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ABSTRACT To date, few broadband DRAs can cover n257, n258, n260, and n261 bands with a small
physical footprint (e.g., < 0.4λ0×0.4λ0×0.15λ0, where λ0 is the free-space wavelength at 28GHz).
This article proposes a compact and broadband substrate-integrated dielectric resonator antenna (SIDRA)
suitable for 5G millimeter-wave band applications. Four operating modes from three resonators, including
TE111 and TE131 modes from the DR, slot mode from the H-shaped feeding slot, and patch mode from
the inserted ring patch, are excited to achieve a bandwidth of 61.9% (24-45.5 GHz) with a compact
size of 0.37λ0×0.37λ0×0.125λ0. The proposed DRA can be extended to an array with ∼0.5 λ0 element
interval to obtain wide-angle beam scanning capability. A 1×4 SIDRA array was simulated, achieving
beam-scanning area of ±45◦ and ±32◦ at the frequencies of 28 / 39 GHz. Further, the DRA array was
fabricated and tested. It offers a measured 10-dB bandwidth (|S11| ≤ –10 dB) of ∼60.4% (23.5-43.7 GHz),
in which the gain varies between 10.1 to 12.5 dBi.

INDEX TERMS Broadband, compact, dielectric resonator antenna, millimeter-wave, beam-scanning.

I. INTRODUCTION

IN RECENT years, millimeter-wave antennas are widely
used to provide high-data-rate communications in fifth-

generation (5G) technologies [1], [2]. Generally, millimeter-
wave antennas should be designed based on the following
considerations: 1) Wide bandwidth. Several commercial
bands in millimeter-wave region are introduced, such as
n257, n258, n260, n261, etc., ranging from 24.25 to
43.5 GHz. The antennas which can cover the whole band-
width would become very attractive. 2) Compact size. To
achieve wide angular coverage and avoid grating lobes,
the element spacing of beam-scanning arrays are required
to be around 0.5 λ0 (λ0 is the free-space wavelength at
28GHz) [3], [4]. Therefore, the antenna element should be
compact enough (<0.4λ0×0.4λ0) to support the array design
requirements. 3) High efficiency. The adoption of mas-
sive multiple-input multiple-output (Massive-MIMO) tech-
nology in millimeter-wave bands results in a significant

rise in energy consumption. To improve energy efficiency,
it is essential for the antenna to possess high antenna
efficiency.
Several types of millimeter-wave antennas have been

proposed to cover the target bands in recent years. One
method is to use stacked patches [5], [6], [7], [8], [9],
[10], [11]. In [7], a dual-polarized antenna is proposed
with two layers of gridded patches. In [9], the presented
antenna has a stacked patch configuration with extra para-
sitic strips. However, most of these designs can only support
dual-band operation. To fully cover the frequency band
between 24 to 43 GHz, magneto-electric (ME) dipoles [12],
[13], [14], [15], [16] and so-called complementary anten-
nas [17], [18] are proposed. In [16], by combining the
patches (electric dipole) and a via-slot structure (magnetic
dipole), the antenna achieves a bandwidth of 24.3-40 GHz.
In [17], the complementary design can cover the bandwidth
of 27–45.5 GHz.
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It is noted that all the aforementioned antennas are metallic
antennas, which suffer from the defect of high ohmic losses
in the millimeter-wave band, therefore having relatively low
efficiency. To solve this issue, dielectric resonator antenna
(DRA), which has higher antenna efficiency, is considered
as a promising candidate [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32]. In [20], a 2×2
DRA array can achieve a bandwidth of 25-40 GHz by using
a novel but bulky feeding structure. In [26], a low profile and
decoupled connected DRA array is presented. However, it
can only cover a bandwidth of 22.5-30 GHz. To the authors’
knowledge, there is currently no reported DRA design that
can provide a wide bandwidth spanning from 24 GHz to
43 GHz, while maintaining a compact size suitable for wide-
angle beam-scanning applications.
To solve this issue, a compact and broadband substrate-

integrated DRA (SIDRA) is proposed in this article.
Compared to ceramic DRA, SIDRA is more convenient for
processing and assembly [33], [34]. By properly combin-
ing the DR, slot, and ring patch, the proposed antenna can
produce a total of four resonant modes. Specifically, the fun-
damental mode TE111 and higher order mode TE131 of the
DRA are excited at 32 GHz and 43.5 GHz, respectively. The
H-shape slot feeding structure also functions as a resonant
radiator at 25 GHz, whereas the ring patch produces an addi-
tional mode at around 38 GHz. The antenna can, therefore,
cover the whole millimeter-wave band of 24-43 GHz with
a small physical footprint of 0.37 λ0×0.37 λ0×0.125 λ0.
It can also be extended to an array with ∼0.5 λ0 element
interval to obtain wide-angle beam scanning capability.

II. MULTI-MODE HYBRID DRA
A. ANTENNA CONFIGURATION
Fig. 1 illustrates the configuration of the proposed SIDRA.
It is a PCB-based multilayered structure containing three
substrate layers and two prepreg layers. The square SIDRA
is directly constructed in Substrate 1, having a side length
of a. A square-ring patch is printed on the upper surface of
Substrate 2, whose outer length is given by am and inner
length by an. An H-shaped slot is etched on the upper metal-
lic layer of Substrate 3, while an microstrip line is printed
on the bottom surface. They together server as a feeding
structure to excite the above SIDRA.
In this case, Substrate 1 is made of Taconic RF-10 (εr1 =

10.2, tanδ = 0.0025) with a thickness of h1. Taconic RF-35
(εr2 = 3.5, tanδ = 0.0018) with a thickness of h2 and Rogers
5880 (εr3 = 2.2, tanδ = 0.0009) with a thickness of h3 are
used for Substrate 2 and Substrate 3, respectively. The three
substrates are pressed together by using two prepreg layers
(thickness is hpreg) of Rogers 4450F (εr4 = 3.54, tanδ =
0.004).

B. OPERATING PRINCIPLE
To investigate the operation of the proposed SIDRA, the
evolution of the antenna structure is studied. Fig. 2 shows
the configurations of the three antennas, while Fig. 3 depicts

FIGURE 1. ConFiguration of the proposed SIDRA. h1 = 0.635 mm, h2 = 0.254 mm,
h3 = 0.254 mm, hpre = 0.1 mm, a = 4 mm, am = 0.8 mm, an = 0.7 mm, Ls1 = 1.7 mm,
Ls2 = 0.4 mm, Lf = 1.13 mm, ws = 0.15 mm, wf = 0.6 mm, G = 12 mm.

FIGURE 2. Structure evolution of the proposed SIDRAs.

the corresponding simulated reflection coefficients. The full-
wave solver ANYSIS HFSS is used for simulation. It is
found that antenna A have two resonances at 31 GHz and
44 GHz, which is contributed by the DRA’s fundamental
TE111 mode and the high-order TE131 mode, respectively.
To include the feeding slot mode, Antenna B is achieved by
adjusting the size of the H-shaped slot, mainly shortening
its length. Through the adjustment, the slot mode is shifted
up to around 25 GHz, which is close to the TE111 mode
and the bandwidth has potential to be enhanced. However,
even though the three resonant modes are excited within
the target band, it is difficult to optimize the impedance
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FIGURE 3. Simulated |S11|s for the antennas with different structures.

matching since the two resonances from the DRA are still
too far apart. To solve this issue, a square ring patch is
introduced in Antenna C. It produces an additional mode at
38 GHz which is located right between the DRA’s two res-
onances. With this operation, four resonances can be created
and uniformly distributed over the target frequency band, and
a good impedance matching within the band can finally be
achieved for Antenna C. Here it is important to note that the
adopted ring patch has two advantages. First, it has a very
small size (much smaller than a square patch), thus having
little influence on the other resonators. Second, it does not
increase the overall antenna dimension as it is inserted below
the DRA.
To further investigate the operation mechanism of the

SIDRA, the E-field patterns of the antenna at different
resonant frequencies in the xoy and yoz planes are illus-
trated in Fig. 4. Fig. 4(a) depicts the E-field patterns at
25 GHz, which can be seen that a strong E-field distri-
bution is concentrated around the H-shaped slot, suggesting
that the resonance is generated by the slot. In Fig. 4(b) and
Fig. 4(d), it can be found that the E-field distribution is con-
centrated on the upper surface of the DRA at 32 GHz and
43.5 GHz, and the corresponding shapes of the field pattern
are consistent with the DRA’s fundamental TE111 mode and
higher-order TE131 mode. Fig. 4(c) shows the E-field distri-
butions at 38GHz. It is quite strong around the ring patch.
On this basis, the mode around 38 GHz can be defined as
a ring patch mode.

C. PARAMETRIC STUDIES
In order to provide a clear demonstration of how the dif-
ferent structural parameters affect the antenna, parametric
studies have been performed. Fig. 5(a) shows the simulated
|S11| corresponding to different lengths (Ls1) of the H-shaped
slot. With reference to the figure, the first resonant mode
decreases from 26 GHz to 23.5 GHz as Ls1 increases from
1.5 to 1.9 mm while the other resonances remain stable.
This phenomenon also indicates that the resonance around
25 GHz is closely related to the H-shaped slot.

FIGURE 4. Simulated E-field patterns of the SIDRA. (a) Slot mode at 25 GHz.
(b) TE111 mode at 32 GHz. (c) Ring patch mode at 38 GHz. (d) TE131 mode at 43.5 GHz.

The impact of the DR on the antenna was also investigated.
The reflection coefficients against a and h1 are simulated
in Fig. 5(b) and (c). As a and h1 increase, the resonant
frequencies around 32 GHz (TE111 mode) and 43.5 GHz
(TE131 mode) shift downward apparently as the other two
resonances remain unchanged. This is reasonable because
both the second and fourth modes are produced by the DRA.
It is worth noting that the influence of a on the resonance
of TE131 mode is slightly stronger than that on TE111 mode,
while h1 has the opposite influence on the two resonances.
A parametric study of the side length of ring patch was

carried out in Fig. 5(d). It can be learned that the variation
of am significantly affects the resonant frequency around
38 GHz. This phenomenon confirms that the third resonant
mode is mainly generated by the ring patch.

D. DESIGN GUIDELINE
Based on the operating principle mentioned above, a concise
design guideline is summarized as follows:

1. Determining the dimensions of the square SIDRA. The
initial values of the SIDRA is determined to ensure
the resonances of TE111 and TE131 modes radiate at
target frequencies.

2. Inserting the ring patch to extend the bandwidth. The
small ring patch has negligible effect on the DR
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FIGURE 5. Simulated |S11|s of the antenna with different (a) Ls1 (b) a (c) h1 (d) am .

operation. It can be then inserted into the DRA with
its size determined to enhance the antenna bandwidth.

3. Tuning the length of slot. In addition to tuning
the impedance matching, the H-shaped slot is also

FIGURE 6. Simulated |S11|, gain and radiation patterns at different frequencies of
the SIDRA element. (a) |S11| and gain. (b) 26 GHz patterns. (c) 32 GHz patterns.
(d) 38 GHz patterns.

operating as a resonator. The slot size should be
carefully tuned for both the mode resonating and
impedance matching.

4. Optimizing the antenna structure. The parameters of
antenna can be further optimized to achieve a good
performance.

E. SIMULATED RESULTS OF THE SIDRA ELEMENT
Fig. 6 depicts the simulated performance of the DRA ele-
ment. The reflection coefficient and gain are shown in
Fig. 6(a). With reference to the figure, the impedance band-
width (|S11| < –10 dB) is given by 61.9% (24-45.5 GHz),
and the gain is stable between 5.3 dBi and 8.1 dBi within
the impedance bandwidth.
The radiation patterns at low (26 GHz), middle (32 GHz),

and high (38 GHz) frequencies are presented in Fig. 6(b)-(d).
The simulated results demonstrate that the antenna ele-
ment can achieve symmetrical radiation patterns on both
the planes across the wide operating band. Within the
3-dB beamwidths, the cx-pol (cross-polarization) levels
remain below –32 dB in the E-plane and –41 dB in the
H-plane.
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FIGURE 7. Structures of the proposed SIDRA array. (a) Top view. (b) Side view.

FIGURE 8. Simulated radiation efficiency of the proposed antenna array.

III. 1×4 HYBRID ANTENNA ARRAY
The proposed SIDRA is extended to a 1×4 array as shown
in Fig. 7 since a 1×4 array is currently the most commonly
used millimeter-wave antenna solution for mobile terminals.
To achieve a wide-angle coverage, the element spacing is
set as 5.5mm (∼0.51λ0 at 28 GHz). The plated-through-
vias surrounding the antenna elements are used to reduce
the mutual coupling. Fig. 8 shows the simulated radiation
efficiency of the proposed antenna array, which is varying
from 83.6% to 92.5%.
Fig. 9 shows the simulated active |S22|s and mutual cou-

plings between different ports of the antenna array, where
we can learn that the mutual coupling is lower than –15 dB
within the band. The active parameters are better than
–10 dB at the scanning angle of 0◦ (@28 GHz) and bet-
ter than –8.5 dB with the scanning area of ±25◦. When
scanning angle increases up to 45◦, the active |S22| is better
than –6.5 dB.
Fig. 10 illustrates the simulated 2D beam-scanning

performance of the DRA array by introducing a stepwise
phase shift between the elements at 28 / 39 GHz. In H-plane,
the observed scan losses are lower than 1 dB with sidelobe
levels better than 5 dB within the scanning area of ±45◦
and ±32◦ at 28 GHz and 39 GHz.

The proposed design concepts were verified by fabri-
cating and measuring the antenna array. Fig. 11 (a) and

FIGURE 9. Simulated active S-parameters and mutual couplings between the ports
of the antenna array.

FIGURE 10. 2-D beam-scanning results of the SIDRA array at different frequencies.
(a) 28 GHz. (b) 39 GHz.

(b) show the antenna prototype, where we can find that
a one-to-four Wilkinson power divider is introduced to do
the measurement of the radiation patterns at 0◦ scanning
angle. Fig. 11(c) demonstrates the corresponding measured
and simulated antenna performance of gains and |S11|s. The
simulated –10 dB impedance bandwidth is 61.7% (23.2–
43.9 GHz) and the measured one is 60.4% (23.5–43.7 GHz).
The simulated gain varies from 10.8 dBi to 13.5 dBi, and the
measured array gain varies between 10.1 dBi and 12.5 dBi.
Fig. 12 illustrates the radiation patterns of the SIDRA

array, showing both simulated and measured results. The
measured main lobes match well with the simulated ones at
all three frequencies. In the H-plane, the measured max-
imum sidelobe levels are given by –12.5 dB, –12.4 dB,
and –16.7 dB. The measured X-pol levels within the 3-dB
beamwidths are better than –29.2 dB/–25.2 dB/–29.7 dB in
the E-plane and –29 dB/–27.4 dB/–27 dB in the H-plane at
26/32/38 GHz, respectively. Suffer from the fabrication tol-
erances as well as the measurement error, there are some
slight discrepancies between the simulated and measured
results.
Table 1 presents a comparative analysis between the

proposed SIDRA and previously reported millimeter-wave
DRAs, highlighting the contributions of this paper. It can
be found that majority of the DRA designs have lim-
ited bandwidths and cannot achieve the full band coverage
of 24.25-43.5 GHz. In [20], although the DRA obtains
a wide bandwidth of 42% (covering 25-40 GHz), it has
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TABLE 1. Performance comparison with the previous antenna designs.

FIGURE 11. The prototype of the 1×4 DRA array with its measured and simulated
results. (a) Top view of the array prototype. (b) Bottom view of the array prototype.
(c) Measured and simulated gains and |S11|s of the array prototype.

a complicated feed structure which makes it hard to be
extended to an array design. The proposed SIDRA element
has comparable compact size and radiation efficiency with
the competitors, but demonstrating a much wider bandwidth.
Furthermore, the proposed antenna can be extended to an
array to support wide-angle beam scanning. Moreover, it can
be fabricated by using standard PCB process, which can mit-
igate the positioning error and improve the integration level,
enabling the applications in commercialized batch fabrication
at millimeter-wave band.

FIGURE 12. Simulated and measured radiation patterns of the SIDRA array at
(a) 26 GHz. (b) 32 GHz. (c) 39 GHz.

IV. CONCLUSION
In this article, a compact and broadband SIDRA and
its array design have been constructed and investigated
for 5G millimeter-wave applications. A wide bandwidth,
which can cover the whole n257, n258, n260 and n261
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(24.25-43.5 GHz) bands, has been realized by exciting four
different operating modes. Within the bandwidth, the SIDRA
can also achieve stable radiation patterns and gain. The
proposed SIDRA element has been further extended to a
1×4 antenna array. The simulated results reveal that the array
can achieve wide beam-scanning angles at target frequencies.
The measured |S11|s, gains and radiation patterns show
tolerable differences compared to the simulated results. It
can be concluded that the proposed design is valuable for
millimeter-wave applications.
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