
Received 13 April 2023; revised 24 July 2023; accepted 29 August 2023. Date of publication 15 September 2023; date of current version 6 October 2023.

Digital Object Identifier 10.1109/OJAP.2023.3310975

Ultra-Wideband Tightly Coupled Dipole Array
Fed by a Tapering Meandered Balun

MATTHEW W. NICHOLS (Member, IEEE),
MICHAIL O. ANASTASIADIS (Graduate Student Member, IEEE), MALCOLM E. TAAFFE (Member, IEEE),

ELIAS A. ALWAN (Member, IEEE), AND JOHN L. VOLAKIS (Life Fellow, IEEE)
College of Engineering & Computing, Florida International University, Miami, FL 33174, USA

CORRESPONDING AUTHOR: M. W. NICHOLS (e-mail: mnich036@fiu.edu)

This work was supported in part by the Air Force Office of Scientific Research under Grant FA9550-19-0290 and Grant FA9550-18-1-0191;
in part by Northrop Grumman under Grant PO 5300022936; and in part by NASA under Grant 80NSSC18K1736.

ABSTRACT An ultra-wideband (UWB) phased array is presented operating from UHF to C-bands (0.14
to 5.85 GHz). This new design employs an integrated, compact tapered spline balun in conjunction with
a triple-layer semi-resistive frequency selective surface (FSS) network. Notably, the integration of the
meandered balun within a dual-polarized tightly-coupled dipole array (TCDA) allowed for a contiguous
bandwidth of 40:1 with VSWR < 2.5 at broadside. Moreover, the use of the semi-resistive FSS superstrate
enabled scanning down to ±60◦ with a VSWR < 3.5 in the E-, H-, and D-planes. The overall array
thickness is λLow/17.93 (where λLow is the wavelength at the lowest frequency of operation, 140 MHz),
and the array’s radiation efficiency is 75% on average across the operational bandwidth. That is, compared
to previous UWB TCDAs with contiguous operational bandwidths of 40:1 or greater, the proposed array
is 30% thinner and has equally good or better efficiency. This paper presents the analysis and design of
the dipole array, with emphasis on the spline balun. An 8 × 8 prototype (12 × 12 element FSS network
footprint) was fabricated and measured to validate the performance of a finite array.

INDEX TERMS Tightly coupled dipole array (TCDA), ultra-wideband (UWB) array, phased array,
frequency selective surface (FSS) network.

I. INTRODUCTION

ASIS well known, the wireless spectrum is highly frag-
mented and congested [1], implying challenges in its

utilization. Notably, over the short span of a couple months
in 2015, the Federal Communications Commission (FCC)
auctioned just 65 MHz (a bandwidth smaller than that used
for WiFi) for more than $40 billion [2]. This high value of
the microwave spectrum is only increasing as user demand
continues to increase, with the global mobile market data
rates growing by approximately 30% every year [2].
Furthermore, communication platforms (i.e., cell phones,

GPS, vehicles, satellites) require access to many different,
often widely separated bands. This creates inefficient and
costly redundancy, as independent systems are required for
each frequency band. UWB antennas and arrays can enable
multi-functionality, and replace the multiple narrowband
apertures to achieve significant reduction in power, cost, and
space [3]. Specifically, UWB arrays perform well in radio

astronomy [4], and can realize secure communications using
spread spectrum techniques [5]. They also enable advanced
remote sensors, including foliage penetration (FOPEN) [6],
through-wall imaging [7], medical imaging [8], and high
resolution radar [9].

However, UWB phased arrays are often impaired by
trade-offs in scanning capability, size, efficiency, and band-
width [10]. Vivaldi or tapered slot arrays are among early
UWB apertures, first implemented in the 1970s [11]. These
arrays use a tapered slot line to perform matching to free
space. However, while achieving UWB operational band-
width, they are multiple wavelengths tall and have high
cross-polarization levels when scanning, including phase
center instability [12], [13]. A Vivaldi variation, the sliced
notch antenna (SNA), corrects the unbalanced current poten-
tials known to cause high cross-polarized gain, but is still
multiple wavelengths tall [14]. Another Vivaldi variation,
the balanced antipodal Vivaldi antenna (BAVA), achieves a
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low profile of λHigh/2 (where λHigh is the wavelength at the
highest frequency of operation), with a decade bandwidth via
capacitive coupling between elements, but is limited to 45◦
scanning [15]. The planar UWB modular antenna (PUMA)
utilizes coupled dipole array elements with unbalanced feed-
ing, but only operates over a 6:1 impedance bandwidth [16].
Transverse electromagnetic (TEM) horns [17], body-of-
revolution (BOR) elements [18], and bunny-ear arrays [19]
have also shown impressive bandwidth performance but are
non-planar in nature. Hence, they often lead to large and pro-
trusive structures that are challenging to fabricate, especially
for low-frequency applications.
A recent class of UWB arrays is the tightly coupled

dipole arrays (TCDA) [20], [21]. A key advantage of TCDAs
is their practical feed structure while conforming to strin-
gent space, weight, and cost constraints. Notably, TCDAs
require balanced feeding, implying that the dipole currents
must be equal and opposite. Therefore, a feed structure that
provides a smooth transition across the entire operational
bandwidth from a balanced (dipole) to an unbalanced (coax-
ial cable) interface must be employed. A balun can provide
the unbalanced to balanced current transformation along with
impedance matching from 50� to almost 200�. Of course,
the balun’s physical presence should not degrade the array’s
performance (i.e., gain, pattern, bandwidth, cross-pol) or add
substantial increase in the array’s weight and cost. Further,
the balun must fit inside a limited volume for a low-profile
array configuration [20], [21].
Past TCDAs have achieved wide bandwidths from

300 MHZ to 90 GHz, as detailed in [21]. TCDAs
build on Wheeler’s ideal current sheet array (CSA)
concept [22], and achieve optimal bandwidth based
on the Bode-Fano limits [23], [24], [25], [26], [27], [28].
Several papers have shown impressive bandwidth, as seen
in [29], [30], [31], [32]. Notably, previous TCDA designs
have used FSS layers to increase bandwidth, improve scan-
ning, suppress substrate resonances, and reduce the apertures
thickness. However, efficiency is often reduced as bandwidth
is increased [33], [34], [35], [36], [37], [38]. Most recently,
TCDA designs have achieved extremely wide bandwidths,
with improved efficiency, using layered FSS networks below
the array plane [39], [40], [41].
In this paper, we focus on the enhancement of TCDA

UWB performance, building upon the designs seen in [39],
and [40]. Notably, a triple-layer semi-resistive FSS network
is employed to shift and then attenuate ground plane reso-
nances. In addition, it effectively provides variable ground
plane distance control with higher average efficiency. A
novel integrated compact tapered spline balun is employed
to accommodate impedance matching over the entire band-
width while maintaining smaller conformal array thickness.
The presented array is dual-polarized and operates from
140 MHz to 5.85 GHz with a VSWR < 2.5 at broadside.
Moreover, the antenna exhibits low angle scanning capabil-
ities with VSWR<3 (over most of the band) down to 60◦,
in the E-, H-, and D-planes. Its profile thickness is only

FIGURE 1. 3D view of the 8 × 8 array and periodic unit cell.

λLow/17.93 (where λLow is the wavelength at the lowest
frequency of operation, 140 MHz).
An average radiation efficiency of approximately 75% is

achieved across this operational bandwidth. The array and
integrated balun consist of three copper layers hosted by
two Rogers 4003 substrates of 0.305 mm thickness each.
Correspondingly, the semi-resistive FSS network is printed
on Rogers 3010 material (layer 1), and FR4 (layers 2 & 3),
all 0.64 mm thick. An 8 × 8 prototype of the array (12 × 12
element FSS footprint) was fabricated to verify simulations.
The paper is organized as follows. Section II introduces the

array with its structure and parameters. Sections III and IV
highlight the design of the tapered spline balun and the triple-
layer semi-resistive FSS network, respectively. Section V
discusses the fabrication and assembly of the prototype, with
simulation and measurements presented in Section VI.

II. ARRAY AND FSS SUPERSTATE DESIGN
The proposed 8 × 8 dual polarized TCDA (see Fig. 1) is
constructed by assembling orthogonal rows of 8 × 1 element
linearly polarized boards to form an ‘egg-create’ configura-
tion and inserting them vertically against the ground plane.
Each row consists of three copper layers hosted by two
Rogers 4003 substrates of 0.305 mm thickness each (εr =
3.55, tanδ = 0.0027). To assemble the entire array, par-
tial slots are cut at the edge of each dipole element in a
8 × 1 row to form the ‘egg-create’ configuration. Notably, no
direct electrical connection or soldering is required, making
fabrication simple and low-cost.
The final geometrical parameters are provided in Table 1.

These parameters were generated by creating a model of
the periodic array (i.e., a periodic unit cell) using Ansys
High Frequency Structure Simulator (HFSS). The periodic
unit cell is composed of the following (from top to bot-
tom): 1) a single layer printed FSS superstrate layer [32],
2) tightly coupled dipoles and capacitive overlapping pads,
3) tapered spline balun and triple-layer semi-resistive FSS
network (both discussed later), and 4) the ground plane (see
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TABLE 1. Design parameter values of the final array unit cell.

FIGURE 2. Periodic unit cell design features and parameters comprising
polarization 1. Design features and parameters comprising polarization 2 are a mirror
copy of polarization 1, with the exception of the partial slot cut at the edge of each
dipole element. Design parameter values are given in Table 1.

Fig. 1). Referring to Fig. 2, the various design features and
parameters comprising polarization 1 are listed. Design fea-
tures and parameters comprising polarization 2 are a mirror
copy of polarization 1, with the exception of the partial slot
cut at the edge of each dipole for assembling the ‘egg-create’
structure. A stack diagram of the layers forming the periodic
unit cell comprising polarization 1 are shown in Fig. 3.

The FSS superstrate and dipole arms reside in the cen-
ter copper layer. The superstrate is designed to improve the
impedance matching between the dipoles and free-space for
wider scanning capability [32]. Notably, the printed metallic

FIGURE 3. Stack diagram of the periodic unit cell (polarization 1).

FSS superstrate replaces previously used large, heavy, and
expensive dielectric slab superstrates (see [29], [35], [36]).
Using the periodic unit cell layout shown in Fig. 1, the width,
height and spacing of the superstrate layer was optimized.
As expected, wider and taller superstate layers achieve bet-
ter performance at lower frequencies and vice versa. A
trade-off was therefore required between good performance
and the array thickness at the lower end of the operational
band. Also, to avoid grating lobes, the dipoles are designed
to keep the distance between adjacent elements less than
λHigh/2. To do so, overlapping pads are placed on each
of the outer copper layers (in effect emulating overlapping
dipoles). This approach induces strong capacitive coupling
among the dipole elements, extending the operational band-
width [22], [30]. The feed balun traces are also placed on
the outermost copper layers (see next section).

III. TAPERED SPLINE BALUN
To develop the proposed 42:1 wideband array aperture,
we employed a correspondingly wideband feed consist-
ing of a tapered spline balun, as in Fig. 4. This balun
was first simulated as an individual structure with a 188�
impedance termination, and then optimized in a periodic set-
ting. Individually, it shows an impedance match of largely
S11 < −10 dB with an average transmission loss (S21)

of only 0.64 dB over an operational bandwidth of 57:1
(134 MHz to 7.65 GHz), as depicted in Fig. 5. Specifically,
the presented balun optimizes the transition between a mode
transducer and an impedance transformer to achieve min-
imum reflection, and cancel common-mode currents (i.e.,
combining balun functionality with impedance transforma-
tion). Parametric studies found that if the transductive section
is too long, the impedance transformer does not operate
effectively. If too short, the resultant abrupt transition to the
unbalanced excitation leads to a differential mode excitation.
To that end, we adopted a Klopfenstein taper profile [42],
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FIGURE 4. Compact tapered spline balun: 3D views with design features and
parameters labeled. As labeled, ‘LPT ’ refers to the approximately 188� lumped port
(port 2), and ‘LPB ’ refers to the 50� lumped port excitation (port 1) used in
simulations. Other labeled design parameters are given in Table 1.

FIGURE 5. Compact tapered spline balun: simulated reflection (S11) and
transmission (S21) results for port to port performance of the balun.

[43] to design the mode transducer section of the balun.
This taper was implemented using a set of cubic Bézier
curve approximations [44] given by:

PTC = P1(1 − t)3 + 3P2(1 − t)2t + 3P3(1 − t)t2 + P4t
3 (1)

In the above, P1 to P4 are four control points representing
the Klopfenstein taper profile, and PTC refers to the coordi-
nates of the curve with t representing the displacement along
the curve.
The connected impedance matching section of the balun

consists of tapered meandering twin lines [45] that were
approximated using spline curves [46], [47]. The goal is
to achieve optimal impedance matching from an unbal-
anced 50� line to a pair of balanced outputs at the dipoles
(impedance at the dipoles is approximately 188�). For our
case, fifteen control points were used to achieve the desired
features of the balun. These include the number of curves
(B1), ratio (steps) of the balun’s taper (B2), as well as
the length (B3) and width (B4) of each curve within the
balun, see Fig. 2 and Fig. 4. Notably, the final balun taper
design consisted of seven different widths: 1 mm (at the

bottom) to 0.3 mm (at the top). Indeed, designing the balun
with polynomials allowed for curve control through a man-
ageable number of control points (transforming the control
points transforms the curve in the same way). These opti-
mized control points made the design more manageable for
electromagnetic (EM) simulations.
It should be noted that common-modes may be intro-

duced in the substrate during scanning. For our case, these
common-mode resonances can be suppressed by the FSS
network and its resistive loading (discussed in the next sec-
tion). It is also remarked that the twin lines are minimally
offset only at the very top of the balun to allow connection to
the dipoles for both polarizations: the spacing of this offset
allowed for through vias to be inserted, reducing cost and
fabrication complexity by avoiding buried or blind vias.

IV. FSS NETWORK DESIGN
To achieve the proposed 42:1 array band, a triple-layer semi-
resistive FSS network is inserted between the array and
ground planes. The configuration is shown in Fig. 6. From
top down, layer 1 of the FSS network is printed on Rogers
3010 (εr = 10.2, tanδ = 0.0035), with layers 2 & 3 printed
on FR4 material (εr = 4.4, tanδ = 0.02). Each layer measures
292 mm × 292 mm × 0.64 mm. The array’s ground plane
is also realized on FR4 material, and measures 292 mm ×
292 mm × 0.64 mm.
The inserted FSS network layers located between the array

and ground planes serve to emulate a variable array height
(with ground plane distance control), and shift/attenuate
in-band resonances. In effect, the FSS network introduces
a phase delay to artificially increase the electrical profile
of the array. Resonances occur periodically due to ground
plane effects, at ground plane heights λ/2 (where λ is the
wavelength at the operational frequency), and per common-
modes seen during scanning [29]. Specifically, the top FSS
layer (layer 1) behaves as a reflector above 2.3 GHz. At
frequencies lower than 2.3 GHz, it is more or less transpar-
ent (i.e., layer 1 acts as a low-pass filter with a cut-off at
2.3 GHz). Notably, the location of layer 1 must be designed
such that the reflected and directed wavefronts add coher-
ently for frequencies above f0 = 2.3 GHz. Reflected waves
appearing with a ±180◦ phase shift destructively cancel the
upward directed radiating wave, resulting in poor radiation
efficiencies. For frequencies above 2.3 GHz, radiated waves
are reflected with a phase of φrlp(f) upon seeing layer 1
(equal to π). Adding the distance traveled, 2d, and the free
space wavenumber (k0 = 2π

λ
, where λ is the wavelength at

the operational frequency), the total phase delay gain upon
reaching the array plane can be written as:

�φ1 = 2k0d + φrlp(f ) (2)

To further describe the response of layer 1, we note for
frequencies below 2.3 GHz the propagating wave will travel
through layer 1, see Fig. 7, picking up a transmission phase
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FIGURE 6. Periodic array unit cell with a zoomed view of the triple-layer FSS network, and labeled features and parameters. Design parameter values are given in Table 1.

FIGURE 7. Illustration of the phase distribution in the dipole plane of an array unit
cell.

value of:

φt(f ) = tan−1(C1φrplZ0f
) = −tan−1

(
f

f0

)
(3)

Here, C1 is the equivalent capacitance of layer 1, φrlp(f) = π ,
and Z0 denotes free-space characteristic impedance. It is
observed that the transmission phase, φt(f), varies between 0

and π
4 . This implies that resonances are shifted to the lower

band [40]. Upon acquiring the transmission phase, φt(f),
from layer 1, the wave is reflected at the ground plane, and
acquires a reflection phase of φrgp(f), equal π . Subsequently,
as the wave passes again through layer 1 in the opposite
direction, a second transmission phase, φt(f), is added. The
overall phase as the wave travels from the array plane, to the
ground plane, and then back to the array plane, is given by:

�φ2 = 2k0h+ 2tan−1
(
f

f0

)

︸ ︷︷ ︸
2φt(f )

+φrgp(f ) (4)

In the above, h is the height above the ground plane, k0
the free space wavenumber, and f0 is the cut-off frequency
of layer 1 (2.3 GHz).
The middle (layer 2) and bottom/closest to the ground

plane (layer 3) are FSS layers with a resistivity of (10�/sq).
This resistive loading serves to attenuate in-band resonances.
Specifically, layer 2 is designed to attenuate the resonance
seen at 1.5 GHz. Further, layer 3 is designed to attenuate
the resonance at 0.8 GHz. Simulated active VSWR results
showing the response with and without these FSS layers are
given in Fig. 8. For modeling, each layer was represented
by equivalent circuits as in [48], [49]. Notably, as compared
to previous works [35], [36], [39], this FSS network limits
losses to a restricted bandwidth (achieving a more targeted
resonance suppression).
Field distribution plots in the presence and absence of the

FSS network layers are given in Fig. 9. These cross sectional
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FIGURE 8. Broadside performance of the array aperture with and without FSS
layers, showing suppression of resonances after FSS layer inclusion.

FIGURE 9. Simulated broadside E-field distribution within the array aperture
substrate at selected frequencies showing the suppression of resonances after FSS
layer inclusions.

field plots show the progressive suppression of resonances
with the inclusions of FSS layers. Notably, FSS layer 1 is not
sufficient to suppress all resonances, particularly the one seen
at 1.5 GHz. The latter was only shifted to lower frequency,
but remained. Adding FSS layer 2 is still not sufficient to
suppress the resonance at 0.8 GHz. That is, all resonances
are suppressed only after inserting the three FSS layers. It
is remarked that layer 2 is responsible for suppressing the
1.3 GHz resonance as depicted in Fig. 9(c). Similarly, it is
noted that layer 3 attenuates the resonance at 0.8 GHz, while
not affecting antenna performance at the current frequency.
Importantly, the combination of the three FSS layers serve

FIGURE 10. Fabricated TCDA: (a) 8 × 8 simulation model with an exploded view of
the corner 4 × 4 array showing the array assembly procedure in the ‘egg-create’
configuration. As labeled, boards ‘P1’ refer to polarization 1, and boards ‘P2’ refer to
polarization 2.

FIGURE 11. Fabricated TCDA: 8 × 1 element linearly polarized board (within
polarization 2). Designing using through vias (diameter of 6 mils) decreases cost and
fabrication complexity.

to suppress common-mode resonances during scanning as
well.

V. FABRICATION AND ASSEMBLY
To assess the new TCDA’s performance, an 8 × 8 (12 × 12
element FSS network footprint) prototype was fabricated. As
depicted in Fig. 10, and Fig. 11, vertically oriented 8 × 1
element boards (comprising polarization 2), are first passed
through each horizontally oriented FSS layers and the ground
plane. This was done using slots that were cut through each
horizontal layer to allow the feed of the vertical boards to
pass through and be secured. The boards comprising polar-
ization 1 are inserted orthogonal to the boards comprising
polarization 2 to form the ‘egg-crate’ configuration.
The height of each FSS layer and the ground plane were

adjusted appropriately and secured using nylon screws along
the edge of the array. The array aperture depth below the
ground plane is dependent on the space required to solder
SMA connectors (in this case 5 mm). Additional copper is
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FIGURE 12. Fabricated prototype highlighting design features.

etched away around the slots cut through the ground plane to
avoid shorting the baluns/connectors. The constructed array
prototype is shown in Fig. 12.

VI. SIMULATION AND MEASUREMENTS
A. INFINITE ARRAY SIMULATIONS
An infinite array simulation was carried out using the peri-
odic unit cell in Fig. 6. As seen in Fig. 13 (also Fig. 8), the
presented dual-polarized TCDA shows an impressive band-
width 40:1 and operates from 0.14 to 5.85 GHz with VSWR
< 2 at broadside for nearly the entire band. Of course, and as
is the case with all scanning arrays, the VSWR deteriorates
with scanning [22], [39], [40], [53]. For our case, there is a
single instance at 60◦ when the plotted (only for measure-
ments) VSWR in Fig. 13 crosses the VSWR = 3 at a single
frequency. Given the oddity of this spike, it can be concluded
that is mismatch spike is due to the finite size of the 8 × 8
array. Moreover, the infinite array still maintains a VSWR
< 3 when scanning in both E- and H-plane down to 60◦.
One possible solution to this mismatch, other than increasing
the number of elements in the array, is the addition of higher
order impedance matching superstrate layers. However, this
leads to increased fabrication and assembly complexity and
cost, as well as an increase in array thickness.

B. ACTIVE IMPEDANCE AND GAIN MEASUREMENTS
To verify performance, active VSWR and gain measure-
ments were conducted. Specifically, the active VSWR mea-
surements were conducted using an Agilent Technologies
E5071C ENA Series Network Analyzer. Gain measurements
across 190 MHz to 650 MHz were completed outdoors
employing an A.H Systems Log Periodic Antenna (LPA)
and an N9912A FieldFox Handheld RF Analyzer. Gain mea-
surements from 650 MHz to 5.85 GHz were carried out in
our MVG Starlab anechoic antenna chamber.
Specifically, the active VSWR was computed by adding

the linear reflection coefficient of the antenna element under

FIGURE 13. Measured vs. simulated active VSWR curves in the (top) E-, (middle) H-,
and (bottom) D-planes, for θ = 0◦ , 45◦ , and 60◦ scanning.

test along with the coupling terms from the surrounding array
elements. That is, the mutual coupling from neighboring
elements is combined with the return loss of the antenna
elements under test, assuming uniform feeding and a square
lattice. The active S-parameters of the p,q element can be
found in equation (5) below:

	p,q(θ, φ) =
M∑

m=1

N∑

n=1

Smn,pqe
−jD([m−p]u+[n−q]v) (5)

Here (θ , φ) is the array scan direction, u = ksinθcosφ and
v = ksinθsinφ are the u-v coordinates, and k is the free-space
wavenumber. Smn,pq refers to the measured S-parameters mn
for pq elements, and M, N and D are the number of elements
along the x and y direction and the lattice spacing, respec-
tively [11], [50]. Good scanning agreement is seen down
to θ = ±60◦. The slight differences between the measured
and simulated co-polarized gain, can be attributed to the
finite size of the array. This is particularly true at the lower
frequencies where the size of the array is quite small com-
pared to the wavelength. Specifically, this effect is observed
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TABLE 2. Performance trade-off comparison with previous work.

FIGURE 14. Outdoor measurement setup for 190 MHz to 650 MHz.

FIGURE 15. Testing of the fabricated TCDA prototype within our MVG Starlab
anechoic antenna chamber from 650 MHz to 5.85 GHz.

at 650 MHz where the array aperture is only λ/18. Such finite
array effects are well known and documented in UWB arrays,
especially tightly coupled and connected arrays, where the
array emulates an infinite current sheet [39], [51].
Fig. 14 shows the outdoor measurement set-up. The LPA

is placed a minimum of 1.5 meters above the ground to
minimize reflections. Gain calculations were then done using
the Friis transmission equation [52]. Specifically, the gain
of the presented TCDA was computed from:

GTCDA = PR(4πR)2

PtGLPAλ2
(6)

In the above, Pr is the received power at the TCDA, and
Pt refers to the transmitted power via the LPA of gain GLPA.
R is the distance between the TCDA and the LPA and λ is
the wavelength for operation reference.
The indoor measurement set-up is depicted in Fig. 15.

Fig. 16 shows the extracted broadside gain per array ele-
ment while all other array elements were terminated via a
50� load. Fig. 17 gives the measured radiation patterns,
which also closely follow simulations. As predicted, the
low-frequency radiation patterns show wider beam widths
because the array is only λ/18 at 650 MHz. The theoretical
aperture gain 4πAcos(θ)/λ2, where A is the array element

FIGURE 16. Simulated and measured (embedded) broadside gain of the developed
TDCA from 190 MHz to 5.85 GHz. Cross-polarization is shown to be approximately -
20 dB below the main polarization for most of the operational band. Notably, our
measurements could not extend down to 140 MHz (the lowest design frequency).The
authors note that higher broadside measured gain values are seen at the lowest part
of the band due to ground plane reflections during outside measurements. However,
the gain pattern still closely follows the simulated behaviour.

area, is also included as a reference. It is observed that
the center element gain is in agreement with the simulated
realized gain, including the expected drop at approximately
2.3 GHz due to the FSS network loading. A similar, but
less significant drop is seen at approximately 0.8 GHz.
Notably, cross-polarized radiation measures < −20 dBi over
the majority of the band. It is remarked that small differ-
ences between the simulated and measured gain patterns
stem from the presence of small physical misalignments in
the prototype.
The overall radiation efficiency is 75% (see Fig. 18).

Two efficiency lows are seen corresponding to the suppres-
sion of the resonances in the lower band. Also, at lower
frequencies the efficiency is less due to the more pronounced
effect of the FSS network loading. It is noted that the
0.64 mm thick FR4 boards provide structural stability and
prevented any sagging in the middle of the array.

VII. CONCLUSION
This paper presented the design, fabrication, and valida-
tion (via measurements) of a bandwidth enhanced TCDA.
Notably, the design employs 1) a triple-layer semi-resistive
FSS network and 2) a new compact integrated meander-
ing tapered spline balun. The trade-offs of efficiency and
bandwidth of the array was discussed. A fabricated dual-
polarized 8 × 8 (12 × 12 element FSS network footprint)
array prototype achieves a contiguous impedance bandwidth
of 140 MHz to 5.85 GHz when scanning down to ±60◦
(VSWR < 3.5) in the E-, H-, and D-planes. A key aspect

VOLUME 4, 2023 943



NICHOLS et al.: UWB TCDA FED BY A TAPERING MEANDERED BALUN

FIGURE 17. Simulated and measured radiation patterns of the proposed TCDA’s center array element in E-, H-, and D-planes at 650 MHz, 2650 MHz, 4050 MHz, and 5450 MHz.

FIGURE 18. Simulated radiation efficiency of the proposed TCDA. The average
across the operational bandwidth is 75%.

of the array is its low profile being λLow/17.93 (where
λLow is the wavelength at the lowest frequency of opera-
tion, 140 MHz). That is, as conveyed in Table 2, compared
to previous UWB TCDAs with contiguous operational band-
widths of 40:1 or greater, the proposed array is 30% thinner
and has equally good or better efficiency.
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