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ABSTRACT A novel approach is presented and demonstrated for integrating a wideband vertically fed
antenna array at Millimeter-Wave (mm-Wave) frequencies. Specifically, a novel cost-effective Antenna-
In-Package (AiP) fabrication approach is presented, then a prototype operating from 55 GHz to 64 GHz is
built while predicted performance is verified via measurements. The presented approach relies on separating
fabrication into 1) the array and 2) the back-end feeding board. Assembly of the various components is
achieved through several precision microfabrication steps utilizing a Ball-Grid-Array (BGA) technology
with thermally stable conductive solder paste. The paper describes the realization of the final AiP aperture
in terms of design tolerances, laboratory equipment, component placement and alignment, curing time
duration and temperature ranges, and prototype on-the-go testing.

INDEX TERMS Antenna-in-package (AiP), ball-grid-array (BGA), millimeter-wave (mm-Wave), wideband
antenna array.

I. INTRODUCTION

THERE is strong interest in low-profile, low-cost,
low-weight, and low-power apertures [1]. Such arrays

can ease the challenges associated with the highly frag-
mented and congested wireless spectrum [2], [3]. Presently,
communication platforms (i.e., cell phones, GPS, vehicles,
satellites) require access to many different and often widely
separated bands of the spectrum. But having a separate Radio
Frequency (RF) system for each of these applications and
frequency bands is costly and inefficient.
Wideband antenna arrays enable high data throughput for

Millimeter-Wave (mm-Wave) frequencies [4], [5], [6], [7]
while providing a reduction in size and weight [8], [9], [10].
Additionally, electronic scanning removes the need for
mechanical steering, eliminating large, heavy, and high-
power actuators [11], [12]. One type of the most com-
monly used wideband antenna arrays are Tapered Slot
Arrays (TSA). Among them, short and long Vivaldi
Arrays have led to smaller aperture sizes over the past
decade [13], [14], [15], [16], [17]. However, their end-fire
layout and inherently non-planar orientation introduces

challenges in realizing very low profiles above a ground
plane, especially at higher frequencies. In contrast, patch
antennas have shown a bandwidth of 20%. Stacked patch
approach improves the bandwidth beyond 50%. However,
realization of multi-layer stacked patch array at 64 GHz is
quite challenging. It should be noted that the central idea of
this manuscript is to introduce repeatable low-cost low-risk
and outside the clean room fabrication and assembly tech-
niques for scalable broadband apertures (> 166% BW or
10:1) at mm-Wave regime. It is understood that the present
aperture does not have such a large bandwidth as the focus is
only on the fabrication and assembly of such scalable aper-
tures. Indeed, we have been working for a while to create a
successful fabrication recipe.
Typical antenna types for mm-Wave applications include

reflectors, lens, and horn antennas. Although these anten-
nas have high gain, they are less attractive for commercial
mm-Wave applications as they are expensive, bulky, heavy,
and cannot be integrated with solid-state devices [9]. To
this end, we turn to inherently planar and wideband printed
antenna arrays, such as Tightly Coupled Dipole Arrays
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FIGURE 1. Antenna array prototypes realized in vertical and planar dipole
orientations with a U.S. quarter shown for size comparison: (a) a non-planar antenna
array assembly based on [48], with highlighted breaks and cracks due to the physical
assembly challenges at mm-Wave tolerances. Notably 128 points need to be soldered.
One is identified in figure, and (b) top and bottom views of the fabricated planar 8 × 8
antenna array (64 elements) as a single PCB before being integrated into an AiP
stack-up.

(TCDAs) [18]. TCDAs are known for their large contiguous
array bandwidths [18]. This bandwidth is due to the wave
slow down [19] and the tight spacing between the coupled
array elements. The latter leads to low angle scanning across
their entire contiguous bandwidth. This is unique and the
reason why TCDAs have been quite successful at nominal
frequencies up to 18 GHz.
In this paper, we primarily focus on the mm-Wave fabri-

cation of these arrays, and the challenges associated with
their repeatable fabrication when the element-to-element
separation is a tiny fraction of a wavelength. Still, feed-
ing wideband arrays at mm-Wave frequencies presents
numerous challenges due to the required tolerances and
smaller footprints [20], [21], [22], [23]. Specifically, the typ-
ical wideband feed can no longer be connected to a set of
coaxial cables due to insufficient space between the antenna
array elements. Therefore, to feed a densely populated space,
the antenna array elements must be properly aligned with
the feeding structure [24], [25], [26], [27], [28] within the
physically tight space.
At lower frequencies, of a few gigahertz, sep-

arate orthogonal components to form a complete
array [29], [30], [31], [32], [33] can be used. However, at
mm-Wave frequencies assembly tolerances can generate
errors and inconsistencies in the resulting arrays. Specifically,
thin and fragile boards are difficult to assemble, even with
fine tweezers, precision soldering tips, and advanced binoc-
ular microscopes. As shown in Fig. 1, the usual assembly of
separate orthogonal array elements [18], can lead to breaks
and cracks due to physical assembly challenges at mm-
Waves. Further, feeding an array via a microstrip or stripline
feed network implies larger aperture space and higher losses,
while, PCB fabrication techniques struggle with complex
through plane feeds. With this in mind, our approach focuses
on making the primary array feeding blocks using simple
metallized vias.

The fabrication of an antenna array and feed circuit
in a single step puts the approach within the context of
Antenna-on-Chip (AoC) packaging [9], [20]. AoC solu-
tions feature the integration of antennas together with
other front-end circuits on the same chip using silicon
technologies, such as Silicon-Germanium (SiGe). However,
these solutions may experience low efficiencies due to
their higher permittivity and low resistivity effects of
silicon substrates (i.e., larger ohmic losses and surface
waves) [25], [34], [35], [36]. By contrast, Antenna-in-
Package (AiP) designs [26], [37], [38], [39] combine anten-
nas with transceiver circuitry utilizing standard chip scale
surface mount techniques, such as wire bonding [9]. AiP
solutions often employ lower loss substrates, such as
Low-and High-Temperature Co-fired Ceramics (LTCC and
HTCC) [28], [29], [40], [41], [42], [43], [44]. AiP are also
popular due to their compatibility with fine feature sizes.
Still, the use of ceramic tapes, implies high dielectric con-
stants (εr > 6) that can result in surface waves. These
surface waves can be exacerbated across wideband applica-
tions. Furthermore, the expensive lamination process occurs
at extremely high temperatures, resulting in active devices
that must be packaged separately and connected after the
firing process. To the contrary, our approach employs an
AiP stack-up solution using low-loss connections between
the feed circuitry and antenna array (secured at significantly
lower temperatures). Additionally, the fabrication of the
stack-up components employs low-cost PCB manufacturing
methods [45], [46], [47], [48].
In this paper, we realize in-house a tightly coupled

dipole antenna array prototype by utilizing vertical feeding
through the use of a ball-grid-array (BGA) along with stan-
dard low-cost PCB manufacturing and assembly processes
at mm-Wave frequencies (60 GHz region). By optimiz-
ing the BGA assembly, size, curing, paste composition,
and attachment process, a repeatable array and feed layer
mating was achieved. Indeed, this AiP integration enables
significant aperture size reduction. Further, we avoid compli-
cations noted in previously fabricated 60 GHz antennas that
employ Polytetrafluoroethylene (PTFE) materials or LTCCs.
By contrast, the developed assembly process utilizes com-
mercially available equipment and requires minimal setup
while avoiding clean room conditions. As a result, the
assembly process provides a durable and repeatable design
and assembly process suitable across a wideband frequency
range at remarkably low-cost. By following this process, we
overcome the usual short-curing and spillover issues associ-
ated with BGAs at mm-Wave frequencies. In summary, our
approach avoids fabrication errors and inconsistencies in the
resulting arrays. The fabricated prototype is robust, electri-
cally small and of very low cost as compared to previously
published work. The realized AiP prototype operates from
55 GHz to 64 GHz. Measurements show agreement with
simulation, providing for proof of concept.
In summary, the AiP approach and prototype is real-

ized by first designing an 8 × 8 antenna array. The
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design achieves: 1) fabrication with low-cost standard PCB
methods, and 2) compatibility with vertical integration
employing BGA solder sphere connections. After describ-
ing our assembly process, the feed board topology is
discussed for integration in the AiP stack-up. This is
followed by the AiP prototype and measurements verifi-
cation. The proposed fabrication process is summarized as
follows:
(1) Fabrication of the planar multi-layer antenna array and

feed board, comprised of Isola Tachyon 100G substrates.
Both utilize simple metallized vias of 6 mils diameter and
optimized for efficient vertical feeding within a minimal
footprint.
(2) Precision placement of thermally stable conductive

solder paste and 500 μm diameter BGA solder spheres on
300 μm diameter signal pads. A 200 μm thick strip is etched
around the signal pad to prevent its contact with the ground
plane and 550 μm separate each BGA solder sphere from
the adjacent.
(3) The Shuttle Star BGA Rework Station’s (RWSV550)

color optical alignment system is used to pick up, align,
and place the mm-Wave array on the vertical BGA solder
spheres.
(4) The conductive solder paste within the now stacked

AiP aperture is cured (heated), following a reflow profile
to ensure structural integrity and required electrical con-
nections. A ‘reflow profile’ consists of exact times and
durations with corresponding temperatures, so that the con-
ductive solder paste is cured properly. A constant force of
approximately 0.275 lbf was maintained during the curing
process to hold the stack-up in place and secure for strong
electrical connections.
The paper is organized as follows. Section II presents the

AiP design process, detailing the antenna array, feed board,
and assembly process. Section III focuses on fabrication,
testing, and measurement of the final prototype. Concluding
remarks are given in Section IV.

II. ANTENNA-IN-PACKAGE PROTOTYPE DESIGN
We adopt a layered approach design. First, we analyze the
mm-Wave array aperture following the approach in [48].
The feed board is subsequently designed for vertical package
integration. Thirdly, the assembly process for the Antenna-
in-Package prototype is detailed.

A. MILLIMETER WAVE ARRAY DESIGN
The presented antenna array incorporates an 8 × 8 col-
lection of individual dipole antennas arranged appropriately
to induce capacitive coupling [49]. Each antenna array ele-
ment is identical, and spaced λHigh/2 from each other (λHigh
is the wavelength at 64 GHz, the highest frequency of
operation). The antenna array employs three copper lay-
ers hosted by two Isola Tachyon 100G (εr = 3.02, tanδ =
0.0021) substrates, each of 18 mils thick. The fabricated
8 × 8 prototype can be seen in Fig. 1(b), and measures
17.2 mm × 17.2 mm × 1.18 mm.

FIGURE 2. Design details of the developed mm-Wave array (top part of the AiP
stack-up in Fig. 4). Specifically, (a) simulation models of the 8 × 8 array (left), and its
unit cell (right), (b) side views of the unit cell in the XZ plane (left), and YZ plane (right)
with design features labeled, and (c) top views of the antenna array unit cell simulation
model with highlighted design features for clarity, and labeled design parameters, All
vias have a diameter of 6 mils. As labeled: ‘BGASS’ refers to a BGA solder sphere.
Layer details are shown in Fig. 4. Design parameter values can be found in Table 1.

An antenna array is intentionally designed to cover
the commercial mm-Wave band of 55 GHz to 64 GHz.
Simulations were completed assuming an infinite periodic
array structure (unit cell) followed by a finite array analy-
sis (see Fig. 2), using the Ansys High Frequency Structure
Simulator (HFSS) software. The proposed design builds on
previous work in [50]. Specifically, a balun that comprises a
series open stub and a shunt short circuit is employed to feed
the dipole. The folded open stub excites the dipoles with cou-
pled vias acting as transmission line feeds. Due to the small
unit cell size and through plane nature, simple twin-wire
transmission lines were used for the feed. Space permitted,
large groups of vias could be used to emulate a waveguide
or coax cable feeding. We utilize a pair of vias labeled ‘V2’
& ‘V3’ to connect the dipole arms to the ground plane,
thus creating the required short circuit. Similarly, a third
signal via, labeled as ‘V1’, is used to construct the folded
open stub in Fig. 3. In turn, the folded open stub excites a
balanced mode in the two vias connecting the dipole arms.
In essence, the presented balun is a miniaturized version of
the Marchand balun [50], implemented through vias. The
balun arm travels over one dipole, crosses the dipole gap
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FIGURE 3. Illustration showing two neighboring unit cells of the mm-Wave array of
Fig. 2 in side view (XZ plane), key design features and tuning elements (circled in
yellow). Every unit cell is identical, and is roughly spaced λHigh /2 (where λHigh is the
wavelength at the highest frequency of operation, 64 GHz). All vias have a diameter of
6 mils. As labeled: ‘SP’ refers to a signal pad (i.e., connection point for signal
transmission from input port to the ballun), ‘GP’ refers to the ground plane, and
‘BGASS’ refers to a BGA solder sphere. Layer details are shown in Fig. 4.

and overlaps the adjacent dipole. Furthermore, vias forming
an H-wall are positioned perpendicular to the dipoles at the
edge of the unit cell to suppress cavity resonances occurring
within the band [50]. The H-wall vias are connected across
the top, generating a capacitive coupling mechanism among
the adjacent dipoles cancelling the ground plane inductance.
As such, the aperture impedance becomes real, increasing
the operational bandwidth. The connection across the top
of the H-wall also mitigates monopole-like radiation from
the vias. Notably, fabrication tolerances align with standard
practices discussed in [51] (i.e., via size, aspect ratio, pitch,
pad size).
Simulation models of the 8 × 8 antenna array and the

infinite antenna array unit cell are displayed in Fig. 2(a). Side
views of the unit cell with labeled design features are shown
in Fig. 2(b). For clarity, top view of the array unit cells with
highlighted design features and labeled design parameters,
are shown in Fig. 2(c). The final design parameter values can
be found in Table 1. An illustration showing a side view of
two neighboring array unit cells with key design features and
tuning elements (circled in yellow) can be seen in Fig. 3. The
authors note that simulations show a VSWR < 2 across the
entire operational band (not shown for brevity). As labeled:
‘SP’ refers to a signal pad, ‘GP’ refers to the ground plane,
and ‘BGASS’ refers to a BGA solder sphere. The AiP stack-
up with substrate layers, material, and thickness details can
be seen in Fig. 4.

The proposed antenna array differs from past pub-
lished mm-Wave arrays [50], [52] in its feeding approach
and improved low-cost stack-up. The array is intention-
ally optimized within the commercial 5G communication
band (55 GHz - 64 GHz). Therefore, low-cost implemen-
tation is a key goal, leading to the stack-up proposed
in Fig. 4. Specifically, we avoid very low dielectric
constant Polytetrafluoroethylene (PTFE) materials that led
to out-of-tolerance vias and shifted features. Costly buried
and micro vias are also avoided. Further, the balun sig-
nal via is offset to achieve maximum BGA solder spheres
population, ensuring sufficient grounding and necessary
structural stability.

TABLE 1. Design parameter values of the final realized AiP prototype.

FIGURE 4. Illustration of the AiP stack-up. As labeled: (‘A’) microstrip to the
stripline transition, (‘B’) shielding vias (via fence), (‘C’) feed board element signal via,
(‘D’) dipole vias, (‘E’) balum arm via (antenna array element signal via), and (‘F’) H-wall
vias. (‘C’) via transfers the signal from feedboard to the array element through (‘E’) via
and a Signal BGA solder sphere (BGASS). Connection with the BGASS is achieved
using Signal Pads (SP). Materials with corresponding thicknesses are also provided.

Each of the 8 × 8 antenna array elements is fed from
beneath the signal BGA solder sphere by a 50� lumped
port excitation as depicted in Fig. 4. The simulated broadside
gain, radiation efficiency, and radiation patterns are presented
in Figs. 5, 6, and 7 respectively. Notably, the broadside real-
ized gain closely tracks directivity across the operational
bandwidth (see Fig. 5). Further, a radiation efficiency of
97% is achieved across the operational band (see Fig. 6). A
main beam realized gain value of 21.14 dBi is observed at
63 GHz, and is approximately 13 dB greater than the high-
est side-lobe level (see Fig. 7). It should be noted that while
the antenna inter-element distance has been kept at λHigh/2
(λHigh is the wavelength at 64 GHz), some performance at
the higher frequency end was sacrificed in order to achieve
required fabrication tolerances and realize a repeatable, low-
cost assembly process. Therefore, gain slightly drops above
63 GHz.

B. FEED BOARD DESIGN
A key aspect of the AiP stack-up is the feed board design.
The developed fabricated feed board prototype is shown in
Fig. 8 and measures 66 mm × 43 mm × 0.5 mm. As
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FIGURE 5. Simulated broadside gain of the 8 × 8 antenna array before integrating
the BGA solder board connections and feed board.

FIGURE 6. Simulated 8 × 8 antenna array radiation efficiency (%) before integrating
the BGA solder board connections and feed board. An average radiation efficiency of
97% is observed across the operational band.

FIGURE 7. Simulated 8 × 8 antenna array radiation patterns before integrating the
BGA solder board connections and feed board in the E-/H-planes at 57 GHz, 60 GHz,
and 63 GHz.

labeled, ‘AE’ refers to the alignment edges, ‘SP’ labels the
signal pad, and ‘GPF’ refers to the feed board top ground
plane layer.
The feed board design must satisfy the restrictions to 1) be

realized in a planar aperture using standard PCB methods,

FIGURE 8. Top view of the fabricated feed board prototype (right below the BGA
solder spheres (BGASS) in Fig. 4). The feedpad array at the top right is zoomed below
to expose the shielding vias at the bottom of the figure. Two of the 64 feed board
elements are detailed: (1) ‘excited,’ and (2) ‘terminated.’ The signal pad and the
stripline feeding, shown at the bottom of figure, are protected by a ‘metallic wall’ of
shielding vias. These feed board signal vias are represented by the letter ‘C’ in Fig. 4.
Also the feed board shielding vias are represented by the letter ‘B’ in Fig. 4. All vias
are shown as black in the 3D model for clarity. All vias are 6 mils in diameter and the
signal pad is 300 μm in diameter. A 200 μm thick strip is etched around the signal pad
to prevent its contact with the ground plane. Further layer details can be seen in Fig. 4
along with parameter values in Table 1.

2) concurrent excitation of as many antenna array elements
as possible, 3) compatibility with BGA solder spheres con-
nections, and 4) incorporation of high RF connector(s).
To this end, the chosen top level feed board components
include: 1) microstrip to stripline transition(s), 2) shielded
stripline corporate feed network(s), and 3) an 8 × 8 ele-
ment grid pattern mirroring the antenna array. The exact
design of these components was not set until the capa-
bilities of the assembly process was further investigated
(discussed later). Notably, the proposed feed board structure
provides compatibility with standard antenna array mea-
surement practices, as well as the capability to implement
multiple feed boards (consisting of various feed network
designs).
Two different feed board elements are designed, an

‘excited’ feed element, and a ‘terminated’ feed element. In
this manner, the feed board element grid configuration can
be adapted for other feed networks. In other words, each of
the 64 feed board elements can be modified ad-lib within
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the simulation model to be either an ‘excited’ or ‘termi-
nated’ element. Both feed board elements were modeled as
a periodic unit cell model in an infinite array setup. The
‘excited’ feed element achieved a VSWR < 1.78 across the
operational bandwidth, and the ‘terminated’ feed element is
matched to 50�. Both the ‘excited’ and ‘terminated’ feed
board elements are depicted in Fig. 8.
Each unit cell, matching the footprint of the corresponding

antenna array element, consists of three copper layers hosted
by two Isola Tachyon 100G (εr = 3.02, tanδ = 0.0021)
substrates of 6 mils and 8 mils thickness (top and bottom
layer) respectively. Shielding vias (forming via fences) were
used to minimize losses through the feed network by con-
fining RF fields [53]. The final design parameter values can
be found in Table 1. Also, the AiP stack-up is provided
in Fig. 4.

C. ASSEMBLY PROCESS FOR THE AIP INTEGRATION
To achieve the desired AiP stack-up, the antenna array is
mated to the feed board using the Chipquick TS391LT ther-
mally stable conductive solder paste (Sn42/Bi57.6/Ag0.4).
The Chipquick BGA solder spheres were 500 μm in diam-
eter (SMD2040-25000). Test trials were first completed to
develop, optimize, and validate the assembly process.
The assembly was carried out in four phases:
Phase I: Place conductive solder paste on the antenna array

and feed board at signal and ground BGA solder sphere
positions. A 200 μm thick strip is etched around the signal
pad to prevent its contact with the ground plane. If the
conductive solder paste overflows, it could cause shorting
upon curing. At the same time, if not enough conductive
solder paste is used, the connection securing the BGA solder
sphere will be brittle and fracture.
Phase II: The Shuttle Star BGA Rework Station (RW-

SV550) is employed to pickup, align, and place the BGA
solder spheres on top of the previously placed conductive
solder paste on the feed board. The Rework Station, along
with other key tools, can be seen in Fig. 9. During this
process, the BGA solder spheres were placed precisely, and
in a predefined order to avoid shorting with the ground plane
and/or other BGA solder spheres. Each BGA solder sphere
was only separated by approximately 550 μm in the x-, and
y-directions.
Phase III: Once sufficiently populated, aligning, lower-

ing, and securing the array on top of the feed board is
achieved per the alignment tool and suction pad of the
Rework Station. The alignment tool consists of a color opti-
cal system with functions of split vision, zoom in/out and
micro-adjust. Notably, extreme care was taken during align-
ment to ensure precision placement. Also, a modest pressure
of 0.275 lbf was maintained to hold the stack-up exactly in
place and, thus, to secure strong connections during curing
(see Fig. 10). It is important to note that if the suction pad
is raised before the conductive solder paste has fully cured,
the force from the released pressure will result in a shift,
leading to possible shorted connections.

FIGURE 9. Assembly process for the AiP Integration: the Shuttle Star BGA Rework
Station (RW-SV550) with key tools labeled.

FIGURE 10. Assembly process for the AiP Integration: the antenna array being
aligned, lowered, and mated to the feed board. The BGA solder spheres (BGASS)
populated on the feed board element grid are also shown (top left).

Phase IV: A programmable heating fan was used to cure
the conductive solder paste (causing it to harden like cement).
In doing so, the feed board was mated with the antenna
array, forming the realized AiP prototype, as seen in Fig. 11.
The Rework Station programmable heating fan was posi-
tioned under the heating plate and the plate’s temperature
is monitored by a thermistor, per the reflow profile shown
in [54]. This way, the solder paste is properly cured (see next
Section). Trial test runs where the reflow profile was not
followed, resulted in weak and half cured connections (i.e.,
degrading impedance matching performance and structural
stability).

III. ANTENNA-IN-PACKAGE PROTOTYPE
Due to the manual process followed in a laboratory environ-
ment, we opted to feed only the central 4 × 4 array. Hence,
only the center 16 feed board elements and corresponding
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FIGURE 11. Multiple AiP prototypes assembled during initial trails. The AiP
stack-up is also shown flipped upside down to display successful mating through
BGA connections.

ground connections were mated. The other 48 feed board
elements are not populated with BGA solder sphere con-
nections and therefore not mated to the antenna array. This
trade-off does affects the antenna array’s performance, but
allows monitoring of select connections following standards
and practices per [55]. Additionally, a partially populated
element grid provided a more uniform heat distribution
matching the required solder paste reflow profile seen in [54].
The reflow process is comprised of four ‘zones’: 1) preheat-
ing, 2) soak, 3) reflow, and 4) cooling. These steps are critical
to ensure that sufficient solvents evaporate, flux is activated,
thermal stresses are avoided and excessive flux oxida-
tion/burning is suppressed [56], [57], [58]. Numerous brittle,
fractured, and partially cured connections were seen during
trials when the feed board was fully populated with BGA sol-
der spheres. Also, minimizing temperature differences (i.e.,
hot and cold spots) on the feed board was essential, but
difficult due to significant footprint differences between the
heating fan, heating plate, and the feed board element grid.
Nevertheless, assembly in a controlled industrial environment
and with a well defined automated process is expected to be
robust.
The optimized re-flow profile [59] that produced favor-

able results in our laboratory set-up is summarized as
follows:
(1) The preheating zone brings the solder paste from 20 ◦C

(68 ◦F) to 133 ◦C (266 ◦F) in 180 sec. The purpose of pre-
heating is to allow the solvents to evaporate and activate the
flux.

FIGURE 12. Illustration (not to scale) of the feed board with highlighted feed
network signal paths (left). The microstrip to stripline transition via is represented by
‘A’ in Fig. 4. The letters ‘AE’ refer to the two sides of the feed board element grid that
have additional solder mask to aid alignment during assembly. The transmission
coefficients Sn 1 plots are shown to the right. Sn 1 refer to the S parameters from port 1
to each of the central 16 ‘excited’ elements (namely n ports). The simulated curves at
the top right indicate that the transmission losses are around 16dB for all elements.
Also the phase transmission coefficients are same for all elements.

FIGURE 13. Simulation model of the partially populated 8 × 8 antenna array
vertically integrated onto the feed board. A zoomed view of the center 4 × 4 AiP
element stack-up, with the feed network highlighted is also shown. Shielding vias are
not shown for clarity. A cross section side view of the 8 × 8 element AiP stack-up
displays the absent outer element BGA solder spheres (BGASS).

FIGURE 14. Millimeter-wave μ-lab chamber anechoic chamber with the AiP
prototype during measurements.

(2) The soak zone brings all board areas to an equal
level. The temperature rises from 133 ◦C (266 ◦F) to 138 ◦C
(281 ◦F) at 30 sec.
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FIGURE 15. Measurements vs simulations of embedded VSWR curves for the final
realized AiP prototype. Embedded results convey the performance of the antenna
array (with the center 16 elements excited), BGA solder sphere connections (BGASS),
and the feed board.

FIGURE 16. Measurements vs simulations of embedded broadside gain for the final
realized AiP prototype. Embedded results convey the performance the antenna array
(with the center 16 elements excited), BGA solder sphere (BGASS) connections, and
the feed board.

(3) The reflow zone reaches a maximum temperature of
165 ◦C (329 ◦F). Lasting a total of 100 sec (from 210 sec
to 310 sec), with the maximum temperature being held for
40 sec within that duration.
(4) The cooling zone, lasting from 310 sec to 600 sec to

bring the temperature gently back to 20 ◦C (68 ◦F). Free air
cooling was found to be sufficient.
Opting to feed only the central 4 × 4 array, leads to

a fabricated feed board consisting of the following: 1) a
single microstrip to stripline transition, 2) a shielded 1-to-
16 stripline corporate feed network, and 3) an 8 × 8 element
grid constructed from 16 central excited, and 48 outer termi-
nated elements. Notably, each feed board element is oriented
to mirror the antenna array’s element grid pattern (i.e., align-
ing signal pads). The aforementioned microstrip to stripline
transition connects a Rosenberger RF connector (01K80A-
40ML5) to the feed network. This transition is a through
via, and serves to verify that the RF connector is electrically
connected to the feed board (labeled as ‘A’ in Fig. 4). The
connector is mounted to the feed board using screws and
dowel pins.
The fabricated feed board prototype, seen in Fig. 8, mea-

sures 66 mm × 43 mm × 0.5 mm. As labeled, ‘AE’ refers to
the two sides of the feed board element grid that have addi-
tional solder mask, providing an alignment template during
assembly. Remarkably, the feed board top ground plane layer

is left mostly uncovered by solder mask within the 8 × 8 ele-
ment grid footprint to allow for ground BGA solder sphere
population. An illustration of the realized feed board model,
with simulation, is provided in Fig. 12. The illustration is
not to scale, and the feed network signal paths are high-
lighted, for clarity. Shielding vias (via fences), feed board
element type (‘excited’ or ‘terminated’), and the microstrip
to stripline transition, are shown and labeled. The transmis-
sion coefficients Sn1 plots are shown in Fig. 4. Sn1 refer
to the S parameters from port 1 to each of the central 16
‘excited’ elements (namely n ports). The simulated curves
indicate that the transmission losses are around 16dB for all
elements. Also the phase transmission coefficients are same
for all elements.
Subsequently, the 8 × 8 fabricated antenna array is set

onto the feed board, forming the AiP prototype. For compar-
ison we simulated the finite array by removing the dummy
elements from the model. The AiP simulation model, with
a cross section side view of the 8 × 8 AiP stack-up can be
seen in Fig. 13.
Measurements were carried out in a MVG μ-lab mm-

Wave chamber, shown in Fig. 14. Simulation and measured
impedance as well as broadside gain curves are given in
Figs. 15 and 16, respectively. Radiation patterns are pro-
vided in Fig. 17. The simulated and measured results are
embedded. That is, they provide the performance of the final
realized AiP prototype that includes the antenna array, BGA
solder sphere connections, and the feed board impact. The
measured broadside gain (embedded) closely tracks simu-
lations. A drop at 62GHz is seen for both the simulated
and measured results. This is not due to the antenna itself
but rather an effect of the feed board. This becomes clear
after inspection of Figs. 5, 6. Notably, the array exhibits
high efficiency (> 85%) across the whole band, including
frequencies around 62 GHz. At the same time, neither the
simulated gain of the antenna array (de-embedded simulated
results) nor the VSWR deteriorate at 62 GHz. Thus, it can
be inferred that the drop in the embedded gain is associated
with radiation losses from the feeding board. The above
does not contradict the very low VSWR, since the radiated
power from the feed board is not delivered to the antenna
elements and therefore is not added to the reflected power.
Notably, the measured VSWR shows good agreement with
simulations, achieving a VSWR < 2 across most of the
operational band. Importantly, the measured radiation pat-
tern agrees with simulations, verifying the AiP assembly.
The slight variations in broadside gain and in the E-/H-
plane radiation patterns are due to the asymmetric unit cell,
and the non-automated conductive solder paste placement.
The gain of the final simulated AiP prototype is found to be
0.59 dBi at 57 GHz. Certainly, this is lower than the simu-
lated gain of the isolated 8 x 8 antenna array (see Fig. 5).
This is mainly due to the losses of the stripline corporate
feed network. Additional losses in the measured prototype
are introduced by the solder paste. In fact, the stripline cor-
porate feeding network was chosen to allow for low-cost
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FIGURE 17. Simulated and measured embedded radiation patterns for the final realized AiP prototype, in the E-/ H-planes at 57 GHz, 60 GHz, and 63 GHz. Embedded results
convey the performance the antenna array (with the center 16 elements excited), BGA solder sphere (BGASS) connections, and the feed board.

in-house assembly, validation, and measurement. Certainly,
on-chip integration at an industrial level could reduce losses.
Further, feed structure optimization could improve efficiency
and bandwidth performance. This would allow for exploit-
ing the wideband behavior of TCDAs to a greater extend.
However, this is out of the scope of the presented work.

IV. CONCLUSION
A wideband mm-Wave antenna array in an AiP stack-up was
presented. The AiP stack-up approach addressed the reso-
lution and antenna fabrication challenges associated with
feeding such tightly populated arrays. A Rework Station
and an optimized curing process were employed to real-
ize the AiP fabrication. The 16 center excited feed board
elements were mated to the antenna array using conductive
solder paste and BGA solder spheres. Measured performance

agreed quite well with simulations. In all, this work lever-
ages available wideband array designs to develop and verify
an AiP fabrication process for mm-Wave apertures. The fab-
ricated beamforming arrays included individually fed array
elements using readily available low-cost equipment.
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