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ABSTRACT A miniaturized planar Yagi-Uda antenna for integration with PicoSats or other SmallSat
missions is proposed. Miniaturization techniques, such as meandering and 1-D artificial dielectric concepts
to reduce the guided wavelength, are employed to overcome space constraints imposed by the SmallSat
footprint while still maintaining good performance for the FR-4 antenna. Simulations and measurements
have been carried out on the Unicorn-2 PicoSat chassis from Alba Orbital and are in good agreement. Also,
antenna dimensions have been reduced between 15% and 66% when compared to a more conventional
planar Yagi-Uda antenna working at the same frequency. This compactness allows for simple integration
with the deployable solar panel array of the Unicorn-2 PicoSat spacecraft. Full end-fire radiation is
achieved and peak gain values are about 5 dBi for the antenna when fully integrated on the satellite
chassis, offering an attractive solution for downlink connectivity. This compact antenna design can also
be used within an array for beam steering or integrated within the solar cell modules of other PicoSats,
CubeSats and SmallSats. Applications include Earth observation, remote sensing, as well as SmallSat
to ground station communications. The planar Yagi-Uda antenna may also be useful wherever end-fire
radiation is required from a compact antenna structure.

INDEX TERMS Planar Yagi-Uda, artificial dielectrics, CubeSat, deployable systems, solar panel arrays.

I. INTRODUCTION

COMMERCIAL missions employing SmallSats, such as
CubeSats and PicoSats, are becoming more common.

This is due to the demands for low-cost and compact
space platforms which can offer Earth observation (EO)
and diverse communication services whilst also providing
connectivity with other satellites [1], [2]. This augmented

demand, as compared to more conventional satellites, trans-
lates in more payload systems integrated into the SmallSat,
causing a high density of mechanical and electrical sub-
systems. This is a challenge for space engineers as the
available surface and volume is more and more lim-
ited, while there are also weight and cost constraints to
consider.
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FIGURE 1. Diagram of the Unicorn-2 PicoSat from Alba Orbital [7] with the proposed
end-fire antenna integrated with the deployable FR-4 solar cell array module.

One key element of any payload offering different com-
munication services is the antenna. Suitable beam pattern
characteristics are also vital to maintain communications.
In EO for instance, the power radiated from the antenna is
required to be directed towards the Earth for data exchange,
as depicted in Fig. 1. Depending on the required location of
the antenna and how the satellite has been designed or is to be
positioned in space, antenna selection may be limited when
iso-flux, broadside or end-fire radiation patterns are required.
Keeping these antennas compact, low-cost and lightweight
is critical specially in missions where the wavelength can be
large in comparison with the available footprint. As a result,
designs based on turnstile monopoles, helix antennas [3],
[4], or metallic and PCB-based structures [5], [6] may be
considered.
Depending on the gain requirements, deployable antennas

are versatile structures with a wide variety of applications
not only limited to low frequencies. Antenna systems, as
in [8], [9], based on reflectors for high frequency bands, were
achieved with meshed or inflatable antennas. Although these
deployable systems can make optimum use of the footprint
in SmallSats for large antennas, the required stowage vol-
ume, and at times, the complicated deployment mechanisms
can limit commercial and industrial adoption. On the other
hand, low-cost planar solutions, despite typically providing
moderate gain values, can be a reliable and more low-profile
alternative. Furthermore, they have more degrees of freedom
in terms of design flexibility. In this respect, integrating the
antenna on the solar modules [10], [11], [12], [13], [14]
is an attractive option to optimize the available space on
the SmallSat whilst not requiring any specific deployment
mechanism for the antenna itself.
In the Solant project [10], crossed slots were etched

on amorphous silicon solar cells to achieve circularly

polarized (CP) broadside radiation. This antenna design set
the precedent for future configurations taking advantage of
the available surface on the solar modules [11]. Conventional
and modern techniques, such as grid antennas [12], [13], [14]
or transparent conductors [15], [16], are enabling new pla-
nar structures which use the solar cell layer as the antenna
substrate. This can avoid the perforation or relocation of the
solar modules [17] whilst maintaining solar power harvest-
ing capabilities. However, these antennas may provide lower
efficiencies, which can be critical in the case of transparent
conductors, since the conductivity can be of order 106 or
105 S/m depending on the employed conductive oxide [16].
Moreover, when full end-fire radiation is needed, antenna
integration on top or near the solar cells might not be eas-
ily feasible. This is mainly due to the continuous ground
plane needed under the thin solar cells (required for proper
DC biasing and solar power collection circuitry) which
could short-circuit important antenna elements. In this case,
antenna radiation can be limited to quasi-end-fire or near
broadside [18]. One solution is the removal of one of the
solar cells to use the substrate underneath and pattern it as
desired using conventional PCB design approaches. In this
way, full end-fire radiation can more easily be achieved by
using a variety of printed elements.
When requiring CP radiation at end-fire, antipodal con-

figurations as in [19], [20], [21] could be considered.
In these structures, complementary magnetic dipoles and
mirrored open loops etched on top and bottom of the sub-
strate are required. However, these designs provide optimum
performance involving low permittivity substrates (εr = 1.1).
If considered for PicoSat or CubeSat integration, higher per-
mittivities might be needed depending on the antenna design
frequency. This size constraint can result in a lower radiation
efficiency or reduced CP performance due to volume restric-
tions. In particular, antenna thickness requirements need to
be on the order of 0.05λ0 [19], [20], [21]. Moreover, such a
physical requirement might make SmallSat integration, when
operating in the L- or S-bands, not easily feasible, and,
without the adoption of some vertical substrate thickness
reduction technique or advanced antenna miniaturization.
Linear polarized (LP) antennas instead could be inves-

tigated when the possible antenna size and thickness is
limited as is the case for the deployable solar cell array
on the Unicorn-2 Picosat from Alba Orbital (see Fig. 1).
When considering planar design solutions, there are a num-
ber of miniaturization techniques. Meandering of microstrip,
the use of artificial magnetic materials [22], [23] or artificial
dielectrics [24], can be considered for such SmallSat antenna
integration. For end-fire radiation, conventional Yagi-Uda
antennas or arrays, based on microstrip dipoles [25], can
also be implemented and miniaturized to satisfy the size
and operating frequency requirements [18]. For example, the
preliminary investigations in [18] showed promising simu-
lations where a full metallic chassis was assumed. In this
case, the beam was diverted away from end-fire but gain
values were kept around 3 dBi.
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Some other works have also investigated planar Yagi-Uda
antennas for SmallSats. For instance, [26] reported a 6 dBi
printed Yagi-Uda array for 2.45 GHz and was simulated on
the chassis of a 3U CubeSat. This antenna design with no
miniaturization, needed a substrate of 90 × 150mm2 which
could be too large for any PicoSat with additional payloads.
This led to a modified version in [27] where copper rods
embedded in a FR-4 substrate, formed a Yagi-Uda array
that was mechanically steered to control the beam in the
elevation plane. This might increase the complexity and cost,
whilst needing the satellite to have the solar panels facing
the Earth to achieve full end-fire radiation. However, this
would prevent efficient power harvesting from the Sun.
Some techniques have also been reported for planar Yagi-

Uda miniaturization include meandering, C-shaped elements,
and folded dipoles [28], [29], [30], [31]. Despite providing
some design compactness, the size reduction was not signifi-
cant, and inmost cases, the number of directors were sacrificed
due to space constraints resulting in low gain performances.
On the other hand, a compact structure which maintained
directivity was achieved using an intricate technique; i.e.,
parasitic interdigitated strips as in [32], which required some
complex and design-specific loading considerations.
Advancing on these developments whilst providing an

alternative design approach, we propose a miniaturized pla-
nar Yagi-Uda antenna structure based on low-cost PCB
technology. The design achieves full end-fire radiation in the
S-band and is fully integrated within the solar panel array,
and this array extends from the PicoSat Chassis (see Fig. 1).
In particular, structure meandering and artificial dielectric
concepts were employed by loading the three directors of
the planar antenna (see Fig. 3) in a 1-D sequence to achieve
overall structure compactness whilst maintaining directivity.
This advances on our preliminary simulation work in [18],
which mainly reported the design of a Yagi-Uda-like struc-
ture using an array of microstrip patches for operation at
8 GHz for placement on the glass layer of a solar cell.
To the best of the Authors’ knowledge, 1-D artificial

dielectric concepts and meandering have not been effec-
tively applied on fully planar Yagi-Uda antennas previously.
These miniaturization techniques are newly adopted in this
paper, mainly, in an effort to fit the proposed S-band end-fire
antenna on the deployable solar panel array of the Unicorn-
2 Picosat (see Figs. 1 to 3). These techniques are further
described in Section II together with a comparison with a
conventional Yagi-Uda design, where some important dimen-
sions have been reduced by more than 65% whilst still
maintaining an operating bandwidth of more than 6%. It
will also be shown that our compact design achieves a 40%
and 15% reduction of the total required antenna length and
width, respectively, when compared to a more conventional
and non-compact version. Simulated results will also be dis-
cussed in Section II, including the scenario were the antenna
is in frees-space and integrated onto the Unicorn-2 PicoSat.
Measured results are reported in Section III with a summary
in Section IV.

FIGURE 2. Top and bottom views for: (a) the proposed 2.4 GHz planar Yagi-Uda
antenna with artificial dielectric loading and meandering implemented using a 0.4 mm
thick FR-4 substrate; (b) a conventional printed Yagi-Uda antenna for 2.4 GHz for
comparison.

II. ANTENNA DESIGN AND SIMULATIONS
Typical antenna performance specifications for EO down-
link transmission in the S-band for the Unicorn-2 PicoSat
commercial mission [7] are an optimum LP gain of 5 dBi
and a minimum −10 dB impedance reflection coefficient
bandwidth of 10 MHz (0.42%) [18].
For the Unicorn-2 PicoSat, the chassis has already most

of its space occupied with other payloads [7]. Thus, the
integration of a new antenna was limited to the solar module
nearest the main body of the satellite of the deployable
wings (see Figs. 1 and 4, inset). These solar modules were
constructed using epoxy resin material, defining the antenna
substrate. Also, due to the need to maintain a weight balanced
PicoSat structure, removal of one of the solar cells on the
other side of the chassis was required and a second end-fire
antenna can be added (see Fig. 1). Also, when the solar
cell is removed and the epoxy substrate is used for antenna
integration, the available footprint [7] is 43.80×90mm2 with
a substrate thickness of 0.4 mm. This defines the available
footprint for our miniaturized end-fire antenna which must
operate at 2.4 GHz for ground station connectivity. Using
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TABLE 1. Yagi-Uda original & miniaturized parameters.

FIGURE 3. The non-miniaturized (conventional) and miniaturized designs for size
comparison illustrating a reduction of more than 40%.

FR-4 material enables low-cost experimental demonstration
and proof-of-concept for the space-ready antenna.

A. DESIGN CONSIDERATIONS
This antenna is composed of several parasitic microstrip
dipoles [25] acting as directors, which are typically placed
at a distance of 0.15 − 0.3λ0 from the driven element and
other directors [33]. Classic and well known formulas for
Yagi-Uda antennas [33] were initially used to obtain the
parameters of the non-miniaturized version (see Fig. 2 (b))
which is the starting point in our design process. Relevant
dimensions are outlined in Figs. 2 (a) and (b) and Table 1.
The antenna is fed by a 50-� microstrip line and has been
modelled and simulated in CST [34].
In order to achieve a higher gain, more directors are

exploited. However, the length of the available footprint is
very limited (90 mm or 0.72λ0 where λ0 is the free-space
wavelength at the design frequency of 2.4 GHz) and cannot
accommodate many directors to comply with the required

5 dBi realized gain requirement. Given this space avail-
able, the substrate losses whilst considering conventional
design approaches, the maximum gain achievable is 3 dBi.
Also, size constraints do not permit a fourth director to
increase gain. Nevertheless, this would still not comply with
gain requirements for the Unicorn-2 PicoSat mission. In
addition, to improve the matching, the feeding microstrip
line Lm of the non-miniaturized version should be larger
than 0.1λ0 (optimally around 0.25λ0, as in [18]). Moreover,
the length of the driven element Ldr needed to operate at
2.4 GHz, and it could not fit within the substrate width (Wsub

= 43.80 mm). For these two reasons and to comply with
the antenna requirements, several miniaturization techniques
were adopted.
Adapting the driven element into the constrained width

Wsub was achieved using meandering and its length Ldr was
physically miniaturized to maintain operation at 2.4 GHz.
This meandering reduced the width of the proposed Yagi-
Uda by about 15%. On the other hand, the distance between
directors D can also be reduced by applying artificial
dielectric concepts [24], realized by local printed inclu-
sions. This achieves a representative 1-D configuration for
guided wavelength reduction along the y-direction and near
the driven and director elements. Accordingly, the surface
reactance near the printed metallic segments is locally tai-
lored to achieve a higher effective relative permittivity, as
in [24], [35], [36], allowing for the reduction of the dis-
tance D. For example, the minimum (D = 0.15λ0) required
for a good performance [25], [33] can be shortened by 60%
to 0.06λ0, and this allowed for more space for the required
directors.
This technique also allowed for an improvement in the

front-to-back ratio, increasing the directivity with just three
directors [24]. Basically, the surface reactance is modified as
desired by the addition of a finite periodic grid of metallic
strips in the y-direction (see Fig. 2 (a)). The length of these
metallic strips LAD was kept constant for all directors. This
is because the width WADn is the main factor influencing the
capacitive coupling and thus increasing the effective relative
permittivity near the driven and parasitic elements. It should
also be mentioned, that during our many optimisations and
simulation studies using CST microwave studio [34], it was
found that the best antenna performance (in terms of match-
ing and directivity) was achieved when WAD1, WAD2, and
WAD3 were positioned near the directors.
The final parameters for the miniaturized antenna can be

found in Table 1, where they are also compared to the orig-
inal, non-miniaturized structure. It can also be observed that
the parameter Lyagi was miniaturized, requiring a length of
0.35λ0 which is about a 60% reduction when compared to
the conventional version (0.58λ0). Also, due to the improve-
ment of the front-to-back ratio and the meandering of the
driven element, the reflector implemented on the ground
plane can be further reduced to a third in width Wref and a
half in length Lref when compared to the non-miniaturized
version (see Table 1). This supported further compactness.

1344 VOLUME 3, 2022



FIGURE 4. Simulated reflection coefficient for the different Yagi-Uda antennas: the
conventional non-miniaturized Yagi-Uda (blue dashed line); the miniaturized antenna
in free-space (solid blue line), and the miniaturized Yagi-Uda integrated on the PicoSat
Unicorn-2 chassis (blue dotted line). The bottom left inset depicts the simulated model
of the proposed antenna on the SmallSat chassis.

FIGURE 5. Simulated realized gain at full end-fire (θ = 90◦ , φ = 90◦) versus
frequency for the different Yagi-Uda antennas: the conventional non-miniaturized (red
dashed line); the miniaturized antenna using artificial dielectrics concepts (red solid
line), simulation results of a conventional Yagi-Uda with the distance between
directors D reduced to the values employed by the miniaturized case (dotted red line)
and the miniaturized antenna integrated on the satellite chassis (dotted-dashed red
line). Additionally, measured results for the miniaturized Yagi-Uda antenna (solid black
line) are also included.

The two designs are also placed side-by-side in Fig. 3 for
size comparison.

B. SIMULATION RESULTS
A comparison of the reflection coefficients for the non-
miniaturized and the miniaturized antennas is reported in
Fig. 4. The miniaturized design offers a better impedance
matching (|S11| ≤ −15 dB) although the −10 dB band-
width over the required S-band operating frequency range is
very similar for both cases and compliant with specifications
required for the Unicorn-2 PicoSat.
In Fig. 5, the simulated realized gain values at full end-fire

(θ = 90◦, φ = 90◦) are reported for the two configura-
tions. The standard Yagi-Uda antenna provides a peak gain
of around 3 dBi while, thanks to the improvement of the
front-to-back ratio due to the controlled surface reactance,

TABLE 2. Yagi-Uda original & miniaturized performance comparison.

the miniaturized antenna has a simulated realized gain of
5.1 dBi, also complying with the requirements. Additionally,
the distance D between the directors in the non-miniaturized
case has been reduced to the dimensions of the miniaturized
antenna (from 0.15λ0 to 0.06λ0) to show the difference in
performance and the need to include the reactive loading
of the 1-D artificial dielectric structures for efficient radi-
ation in a constrained footprint. It is shown in Fig. 5 that
the realized gain is even lower than in the standard case
as it does not comply with the required theoretical values
for D, which is usually 0.15 to 0.3λ0 due to the effective
coupling between directors. The performance comparison
between the miniaturized and non-miniaturized version is
reported in Table 2.

Furthermore, the miniaturized antenna has been simu-
lated on the lossy polyamide PicoSat chassis (see Fig. 1
and Fig. 4, inset), where a UFL connector is used for sur-
face mount feeding. Initial analysis were carried out in [18],
where the antenna was simulated next to a PEC satellite
body. This deviated the beam towards θ = 100◦ and reduced
the gain to 3 dBi at full end-fire. The material of the body
has been updated according to Alba Orbital instructions and
lossy polyamide carbon fiber has been used. As shown in
Fig. 4, the antenna offers reflection coefficient values up to
−25 dB with a slightly diminished bandwidth of 5.13%. In
this case, the beam is still pointing towards full end-fire
(θ = 90◦, φ = 90◦) with gain values of 4.3 dBi as depicted
in Fig. 5. There is a reduction of around 0.7 dBi with respect
to the non-integrated scenario. This degradation in gain is
caused by the addition of the connector and the influence
of the body of the satellite and the metallic surroundings.
This loss could be compensated by the addition of another
director in the space available.

III. EXPERIMENTAL RESULTS
The miniaturized Yagi-Uda S-band planar antenna was man-
ufactured using an FR-4 substrate (εr = 4.4) having a
thickness of 0.4 mm, and dimensions of 43.80 × 50mm2

for low-cost experimental testing and simple integration with
the existing FR-4 solar panel array. It should be mentioned
that FR-4 dielectric properties may not be stable in harsh
environments such as space and could degrade antenna radi-
ation characteristics. Basically, non-space qualified FR-4
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FIGURE 6. (a) Top and bottom views for the (manufactured) miniaturized Yagi-Uda
antenna with artificial dielectric loading and meandering implemented using a 0.4 mm
thick FR-4 substrate; (b) integrated Yagi-Uda antenna for placement on the PicoSat
Unicorn-2 and testing.

FIGURE 7. Reflection coefficient for the miniaturized Yagi-Uda antenna: the
simulated miniaturized antenna reported in Fig. 4 (blue solid line), the miniaturized
antenna design including an SMA connector (blue dash-dotted line) for accurate
comparison with the measured prototype, see Fig. 6(a) (black solid line).

PCB laminates may not maintain stable physical proper-
ties at extremely low or high temperatures. Further design
work using space qualified TMM4 laminates from Rogers,
which have low thermal variations and similar electric prop-
erties to FR-4, together with a metal coating additive (e.g.,
Alodine 1200 to help with corrosion resistance), could be

FIGURE 8. Miniaturized Yagi-Uda antenna radiation patterns in the φ = 90◦ plane at
different frequencies. (a) Measured results plotted at 2.45 GHz; (b) measured results
plotted at 2.5 GHz where the maximum measured gain is achieved due to the noted
frequency shift; and (c) measured results plotted at 2.55 GHz.

used in future to maintain performance making the design
more suitable and robust for space and other harsh operating
environments.
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TABLE 3. Simulated & measured performance comparison for the miniaturized
Yagi-Uda planar antenna.

This PCB antenna is depicted in Fig. 6 (a) and the mea-
sured reflection coefficient results are reported in Fig. 7.
There is a shift in frequency towards 2.45 GHz due to
the addition of an SMA connector. Simulations have been
repeated including the connector and, as it is shown in Fig. 7,
the minimum of the reflection coefficient for the antenna is
shifted to 2.45 GHz. Regardless, simulations and measure-
ments are in good agreement (when including the connector
in the simulation model) with |S11| ≤ 20 dB with a measured
−10 dB impedance bandwidth of 6.25%.
Far-field measurements have been carried out in an ane-

choic chamber. It should be noted that the far-field positioner
had an impact on the radiation pattern measurements shifting
the resonance frequency for the compact antenna (similar
to [38]). This is specific to the measurement setup avail-
able, and could be avoided in other measurement facilities.
Polar plots, comparing the simulated and measured results
for the miniaturized antenna from 2.45 GHz to 2.55 GHz,
are reported in Fig. 8 where the simulation model is shown
for reference. The expected performance is observed for the
realized gain (Figs. 5 and 8) with a loss of 0.3 dB (4.76 dBi)
at the maximum peak realized gain frequency of 2.5 GHz
(when compared to the simulated case). Also, the radiation
pattern displays a broad-beam shape. However, the main lobe
is maximum along the axis of the antenna (θ = 90◦) (see
axis definition in Fig. 8) while gain values of −3 dBi are
achieved at broadside, indicating end-fire performance. The
front-to-back ratio is about 3.5 dB. Results for the cross-
polarization levels are also shown and are below −25 dB
at the end-fire and back-fire directions. A summary of the
measured values with a comparison with simulation results
has been reported in Table 3.

A new prototype has been also manufactured to be fully
integrated on the deployable wing of the PicoSat Unicorn-2.
This prototype is depicted in Fig. 6 (b). As it can be
observed, a defected ground plane has been added at the
back of the design to emulate the effects of a solar cell.
The simulated and measured results for the co- and cross-
polar radiation patterns of the antenna integrated on the
chassis at 2.4 GHz for the φ = 90◦ plane are depicted in
Figs. 9 and 10. Both polarizations agree well, showing max-
imum gain values of 4.9 dBi for the co-polar component and
a improved front-to-back ratio of 10 dB. Cross-polar levels
are higher with respect to the non-integrated version (Fig. 8)
due to the additional metallic bodies surrounding the compact
antenna.
A comparison has been included in Table 4, where the

advantages of our proposed antenna are highlighted when
compared to other state-of-the-art compact designs. Most of

FIGURE 9. Co-polar radiation pattern for the simulated (red line) and measured
(blue line) miniaturized Yagi-Uda antennas integrated on the satellite chassis at
2.4 GHz (φ = 90◦ plane).

FIGURE 10. Cross-polar radiation pattern for the simulated (red line) and measured
(blue line) miniaturized Yagi-Uda antennas integrated on the satellite chassis at
2.4 GHz (φ = 90◦ plane).

these works are based on WLAN and similar applications,
however existing Yagi-Uda antennas for CubeSats [26], [27]
have also been included in Table 4 to highlight the nov-
elty in our integration approach for small satellites (in that
the existing solar cell array of the Unicorn-2 PicoSat space-
craft is exploited) without requiring independent deployable
systems for just the antenna. It should also be noted that
the proposed three-director design achieves a competitive
size when compared with systems of only one or no direc-
tors [29], [30], [31], [32], without sacrificing performance,
bandwidth, or involving complex parasitic loading configura-
tions such as parasitic interdigitated strips. Moreover, these
previous works achieve the miniaturisation in one dimen-
sion only, while our proposed design is reduced in length
and width by combining 1-D artificial dielectric loading and
structure meandering.

IV. CONCLUSION
A planar miniaturized end-fire Yagi-Uda for PicoSat
or other SmallSat integration was proposed which can
support placement within deployable solar panel arrays.
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TABLE 4. Comparison of state-of-the-art planar Yagi-Uda antennas.

Miniaturization techniques based on artificial dielectric
concepts and meandering dipoles have also been employed to
reduce key antenna parameters, such as the distance required
between directors or the length required for the driven element
to operate at 2.4 GHz, from 0.15λ0 to 0.06λ0 and from 0.21λ0
to 0.17λ0 respectively, when compared to a more conventional
planar Yagi-Uda antenna. Regardless of this reduction, RF
performance of the antenna is still maintained and with an
improvement in the front-to-back ratio that allows for higher
gain. Also, the minimum length of substrate to accommodate
the antenna is reduced from 0.58λ0 to 0.35λ0.

As reported in the paper, efficient antenna performance
was achieved by complying with the restricted dimensions
of the FR-4 substrate under the solar cells. Measured real-
ized gain values are about 5 dBi which are in agreement
with the simulations for the antenna fully integrated on the
satellite chassis. Performance of the compact antenna could
be further improved by the addition of a fourth director and
artificial dielectric element for compactness. This low-cost
planar antenna can also be useful for CubeSats and other
SmallSats, and generally where compact and low-profile
antenna elements are needed to generate end-fire radiation.
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