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ABSTRACT A deep learning neural network model in conjunction with a method to incorporate auxiliary
surface waves is developed for the macroscopic design of transmitting metasurfaces. The main input to the
neural network model is the user-defined desired far-field specifications. This network is used to calculate
the required tangential electromagnetic fields on the metasurface. These fields will then be augmented
by incorporating auxiliary surface waves along the metasurface for power redistribution to satisfy the
requirement for having lossless and passive metasurfaces. The designs will then be evaluated using
full-wave simulations of metasurfaces with three-layer unit cell topology in both 2D and 3D scenarios.

INDEX TERMS Deep-learning, metasurfaces, pattern synthesis, surface waves.

I. INTRODUCTION

ELECTROMAGNETIC metasurfaces enable the system-
atic transformation of incoming electromagnetic (EM)

waves to desired outgoing ones [1], [2]. These thin devices
can tailor the absorption [3], reflection [4], transmission [5]
of EM waves, or a combination thereof. In addition to
tailoring the spatial properties of EM waves (e.g., their
beamwidths and sidelobe levels), metasurfaces can tailor
the spectral properties (frequency contents) of EM waves,
e.g., through temporal modulation of their surface proper-
ties [6]. Moreover, the simultaneous use of temporal and
spatial modulations of metasurface properties enables us to
control both spatial and spectral attributes of EM waves [7].
These transformations are governed by the generalized sheet
transition conditions (GSTCs) [8] which relate the EM fields
on both sides of the metasurface to its surface proper-
ties. These properties can be represented in different forms,
e.g., through surface susceptibilities [8], polarizabilities [9],
or impedances [10]. To design a metasurface, we first need to
determine these surface properties. This step, referred to as
macroscopic design [11], is then followed by the microscopic
design step which is focused on the physical implementation,
e.g., via patterned metallic claddings supported by dielectric
substrates.

This paper focuses on the macroscopic aspect of the
metasurface design. In particular, it considers the macro-
scopic design of transmitting omega bianisotriopic meta-
surfaces under linear polarization. To achieve omega bian-
isotropy, the unit cells of these metasurfaces are designed
to have magnetoelectric coupling such that an acting
electric (magnetic) field induces a perpendicular mag-
netic (electric) current in the unit cell [12]. This can
be for achieved, for example, by having non-symmetrical
three-layered unit cells [10]. The macroscopic design of
metasurfaces requires the knowledge of the complex (mag-
nitude and phase) tangential EM fields on both faces
of the metasurface. Once these are determined, the input
and output tangential fields can be linked via two-port
networks [13], and subsequently, the required surface
properties can be determined. However, the tangential
EM fields are typically not known in practical situa-
tions [14]. For example, when the designer is only interested
in achieving a desired power pattern (phaseless quan-
tity) in the far-field zone of the metasurface, inferring
the required complex tangential fields is non-trivial and
requires solving an EM inverse problem [14]. Furthermore,
the desired performance specification might not even be
a power pattern, and can instead consist of a set of
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far-field performance criteria such as beam directions, half-
power beamwidths (HPBW), side lobe levels (SLL), and
nulls [15].
In the above situation, which is the primary focus of this

paper, these performance criteria are to be used to infer the
required tangential EM fields. To this end, at least three
approaches can be pursued. Firstly, the desired far-field
performance criteria can be converted to a power pattern
using ad hoc [14] or deep learning [16] techniques; then,
the resulting power pattern can be processed by inversion
algorithms to yield the tangential fields on the metasur-
face [14], [17]. Secondly, the performance criteria can be
directly incorporated into an inversion algorithm to infer the
required metasurface properties [15]. These two approaches
typically require empirical tuning of the algorithms’ param-
eters. Thirdly, standard antenna array techniques such as
Chebyshev and Taylor distributions may be used to find the
required tangential fields [18]. Such array techniques are
efficient and provide great insight into the design process;
however, they are often applied to planar and linear uni-
form arrays for conventional far-field performance criteria.
Herein, we use a deep learning based approach to obtain the
required tangential fields from the knowledge of desired far-
field performance criteria. Deep learning techniques, which
have been previously used for antenna array synthesis, e.g.,
design based on far-field masks [19], [20], offer a fast and
automated design process.
Moreover, it is typically desired that the metasurface be

lossless and passive. To this end, we need to ensure that
the normal real power density entering each unit cell of the
metasurface is equal to the normal real power density leav-
ing that unit cell. This condition, which is known as local
power conservation (LPC) [10], will place a constraint on
the stipulated tangential fields. From a mathematical point
of view, the inverse problem of inferring tangential fields
from desired far-field performance criteria will now have a
regularizer that favours LPC [17]. This will therefore limit
the solution space. Assuming that the input tangential fields
are known and which satisfy LPC, three degrees of free-
dom are needed in our unit cell topology to enable arbitrary
EM field transformations [17]. That is why the unit cells
considered in this paper have three layers.
This paper presents a macroscopic metasurface

design procedure using deep learning techniques under
two-dimensional (2D) and three-dimensional (3D) EM
wave propagation scenarios.1 In both 2D and 3D cases,
the metasurface lies in the xz plane. For the 2D case,
the metasurface is spatially modulated in the x direction
and is invariant in the z direction. This enables tailoring
the spatial properties of EM waves in the xy plane (i.e.,
one cut in the far-field zone). On the other hand, in the
3D case, the metasurface is spatially modulated in both
x and z directions, thus having the ability to tailor the

1. In addition, deep learning techniques have been used in the microscopic
design of metasurfaces [21], [22] and reconfigurable metasurfaces [23], [24].

wave propagation in the entire 3D space. The proposed
approach enables us to go directly from the desired
far-field performance criteria to the required tangential
fields on the metasurface while ensuring that these fields
are Maxwellian. In addition, non-conventional performance
criteria such as individual HPBWs for multi-beam pat-
terns or maximum null levels (MNL) can be considered.
Throughout this paper, the time dependency of exp(jωt) is
considered.

II. PROBLEM STATEMENT AND THE OVERALL
METHODOLOGY
Given (i) a set of desired far-field performance criteria,
including main beam directions, HPBWs, nulls, SLLs, and
MNLs, (ii) a known incident field, and (iii) a metasurface
aperture size, we would like to design a reciprocal, reflec-
tionless, lossless, and passive metasurface that transforms
the incoming incident EM wave to an outgoing EM wave
that meets the user-defined desired performance criteria.
To this end, we develop a macroscopic metasurface design

pipeline as follows.

1) A neural network is developed that takes a set of
user-defined far-field performance criteria and then
synthesizes an equivalent antenna array so as to meet
those desired performance criteria. Throughout this
paper, we refer to this antenna array as the source
array. In the 3D implementation, this source array
consists of infinitesimal electric dipoles and in the 2D
case, it consists of infinite line sources.

2) The obtained source array is then used to determine
the required tangential electric and magnetic fields on
the output face of the metasurface. This step can be
easily done through analytical formulae, thus resulting
in Maxwellian fields. In other words, inferring a source
array serves only as an intermediate step, which is
used to determine the required tangential fields on the
metasurface.

3) Since the incident EM fields are known and the meta-
surface is desired to be reflectionless, the tangential
fields on the input face of the metasurface are set to
be the incident fields. Since the LPC condition is not
necessarily satisfied, the metasurface may need loss or
gain mechanisms to enable the required EM field trans-
formation. Therefore, a procedure needs to be used to
redistribute the power among unit cells so as to meet
the LPC constraint. To this end, we utilize auxiliary
surface waves along the metasurface [25], [26], [27],
[28]. While these auxiliary surface waves can redis-
tribute the power among unit cells, they do not radiate
any real power normal to the metasurface.

4) Once LPC is satisfied, the metasurface is implemented
using a three-layer unit cell configuration [13], [29]
and is simulated in a full-wave solver (Ansys HFSS)
to verify how closely it meets the desired far-field
performance criteria.
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FIGURE 1. The end-to-end metasurface macroscopic design pipeline utilized in this
work. The lengths and directions of the arrows in the source array image depict the
amplitude and phase of different infinitesimal dipole antennas respectively.

To summarize, a flowchart of the overall design pipeline
is shown in Fig. 1. Further details will be presented in the
following sections.

III. METASURFACE BACKGROUND
The fundamental equations to design metasurfaces are the
GSTCs. The GSTCs link the field discontinuity supported by
the metasurface to its surface susceptibility tensors χ . Herein,
we do not consider any normal susceptibility components
(i.e., normal to the metasurface) [30], and thus χ is reduced
to a 2 × 2 tensor. The GSTCs can then be written as [8]

n̂×�H = jωε0χeeEav + jk0χemHav, (1)

n̂×�E = −jωμ0χmmHav − jk0χmeEav. (2)

In the above two equations, n̂ is the normal vector to the
metasurface, ε0, μ0, and k0 are the permittivity, permeability
and wavenumber in free space respectively, and ω is the
angular frequency of operation. The “�” (difference) and
“av” (average) terms in (1) and (2) are then expressed as

�ψ = ψ+ − ψ−, ψav = ψ+ + ψ−

2
(3)

where ψ represents the components of {E,H} that are tan-
gential to the metasurface and the superscripts “+” and
“−” are used to denote the fields on the output and input
faces of the metasurface respectively. The subscripts of χee,
χmm, χem, and χme denote electric-to-electric, magnetic-
to-magnetic, magnetic-to-electric, and electric-to-magnetic

surface susceptibilities respectively. For example, χem rep-
resents the electric (first subscript) polarization response to
a magnetic (second subscript) field excitation.
A reciprocal, lossless and passive metasurface needs to

meet the following constraints [8]

χ
T
ee = χee ∈ R

2×2, (4)

χ
T
mm = χmm ∈ R

2×2, (5)

χ
T
me = −χem ∈ I

2×2, (6)

where R and I represent purely real and purely imaginary
2×2 tensors respectively and the superscript “T” denotes the
transpose operator. Herein, we further limit ourselves to non-
gyrotropic metasurfaces [29] (i.e., no polarization rotation is
required), which forces the off-diagonal components of χee
and χmm and the diagonal components of χem and χme to be
zero. Noting that our metasurface is in the xz plane, n̂ = ŷ,
and considering the fields tangential to the metasurface as
{Ez,Hx}, the GSTCs will be simplified as

−�Hx = jωε0χ
zz
eeEz,av − jk0χ

xz
meHx,av, (7)

−�Ez = jωμ0χ
xx
mmHx,av + jk0χ

xz
meEz,av, (8)

where the superscripts for χ denote the direction of the field
component (second superscript) and the resulting electric
and magnetic surface polarization densities (first superscript).
Once the tangential fields on the two faces of the metasur-
face are obtained, (7) and (8) can be solved to obtain the
required surface susceptibilities. These surface susceptibili-
ties can then be implemented using a three-layer unit cell
model. Considering that our metasurface aperture lies in the
xz plane for the 2D case (∂/∂z = 0) under the transverse
electric illumination, the electric and magnetic fields tan-
gential to the metasurface each consist of a single vector
component, namely, Ez and Hx in (7) and (8). However, in
the 3D case, we need to also include the tangential cross-
polarized components, i.e., Ex and Hz components. Similar
to [31], we assume that the cross-polarized components of
our illuminating antenna are small, and thus we neglect them
for simplicity.

IV. DEEP LEARNING BACKGROUND AND OVERALL
ARCHITECTURE
As noted in the previous section, the tangential fields on the
metasurface {Ez,Hx} are needed to calculate the required
surface susceptibilities, namely χ zzee, χ

xx
mm, and χ

xz
me. Herein,

we develop a neural network based deep learning algorithm
to generate a source array that is able to produce the user-
defined far-field performance criteria. This source array is
then used to calculate the required tangential fields {Ez,Hx}
on the output face of the metasurface. To this end, we now
discuss some concepts and implementation details of the
developed neural network.
The neural network utilized in our work is inspired by

the DALL-E network [32], which was originally developed
for text-to-image synthesis applications. Although the imple-
mentation details of our neural network differ from the
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FIGURE 2. The neural network illustration of the encoder-only transformer. The output of the transformer encoder is normally referred to as the hidden state H, but in the case
of the encoder-only transformer, H is the final output target sequence T. This Figure is based on [33].

original implementation of the DALL-E network, its com-
ponents aim to achieve similar objectives while being
tailored towards our specific application (i.e., far-field pat-
tern synthesis). To better understand the analogy between
our application and text-to-image synthesis, let us note that
a set of desired far-field performance criteria, similar to text,
can be cast as sequential data. Moreover, source arrays can
be viewed as multi-dimensional tensors, which draw sim-
ilarities to images. In the remaining parts of this section,
we review two fundamental components used in our neu-
ral network, namely, encoder-only transformers and discrete
variational autoencoders (dVAE).

A. ENCODER-ONLY TRANSFORMERS
Our transformer component is used to transform a latent
representation of user-defined far-field performance criteria
to a latent representation of a source array. These latent
representations are to be discussed later; in this subsection,
we provide background information about transformers [34].
Transformers were originally developed to solve sequence-
to-sequence tasks in the field of neural language processing.
The sequence-to-sequence task can be interpreted as finding
a model that is able to map a discrete source sequence2

such as words in a sentence to a discrete target sequence
which could be words in a different language. These dis-
crete sequences are encoded using embedding layers into
sequences of vectors. Thus, the source and target sequences
can be represented as S = {s1, . . . , sn} and T = {t1, . . . , tm}
where n and m are the source and target sequence lengths
respectively. In summary, sequence-to-sequence problems
can be represented as the mapping of S to T. In recent
years, the transformer based deep learning models have not

2. Discrete sequences can be represented by non-negative integers (i.e.,
whole numbers).

only become the state-of-the-art in neural language pro-
cessing tasks such as question-answering, machine language
translation, and text summarizing [35], but have also shown
promising results in other areas such as computer vision
with applications in text-to-image generation and object
detection [36].
The original transformer was designed to be an encoder-

decoder based model [34]. The encoder of the transformer
encodes the source sequence S to a sequence of hidden states
denoted by H = {h1, . . . ,hn}. The decoder of the trans-
former then yields the target sequence autoregressively based
on the hidden states and all the preceding target sequences.
Later, it was shown that an improved performance can be
achieved by dropping either the encoder or the decoder
of the transformer [37], [38]. Herein, our implementation
is based on encoder-only transformers, which are built by
stacking encoder blocks as shown in Fig. 2 (leftmost). Each
encoder block then consists of a self-attention layer and
a feed-forward layer as depicted in Fig. 2 (middle). The
self-attention layer functions by putting each source vec-
tor at the jth encoder block into relation with all input
source vectors S j as illustrated in Fig. 2 (rightmost). The
output of the self-attention layer, denoted by S j

′
, is thus a

more refined contextual representation of itself, hence the
name self-attention. Each source vector is then passed to a
feed-forward layer where information moves from input to
output nodes by applying a weighted sum of inputs followed
by an activation function. In summary, through incorporat-
ing self-attention layers, the transformer is now capable of
transforming the original source vector sequence S from
context-independent to context-dependent H. In the case of
neural language modelling, context-dependency means that
each word in a sentence is aware of its surrounding words,
which is critical for language modelling. Similarly, in our
application, it means that far-field performance criteria such
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as nulls are aware of other surrounding far-field features
such as sidelobes.
In the case of encoder-only transformers, H is the final

output of the network and should therefore be viewed as
the target sequence T in Fig. 2 (leftmost). Consequently,
the output T = H will have the same length as the input
source S in encoder-only transformers. In our case, S rep-
resents the latent space of far-field performance criteria and
T represents the latent space of source arrays. However, as
will be discussed later, the sequence lengths associated with
far-field performance criteria and source arrays are funda-
mentally different. Thus, the issue of non-identical sequence
lengths needs to be considered in the development of our
entire network.

B. DISCRETE VARIATIONAL AUTOENCODERS (DVAE)
We use discrete variational autoencoders (dVAE) [32] to link
far-field performance criteria and source arrays to their own
latent representations. This enables the use of our encoder-
only transformer which functions in the latent space. This
is inspired by the DALL-E network for text-to-image syn-
thesis whose transformer outputs latent representations of
images in the form of discrete sequences. These discrete
sequences are referred to as image tokens. To yield actual
images, dVAEs [32] were developed to decode these tokens.
Similarly, in our application, we need to handle tokens
associated with far-field performance criteria and source
arrays.
The core of the dVAE is an unsupervised learning

technique called the autoencoder which consists of two
main components. The first component, called the encoder,
encodes/compresses the input data x into a latent space
z whereas the second component, called the decoder,
decodes/decompresses the latent space z to the reconstructed
form of the original data x̂.3 Thus, the objective of most
antoencoders is to minimize the discrepancy between the
original input data x and the reconstructed data x̂. It is now
easy to see that the training of autoencoder networks is unsu-
pervised since it only needs unlabeled data x. The latent
space z can be viewed as the underlying “hidden” repre-
sentation of the input data x which has a lower dimension
compared to x. Therefore, autoencoders may be conceptu-
ally viewed as hourglass-shaped structures that first distill
the essential information (through their bottlenecks) and then
reconstruct them back.
When using an autoencoder type model, we would ideally

want to cluster semantically similar data points in the latent
space and to separate them otherwise. However, if autoen-
coders are implemented based on simple encoder-decoder
structures (also known as vanilla autoencoders), they often
suffer from not being able to generalize their reconstruc-
tion to the unseen data [39]. This is due to the fact that

3. The encoder-decoder component of autoencoders is not the same as the
encoder-decoder component of transformers. Although both carry similar
meanings as they “encode” inputs into hidden/latent space, they are two
different components of two different networks.

FIGURE 3. The neural network illustration of variational autoencoder (VAE).

FIGURE 4. The conceptual illustration of discrete variational autoencoders (dVAE)
which shows encoding the University of Manitoba’s logo to a discrete sequence and
then decoding this sequence back in an attempt to arrive at the original logo.

vanilla autoencoders tend to isolate individual data points
in the latent space, thus, effectively only memorizing every
training data point without generalization. The variational
autoencoder (VAE) [40] overcomes this issue by enforcing a
probabilistic prior on the latent space in a standard Gaussian
distribution as illustrated in Fig. 3. In other words, instead
of producing the latent space directly, the encoder will gen-
erate mean and variance vectors from which the latent space
is formed using the standard Gaussian distribution.
The autoencoders discussed so far use continuous vec-

tor spaces (i.e., vectors of real numbers) to represent the
latent space. However, it could be beneficial to represent the
latent space in discrete vector spaces (i.e., vectors of whole
numbers). In fact, a lot of real-world data favor discrete
representations, such as language and objects in an image.
In addition to the data representation, there are a number
of deep learning techniques that are specifically designed
to work with discrete data such as our utilized encoder-
only transformer discussed in Section IV-A. Consequently, a
number of VAE models are designed to distill discrete latent
spaces, such as vector quantised VAE [41] and dVAE [32].

Herein, we focus on the dVAE which was originally
designed to work with image data as shown in Fig. 4.
The dVAE network enables having discrete latent spaces
by introducing the so-called “codebook” component in its
architecture. The codebook behaves like a dictionary where it
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FIGURE 5. The vectorized far-field performance criteria where the first row lists the theta (θ) angles of the far-field cut. The main beam directions, HPBWs of each beam, and
null locations are represented in binary format, where 1 represents the presence and 0 represents the absence of the quantity, and are located at the second, third, and last rows
respectively. The side lobe level (SLL) and maximum null levels (MNL) are arrays of constant value and are located at the fourth and fifth rows respectively.

indexes a list of vectors of real numbers such that each vec-
tor is associated with a whole number. Using this approach,
the encoder of the dVAE produces a list of discrete num-
bers as the latent space, and the decoder of the dVAE can
then use its codebook to lookup and generate a continuous
latent space, thus yielding the final output. As noted ear-
lier, the discrete latent space of dVAE is often referred to
as tokens. For example, when the input of the dVAE are
images, the latent space of dVAE is referred to as image
tokens.
To summarize this section, through the combination of

the transformer and dVAE, the DALL-E network transforms
text to image tokens using its transformer. It then decodes
these image tokens to actual images using its dVAE. In the
next section, we are going to adapt the DALL-E network to
our own specific application.

V. SOURCE ARRAY SYNTHESIS
Based on the above, we now develop a deep learning tech-
nique to synthesize source arrays from far-field performance
criteria. The input to this network is sequential data con-
sisting of far-field performance criteria such as the list of
main beam directions, HPBWs, null locations, SLLs, and
MNLs. As will be seen, we represent this input as a sequen-
tial4 2D tensor. The output of the network, depending on
the 2D or 3D pattern synthesis. will be linear or planar
source arrays which can be represented by 2D or 3D ten-
sors respectively. Thus, similar to text-to-image generation,
source array synthesis can be formalized as sequential 2D
tensor data to 2D/3D tensor generation. However, there are
a few challenges when utilizing a text-to-image model such
as the DALL-E architecture for this application. Firstly, the
far-field performance criteria are not well-suited for neural
network models. For example, the number of HPBWs is a
varying quantity depending on the number of main beams
whereas the SLL in a given far-field cut is a single quantity
representing the maximum level of sidelobes in the entire
radiation pattern. In addition, the units are different; e.g., the
HPBW is in degrees and the SLL is in dB. Secondly, most
text-to-image models such as the DALL-E architecture are

4. It is “sequential” since the order of angles matters, similar to the order
of words in a sentence. Also, the number of angles can vary based on the
angular resolution chosen to represent the far-field specifications.

designed to handle discrete sequences as their input; how-
ever, our input is a continuous sequence with real numbers;
e.g., a SLL of −12.3 dB. Lastly, for linear source array syn-
thesis, the output is a 2D tensor which is not an image-like
3D tensor. In what follows, we address the above challenges.

A. FORMATTING FAR-FIELD SPECIFICATIONS TO
SEQUENTIAL DATA
In order to make it easy to train the deep learning model, we
have vectorized the far-field (FF) performance criteria to a
sequential 2D tensor, similar to [16], as shown in Fig. 5. As
can be seen, the first two rows represent the angular locations
(θ, ϕ) to represent the 3D space. In particular, the example
shown in Fig. 5 considers two FF cuts. They are ϕ = 90◦
and θ = 90◦. The “Beams” row includes binary numbers
in which 1 and 0 represent the presence and absence of
a main beam respectively. The “HPBW” row also includes
binary numbers where the presence of 1 indicates the angles
at which the power level is within 3 dB of the main beam
level. The “SLL” row indicates the value for the side lobe
level. The “Nulls” row is a binary row where 1 indicates the
presence of a null at the corresponding angle (θ, ϕ). Finally,
the “MNL” row represents the maximum null level. Each
row is then normalized (in the implementation) such that its
components lie between 0 and 1 based on the minimum and
maximum values of that particular row.

B. ADAPTING THE DVAE TO SOURCE ARRAY
SYNTHESIS
As noted earlier, the dVAE network was originally developed
to encode images to discrete sequences (image tokens) to
be utilized by transformers. Similarly, the dVAE can also
be used for planar source array synthesis since a rectangular
infinitesimal dipole array can be represented as an image-like
two-channel 3D tensor. The two channels are associated with
the amplitude and phase of the excitation for each antenna
element. This is conceptually similar to color images that
have three channels: red, green, and blue (RGB). Moreover,
the planar source array is a 3D tensor since it consists of a
planar domain whose pixels have a complex-valued excita-
tion coefficient as the third dimension. Herein, we refer to
the discrete latent space of the dVAE when applied to planar
source arrays as planar array tokens.
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FIGURE 6. The proposed neural network architecture of far-field specifications to source array synthesis for both (a) 2D and (b) 3D scenarios. It should be noted that in (a) the
dSeqVAE encoder and the dSeqVAE decoder on the two sides of the transformer are of two separate models as indicated by the different colors. On the other hand, the dSeqVAE
encoders in (a) and (b) are of the same model, and are therefore shown with the same color.

On the other hand, linear source arrays and desired FF
performance criteria on given cuts cannot be represented by
an image-like 3D tensor as they lack one dimension. To
overcome this issue, we modify the dVAE into the so-called
dSeqVAE [42] so that FF performance criteria and linear
source arrays can be used by the transformer. (To this end,
dSeqVAE replaces the Conv2D and ConvTranspose2D
used in dVAE with Conv1D and ConvTranspose1D
respectively.) Thus, we use the dSeqVAE to encode for-
matted FF performance criteria (FF specifications) to the
so-called FFSpec tokens and encode linear source arrays to
linear array tokens.

C. FINAL NETWORK ARCHITECTURE
The complete neural network architecture developed for this
work is shown Fig. 6, which borrows its general framework
from the text-to-image DALL-E network. This architecture
has been shown under two scenarios, which are related to
linear and planar source array syntheses. These inferred lin-
ear and planar source arrays can then be used to calculate the
required tangential fields for metasurface design under 2D
and 3D wave propagation scenarios respectively. There are
a few unique features associated with our proposed network
as compared to the original DALL-E network. Firstly, we
employed the dSeqVAE to convert the formatted FF specifi-
cations to FFSpec tokens so that they can be utilized by the
transformer as its input. Secondly, we used an encoder-only
transformer instead of the decoder-only transformer utilized
in DALL-E. Using an encoder-only transformer compared
to its decoder-only counterpart dramatically reduces the run
time in prediction. This is due to the fact that the decoder-
only transformer generates the output autoregressively; that
is, the network effectively will run multiple times for each
prediction. In text-to-image synthesis, this is needed as the
network needs to handle various text lengths. On the other
hand, our application does not require this autoregressive
feature since the lengths of the tokens can be engineered to
be fixed. Thus, our proposed network relies on an encoder-
only transformer, which will only be executed once during

prediction. Thirdly, for linear source array synthesis, we
replaced the dVAE network on the output side of the trans-
former with the dSeqVAE network in order to generate linear
source arrays. Finally, encoder-only transformers require the
input sequence length to be the same as the output sequence
length. With the employment of the dSeqVAE and dVAE
on the input and output sides of the transformer, the final
network was designed so as to enforce FFSpec tokens and
array tokens to have the same length, thus enabling the use
of an encoder-only transformer.

D. DATASET GENERATION AND TRAINING
The data set generation begins by considering aperture sizes
for the source arrays. In general, we choose an array size
that provides a sufficient number of degrees of freedom in
order to meet the specifications, but not so large so as to
make the resulting metasurface prohibitively large, i.e., to
simplify the design, simulation, and hypothetical manufac-
turing process. To demonstrate the methodology for planar
source array synthesis, we consider a 3λ × 3λ rectangular
array of 256 infinitesimal dipoles where λ is the wavelength
of operation. These infinitesimal dipoles all have the same
linear polarization and are evenly spaced on the array aper-
ture which is centered at the origin. The FF requirements
can be expressed on multiple cuts in the FF zone, e.g.,
on the E-plane and H-plane cuts, which are spanned by θ
and ϕ. As for the case of linear source array synthesis, we
consider 16 infinite line sources, which are evenly spaced
along a line with a total length of 6λ centered at the origin.
The FF requirements associated with linear source arrays are
expressed on a single cut which is spanned by the single
angle ϕ.
In order to train the neural network properly, we need a

large and diverse dataset. In particular, the dataset should
have diversity in the numbers of the beams and their loca-
tions, variations of the HPBWs for each beam, different
SLLs, and so on. To this end, we have constructed a dataset
generation pipeline for both linear and planar source array
scenarios which is an extension to our previous work [16].
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Multiple-beam far-field patterns are generated by superpo-
sition of multiple single-beam arrays. Different tapering
techniques are randomly applied to arrays so as to vary
the side lobe levels such as Dolph-Chebyshev windows,
cosine and squared cosine tapering. Random white noise
was applied to arrays to further increase the diversity of
far-field patterns. Finally, based on the generated far-field
pattern, the specifications of interest are captured through
signal processing techniques.5

As can be seen, the training procedure requires four steps.
The first step is to train the dSeqVAE network, shown in
green color in Fig. 6, using normalized far-field specifica-
tions. The second step is to train the dSeqVAE network,
shown in orange in Fig. 6, using linear source arrays. In
the third step, the dVAE network, shown in red in Fig. 6,
is trained with planar source arrays. Finally, the fourth
step involves training the encoder-only transformer with the
FFSepc tokens and array tokens obtained from the trained
dSeqVAE and dVAE networks for both linear and planar
source arrays.
Finally, it should be noted that the above source array aper-

ture dimensions are a priori maximum values, which can be
decreased by deactivating specific sections of the aperture.
The aperture size of the metasurface will then be greater
than (or equal to) the effective aperture size of the source
array. To understand this, we would like to highlight that the
transformation of the source array to the output tangential
field profile in this work is conceptually similar to the proce-
dure used in planar near-field antenna measurements [43]. In
planar near-field measurements, we characterize the antenna
under test by measured tangential fields over a truncated
plane, which can then be forward-propagated to obtain the
resulting far-field pattern. Similarly, we find the fields of the
source array on a truncated plane which will then serve as
the metasurface aperture. Thus, our choice of the metasur-
face aperture is analogous to the choice of the measurement
plane in planar near-field antenna measurements. In particu-
lar, this plane must be large enough to meet the requirements
on the desired critical angle in the far-field [43]. However,
we must again take care so as to not make the metasur-
face prohibitively large. In this work, the metasurface size is
chosen in a somewhat ad hoc manner, keeping in mind that
the size should not be too large so as to make the design,
simulation, and hypothetical manufacturing easier, but not
too small so as to greatly affect the far-field pattern.

VI. AUXILIARY SURFACE WAVES
As noted earlier, we use auxiliary surfaces waves along the
metasurface to redistribute the power to arrive at lossless
and passive metasurfaces [25], [26], [27], [28]. The utilized

5. In each epoch, unique datasets for training and testing are generated
dynamically, with the generation occurring concurrently with the neural
network training process. The size of these datasets scales with the training
time. Our neural networks were trained for approximately 2000 epochs,
utilizing a dataset of 10 million data points for training and 1 million data
points for testing. The training hardware employed was the Tesla V100
GPU, resulting in an overall training period of approximately 4 hours.

FIGURE 7. The illustration of the equivalent problem with respect to the input region
for the scattered fields, which consist of the auxiliary surface waves used to meet the
LPC constraint. Love’s condition is assumed for the output region of this equivalent
problem and is enforced by its equivalent additive constraint during the optimization
process.

surface wave optimization algorithm [27] assumes a known
incident and transmitted field, and finds the auxiliary surface
waves that satisfy the LPC condition when added to the orig-
inal fields. This is accomplished by minimizing the following
expression at each unit cell in a least-squares manner [27]

1

2
Re

{
E−
z × (

H−
x

)∗} − 1

2
Re

{
E+
z × (

H+
x

)∗}
, (9)

where E−
z and H−

x are the total tangential electric and mag-
netic fields at the input face of the metasurface, and E+

z and
H+
x are the total tangential electric and magnetic fields at the

output face of the metasurface. In addition, the superscript
“∗” denotes the complex conjugate operator. The total field
consists of the originally known or desired fields and any
added auxiliary surface waves; the latter are the unknowns
in the surface wave optimization process. In this work, we
assume that the auxiliary waves are added to the input. Thus,
the total tangential fields at the input face of the metasurface
may be written as

E−
z = E−

z,inc + E−
z,scat, (10)

H−
x = H−

x,inc + H−
x,scat, (11)

where the subscripts “inc” and “scat” represent the inci-
dent and scattered fields. In this case, the incident field is
the field with which we illuminate the metasurface, and the
scattered field is the field produced by the auxiliary sur-
face waves. These scattered fields are optimized to meet
the LPC condition at each unit cell in a least-squares man-
ner. In order for these scattered fields to be Maxwellian,
we further optimize an additive constraint which enforces
Love’s condition on the equivalent currents corresponding
to the auxiliary fields [27], [44], [45]. These equivalent cur-
rents result from an application of the equivalence principle
with respect to the input region for the scattered fields, as
demonstrated in Fig. 7, where the zero-field condition in the
output region is enforced by the additive constraint. (Note
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FIGURE 8. The two-port circuit model for a three-layer metasurface unit cell.

that under Love’s condition, the equivalent electric and mag-
netic currents will be Jz = Hx and Mx = Ez respectively.)
The evanescent quality of these scattered fields, depicted
with exponential decay in Fig. 7, is obtained by ensuring
that the original total incident and transmitted powers are
the same [27]. Thus, in our approach, we set the tangen-
tial EM fields on the input face of the metasurface to (10)
and (11) where E−

z,scat and H
−
x,scat are associated with auxil-

iary surface waves traveling along the metasurface for power
redistribution. Following this optimization process, we have
the complete description of the input and output tangential
fields, and thus the metasurface macroscopic design process
can now be performed. Finally, we note that the auxiliary
surface wave optimization procedure developed in [27] for
2D problems has been extended to 3D for this work.

VII. RESULTS
The proposed macroscopic metasurface design pipeline is
now demonstrated with a few examples for both 2D and 3D
cases. For both cases, the design process begins with the
user specifying the desired features for the far-field power
pattern, namely, beam directions, HPBW for each beam,
SLLs, null angles, and MNLs. Herein, for the 3D case,
the user provides these specifications for two perpendicular
cuts. Then, the neural network will generate a source array
so as to meet the user-defined far-field requirements. The
tangential electromagnetic fields on the transmitting side of
the metasurface can then be analytically computed from this
source array. Since the tangential fields on the input face of
the metasurface are known (see Section VI), the macroscopic
properties of the desired metasurface can be computed. Each
unit cell of the metasurface is then represented by the widely-
used three-layer model shown in Fig. 8 [13]. This model
consists of three purely reactive impedances, denoted by Zi
where i = {1, 2, 3} and two dielectric substrates. Given the
substrate and the input/output fields on the two ports of this
model, we can find these purely reactive impedances. In
the full-wave simulations, these impedances are modeled as
impedance boundary conditions in Ansys HFSS.

A. 2D DESIGN
Let us first consider 2D design under the transverse electric
illumination. The source that illuminates the input face of the
metasurface is assumed to be a line source along the z axis.
As noted earlier, the metasurface lies in the xz plane and is
invariant along the z direction. The length of the metasurface

FIGURE 9. Three scenarios for the 2D design cases.

(along the x direction) is assumed to be 10λ where λ is the
wavelength of operation at 10.5 GHz. The metasurface is
discretized into 61 unit cells. The separation from the line
source to the metasurface is λ/2. The user then provides
the desired far-field specifications on the output region of
the metasurface which is spanned by ϕ varying from 0◦
to 180◦.
Herein, we have shown three test cases in Fig. 9(a)-(c).

The user-defined desired specifications are shown as
“Beam”, “Nulls”, “HPBW”, “Max SLL”, and “Max Null”
in these three figures. For each test case, the far-field spec-
ifications are used by the neural network to yield a linear
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source array. The far-field power pattern (PP) generated by
this source array is shown in blue and is denoted by “PP
Source”. The tangential electric and magnetic fields close to
this array are then obtained on a line with the total length
of 10λ (metasurface length). Once these tangential fields are
obtained, we can use near-field to far-field (NF-to-FF) trans-
formation to obtain the resulting power pattern. Since the
aperture size (10λ) is finite, the NF data along the aperture
but outside its 10λ length is assumed to be zero. That is why
the resulting power pattern (PP) from this NF-to-FF trans-
formation is denoted by “PP Truncated NF” and is shown
in orange. As expected, “PP Truncated NF” matches quite
well with the “PP Source” with some small discrepancies
due to the NF truncation when ϕ approaches 0◦ and 180◦.
Also, these two power patterns meet the desired performance
criteria.
In conjunction with the known incident field on the meta-

surface (i.e., cylindrical waves emanating from the line
source), we utilize auxiliary surface waves on the input side
of the metasurface to meet the LPC constraint. Once the LPC
constraint is met, the three-layer purely reactive impedance
sheet model for each unit cell is obtained and used to simu-
late the metasurface in Ansys HFSS. The utilized dielectric
substrate is Rogers RO3010 substrate having a thickness of
0.25 mm (with the relative permittivity of 10.2 and the loss
tangent of 0.0035). After performing the full-wave simula-
tion, the tangential fields just after the output face of the
metasurface are extracted from Ansys HFSS and are passed
to a 2D integral equation solver to find the resulting far-field
power pattern. This power pattern is then referred to as “PP
HFSS” (green). As can be seen in Fig. 9, the HFSS power
patterns meet the beam directions and HPBWs generally
well. However, meeting the other requirements, in particular
nulls, is not as good as these two parameters and gets worse
as we move away from main beams. One of the reasons that
“PP HFSS” cannot meet the FF performance criteria as well
as “PP Source” and “PP Truncated NF” lies in the fact that
the transmission line model used to calculate the impedances
in the three-layered unit cell model works based on the local
periodicity assumption [46], [47], which is not fully satis-
fied especially when we employ high spatial field variations
associated with the evanescent spectrum (auxiliary surface
waves). Moreover, Fig. 10 shows the NF simulation of the
three-beam example (corresponding to Fig. 9(c)) where it
can be seen that the fields on the input side of the meta-
surface have almost maintained their circular wave fronts
associated with the line source excitation. Finally, the power
transmission efficiency of this metasurface, defined as the
ratio of the normal real power leaving the metasurface to the
normal real incident power impinging on the metasurface,
is 73.1%.6 The sources of power loss are the reflections

6. Making the unit cell size smaller results in increased transmission
efficiency. For example, if the unit cell size is set to about one-tenth of the
wavelength, the efficiency increases to 82.0%. In addition, for the original
size of the unit cell, if the loss of the Rogers substrate is set to zero, the
power transmission efficiency increases from 73.1% to 80.8%.

FIGURE 10. Ansys HFSS simulation of the metasurface under the 2D transverse
electric illumination, which plots Ez magnitude at a fixed phase.

FIGURE 11. Ansys HFSS metasurface simulation set up for the 3D case with an
illuminating horn antenna.

from the metasurface (due to numerical and approximation
error, e.g., not exactly satisfying the local periodicity assump-
tion) and the loss within the RO3010 dielectric substrates.
In addition, it has been noted in [28] that the interaction
of strong evanescent waves with the metasurface, described
in Section VI, results in the further decrease of the power
transmission efficiency as compared to metasurfaces that do
not utilize these auxiliary surface waves.

B. 3D DESIGN
For the 3D example, the source that illuminates the input face
of the metasurface is a horn antenna shown in Fig. 11, which
is fed by the TE10 mode of a rectangular waveguide. Similar
to [31], the distance from the horn aperture to the input
face of the metasurface is 3λ. The co-polarized component
of the horn antenna is Ez. The metasurface’s aperture size
is 5λ × 5λ and is uniformly discretized into 30 × 30 unit
cells. In this example, the user defines the desired far-field
specifications on two perpendicular cuts (E-plane and H-
plane cuts) with the main beam at (θ = 70◦, ϕ = 90◦). The
desired far-field features on these two cuts are shown in
Fig. 12, denoted by “Beam”, “HPBW”, “Nulls”, “Max SLL”,
and “Max Null”. Subsequently, the developed neural network
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FIGURE 12. The 3D example where the desired specifications are given on two
perpendicular far-field cuts.

takes these specifications and outputs a planar source array.
The far-field power pattern generated by this planar source
array is shown in blue and is indicated by “PP Source”.
Then, the tangential electric and magnetic fields radiated by
the planar source array is found on a plane with the size of
5λ× 5λ, which is the aperture size of the metasurface. NF-
to-FF transformation can then be applied to these tangential
fields, which generates the power pattern shown in orange
and denoted as “PP Truncated NF”. Similar to the 2D case,
these two power patterns are close to each other and they
meet the FF requirements except at a few nulls.
After utilizing auxiliary surface waves to meet the LPC

constraint, the three-layered metasurface is constructed. The
dielectric substrate has a relative permittivity of 10.2, loss
tangent of 0.0035, and thickness of 0.37 mm. In addition,
perfect electric conductor (PEC) baffles [31], [47] are used
along the x axis to improve the performance of the meta-
surface. (These baffles cannot be placed along the z axis
as the co-polarized electric field component Ez would then
be tangential to the PEC baffles.) The metasurface is sim-
ulated in Ansys HFSS and the resulting tangential fields
close to the output face of the metasurface are collected.
The NF-to-FF transformation of this data yields the result-
ing power pattern shown in green and denoted as “PP HFSS”

FIGURE 13. The near-field simulation of the 3D metasurface in the E-plane cut (yz
plane), which plots E magnitude at a fixed phase.

in Fig. 12. As can be seen, this power pattern satisfies the
main beam directions in both cuts. However, the achieved
HPBWs are larger than the desired ones. The achieved SLL
meets the desired requirement. Moreover, the achieved nulls
are generally close to the desired nulls. Since MNLs are
not fully satisfied in the “PP Truncated NF”, they are not
satisfied in “PP HFSS” either. Finally, the near-field sim-
ulation of this metasurface in the E-plane cut (yz plane)
is shown in Fig. 13. The power transmission efficiency of
this metasurface is 64.2%. The minor decrease in efficiency
when compared to the 2D case can partly be explained by
the differences in the assumption of local periodicity. In the
2D case, this assumption is not exactly satisfied along the
x direction, but it is satisfied along z due to the nature of
the 2D problem (if we were to extend the 2D problem into
3D space); conversely, in the 3D case, both of these axes
will contribute error to this assumption, which can result in
additional reflections due to this inconsistency.

VIII. CONCLUSION
We have developed a deep learning based macroscopic meta-
surface design approach. The developed neural network takes
user-defined desired far-field performance criteria and then
outputs a source array so as to meet the desired speci-
fications. This inferred source array, in conjunction with
an integral equation based approach, is utilized to find the
required tangential fields on the two faces of the metasur-
face. Finally, a three-layer unit cell topology is used to verify
the performance of the metasurface. In all the 2D and 3D
examples, the performance of the reconstructed source array
is close to the desired specifications. On the other hand, the
performance of the resulting metasurface is generally good
for the main beam directions, HPBWs and SLLs. However,
achieving the desired specifications for nulls and MNLs
is typically more challenging. The main advantages of the
proposed approach is that (i) the neural network can yield
a source array in a fraction of a second, (ii) the user only
needs to provide practical performance criteria as opposed
to providing full far-field pattern information, and (iii) due
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to fact that the tangential fields on the output face of the
metasurface are obtained from the inferred source array, they
are inherently Maxwellian. On the other hand, the developed
neural network is designed based on a predefined maximum
source array aperture size, which will ultimately limit the
achievable directivity.
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