aids in the creation of interpretable machine
learning systems, which are typically implemented in real use
cases.

Potential opportunities of XAI in healthcare include but
are not limited to maintenance and evolution in health
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care technologies, patient-specific health care, context-aware
systems, robotic-assisted surgical procedure planning, medical
image segmentation, targeted drug delivery, disease diagno-
sis and forecasting, treatment planning, basic and translational
biomedical research, and survival analysis.

Although the study encompasses the challenges qualita-
tively, it does not consider the quantitative aspects of the
demographics of different countries on continents where CADs
could be implemented in healthcare. Many rural regions of
the world do not have the facilities to implement such CADs,
which causes a major restraint in achieving the supremacy
of AI in healthcare. Future studies may examine the inter-
actions between organizations involved in AI governance.
The intersections of IT governance, data governance, and AI
governance might be another area of future research.

While the explainability of AI and adversarial training were
previously unexplored topics in medical imaging, significant
research in these areas has produced groundbreaking results.
CADs implemented with responsible AI systems, secure data
protection protocols, and explainable tools could help health-
care flourish in the most rural areas of the globe, where
medical staff is scarce. As new regulations and AI legislation
take effect, it will be interesting to see how different organiza-
tions continue to assess the risks and adopt the AI standards,
certifications, and audits that are anticipated to occur in the
future.

V. CONCLUSION

Although deep learning faces barriers in its growth in health-
care, the future holds big prospects for AI in healthcare, from
classifying diseases to probing AI supervised robots to per-
form surgical tasks. The growth of deep learning in medical
image diagnosis can be achieved only by restoring the faith of
humans in AI through awareness. While it is very important
to explain to the user how systems deliver the output, how
the model is developed, and what the impact of the model
is, the deep learning-based designs should also be adaptively
fine-tuned, considering the quality degradations with respect
to time. Apart from resolving AI explainability issues, the
deep learning-based designs must be made transparent with-
out compromising the user’s privacy and security and without
any bias with respect to data collection, labelling, treatment,
and model operations. Further, the technical, ethical, and soci-
etal factors of deep learning-based designs for medical image
analysis can be optimized for better decision making and
usability by combining responsible and XAI, which involves
the complementing, co-creation, and coexistence of AI and
humans.
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