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ABSTRACT A novel 1-D beam-steerable reflectarray antenna (RA) is proposed for the K,-band. The
RA aperture consists of 24 x 48 variable size square patch elements printed on a flexible plastic substrate.
The aperture is wrapped around two cylinders to create a 12Ax 12A illumination window at the operating
frequency of 14 GHz. Beam-steering is achieved by mechanically rolling the aperture. To mitigate antenna
pattern degradation, an aperture phase distribution optimization technique is presented. The performance
of this RA system is studied analytically using array theory. The effects of aperture size and unit-cell size
are also discussed. The performance of the proposed RA is validated using simulations and measurements.
The results illustrate that our design achieves 1-D beam-steering from —21° to 421° in the elevation
plane while maintaining towards the broadside direction a maximum realized gain of 25.1 dBi. In this
beam-scanning range, the gain variation is less than 1.5 dB, beamwidth variation is less than 1.6°, and the
side lobe level is maintained below —15 dB. In summary, the main advantage of our design is its ability
to steer its high gain beam without using complicated feed networks or complex mechanical systems.
Such antennas are especially needed in SmallSat and space applications.

INDEX TERMS Mechanical beam-steering, beam-scanning, reflectarray antenna, deployable antenna,

small satellite, space applications.

I. INTRODUCTION

HE REDUCTION in volume and mass of small satel-

lites (SmallSats) has enabled more efficient and robust
missions in space [l], [2], which has led to exponen-
tial growth in the number of SmallSats launched each
year. The communications networks proposed by OneWeb,
SpaceX, and Telesat alone are expected to deploy at least
8,000 SmallSats in lower earth orbit by the year 2024 [3].
However, for most satellite applications, it is challenging to
meet the communication system requirements due to the
small size of SmallSats. Specifically, in such platforms,
the large attenuation losses of transmitted signals must be
overcome using systems that meet the space constraints
of SmallSat buses. Therefore, high gain antennas (HGA)
have been proposed to achieve longer transmission distances
with higher efficiency thereby minimizing the volume and
mass of the needed power systems. Furthermore, a key

requirement in advanced SmallSat applications is beam-
scanning [4]. However, traditional beam-scanning HGAs
are not practical for SmallSat applications given the power
and space constraints. Therefore, current research is focus-
ing on developing compact/deployable beam-scanning HGAs
for space applications [4], [S5], [6]. The proposed solutions
are generally based on traditional HGA technologies, such
as, parabolic reflector antennas [7], [8], [9], phased array
antennas [10], [11], [12], [13], and reflectarray antennas
(RAs) [14], [15], [16], [17], [18]. Compared to the parabolic
reflector and phased array antennas, RAs provide highly
directive and versatile beams while maintaining low mass,
low fabrication cost, and low complexity [19], [20]. Also,
RAs have recently demonstrated the ability to achieve pat-
tern reconfigurability [21]. However, current reconfigurable
RA designs suffer from various limitations including lossy
and complex DC biasing networks that drive reconfigurable
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elements [22], or inefficient mechanical systems [23]. In this
paper, we present a novel 1-D beam-steering RA system that
uses a simple and efficient scrolling mechanism to steer its
beam along a single cut plane. Our approach uses a flexible
RA aperture that is wrapped around two columns, which can
rotate, causing the aperture to roll, as shown in Fig. 1. The
aperture is first synthesized to steer its main beam towards
the broadside direction, as shown in Fig. 1(b). Then, the
aperture is rolled as shown in Fig. 1(a) and Fig. 1(c), thereby
defocusing the RA feed antenna causing the main beam to
scan towards the direction of rotation.

Our novel rollable RA was first studied in [24], but only a
preliminary study to validate the phase optimization proce-
dure was presented. In this work, we present the theoretical
background of our optimization procedure, and analytically
investigate how the aperture layout and unit-cell size affect
the beam-scanning performance of our design. Then, a rol-
lable RA is synthesized to operate in the K,-band, and it is
simulated using ANSYS HFSS® full-wave simulation soft-
ware. A prototype is then fabricated and measured to validate
our design. An accurate characterization of the flexible sub-
strate is performed by conducting parametric simulations
and unit-cell measurements. Finally, the effectiveness of our
proposed optimization procedure is validated. The rollable
RA prototype achieves 42° of lateral beam-scanning while
maintaining a maximum realized gain of 25.1 dBi with a
1.5 dB variation. Our rollable RA uses a simple and low
profile mechanism, thereby eliminating the need for com-
plicated, bulky, and inefficient feed networks or mechanical
systems. This makes our design an ideal candidate for recon-
figurable HGA applications in compact spaces, such as,
SmallSats or tactical equipment.

The paper is organized as follows: Section II provides a
brief background on SmallSat RAs and reconfigurable RA
technologies. Section III details our optimization procedure
for realizing the element phase distribution across the aper-
ture. Section IV presents the synthesis of the RA system,
the fabrication details of our prototype, and our simulation
and measurement results. Finally, Section V provides our
conclusions and highlights the key findings of our work.

Il. BACKGROUND

Recently, the viability of deployable RAs on SmallSat
systems has been demonstrated with NASA missions for
deep space [25], and lower earth orbit [26] applications.
However, these missions relied on either a reaction wheel
system or an Attitude Determination and Control System
(ADCS) to meet the pointing accuracy requirements of
the antennas. This method of beam-scanning adds signifi-
cant cost, mass, and complexity to the overall mission, and
reduces the lifespan of SmallSats. Furthermore, some mis-
sions involve instrumentation that precludes the adjustment
of spacecrafts’ pitch, roll, and yaw [27]. Alternatively, RAs
with beam-scanning capability provide unique advantages to
distributed swarm antenna arrays [28], satellite clusters [29],
and SmallSat constellations [30], [31].

VOLUME 3, 2022
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FIGURE 1. Proposed rollable reflectarray on a 6U CubeSat with the RA aperture
rolled (a) 9 columns to the left, (b) centered, and (c) 9 columns to the right.

Beam-scanning RAs are typically realized using either
phase-tuning, or feed-tuning. In each of these approaches,
the phase distribution, ¢rp (X;, y;), across the RA aperture is
tuned to steer the main beam towards the desired direction,
as shown in (1):

orP(Xi, ¥i) = ¢pp(xi, yi) — koR; (1)

where ¢pp and —koR; are the progressive phase and
spatial phase delay of the i unit-cell of the aperture,
respectively [21]. The phase-tuning technique achieves pat-
tern reconfigurability by tuning the ¢pp of each unit-
cell. Proposed approaches include the use of electrome-
chanical components [32], [33], [34], electronic compo-
nents [35], [36], [37], [38], optical components [39],
[40], [41], and smart materials [42], [43], [44]. Phase-
tuning approaches for RAs can achieve high-speed beam-
scanning but require complicated DC biasing networks,
and materials, which in turn increase the cost of RAs
and make them less competitive compared to phased array
technologies [27], [45], [46], [47].

Alternatively, the feed-tuning technique tunes the spa-
tial phase delay of the unit-cells. This is accomplished
by changing the distance, R;, between the unit-cells and
the feed antenna phase center. Proposed approaches include
single feed systems that mechanically tune R; [48], [49],
[50], or multiple feed systems that create discrete val-
ues of R; [51], [52], [53]. Multiple feed systems are not
well suited for SmallSat applications since they add sig-
nificant mass to the spacecraft and require individual feed
networks and complicated deployment mechanisms. Also,
current single feed systems are not ideal for SmallSats since
they require inefficient mechanical systems to physically
move either the feed antenna or the aperture. Furthermore,
the large sweeping movements of feed tuning approaches
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cover a large volume of space, which could obstruct other
instrumentation. Recently, alternative approaches have been
proposed [54], [55], [56], which tune R; by folding the RA
aperture instead. However, the drawback of this approach
is its limited beam-scanning angle. In [57], Legay et al.,
proposed a reconfigurable reflectarray that scrolls through
several radiating apertures printed on a single flexible sub-
strate. However, their aperture design is bulky and does not
provide continuous beam-scanning capability.

The benefits of our rollable RA design are that we can
achieve high gain and continuous beam-scanning with a low-
profile, simple, and efficient aperture rolling mechanism. The
trade-offs to such a simple design are that the direction of
beam-scanning is limited to the axis of aperture rotation
and the scanning speed is limited to the speed of rotation.
However, 2D beam-scanning could be achieved by tilting
the RA system along an orthogonal axis with a simple tilt-
ing mechanism, like a motor and hinge. It should be noted
that tilting the aperture on an orthogonal axis changes the
incidence angle on the array which could lead to degrada-
tion of the radiation pattern [20], but these effects could
be mitigated by characterizing the elements under different
angles of incidence and using a lookup table during aper-
ture synthesis. Also, there are several SmallSat applications
that do not require high-speed beam-scanning. Such appli-
cations can benefit from the beam-steering capabilities of
our design. For example, our proposed design can use its
beam-steering capabilities to: (1) satisfy the pointing accu-
racy requirements of satellite relay stations, (2) adjust the
scanning area of remote sensing satellites, or (3) tune the
focal point of a distributed swarm antenna array.

lll. DESIGN METHODOLOGY AND THEORETICAL STUDY
In this section, our proposed synthesis process for our rol-
lable beam-scanning aperture is described. Also, analytical
studies are presented here to characterize performance of
our proposed RA and demonstrate the effectiveness of our
optimized synthesis process.

A. BEAM-SCANNING BY DEFOCUSING THE FEED
ANTENNA

It has been shown that reflector antennas can achieve beam-
scanning by defocusing the feed antenna [58], [59], [60].
The effects of defocusing an RA are presented in [50],
where it was found that the main beam can be scanned
by laterally shifting the position of the feed. Alternatively,
the RA can be defocused by axially shifting the aperture
while maintaining the feed position fixed. Fig. 2(a) shows
an RA, which is synthesized to point its beam towards the
broadside direction. This RA is centered on the coordinate
system with origin Op, which is shown in red. Fig. 2(b)
shows the geometric configuration of the RA after the aper-
ture is shifted along the —x-axis a distance d;, so that it is
centered on the relative coordinate system with origin O;,
which is shown in black. This lateral shift creates a similar
defocusing effect as presented in [50], only in this case there
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FIGURE 2. Effects of defocusing the feed antenna of an RA by laterally shifting the
aperture: (a) initially the RA is synthesized to steer the main beam towards the
broadside direction and the feed antenna is focused, (b) the RA aperture is shifted
laterally, defocusing the feed antenna and scanning the beam towards 5,-, and (c) the
proposed rollable RA design introduces optimized elements to reinforce the scanned
beam.

is no secondary mechanism that re-aligns the feed antenna
pattern with the center of the aperture. The defocusing angle,
0r,, caused by the shift creates a proportional beam-scanning
angle, 6p,, that directs the main beam along l;,-, as shown
in Fig. 2(b). However, laterally shifting the aperture causes
the same problems as laterally shifting the feed antenna:
(1) reduction in effective aperture size by a factor of cos 6y,
(2) reduction of aperture efficiency from increased spillover
and non-uniform aperture illumination, and (3) introduction
of phase errors due to the change in spatial phase delay of
the elements [50].
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Step 1 i=0

Synthesize an NxM element RA for (¢, =0°.6p,-07)

Step 2 l i=1
Shift the NxM elements a distance d in the desired
direction
Step 3 [

Eliminate elements shifted out of the illumination
window in Step 2

Step 4 l
Calculate radiation pattern of Nx(M-1) elements left in
the window
‘Brep S5

Find the direction of the scanned beam (¢,,,, 6),)
calculated in Step 4

Step 6

Synthesize elements for (¢;,, 6,,) to replace empty
column
Step 7

Concatenate elements from Step 4 and Step 6 to create
a new NxM element RA

I i =i+l

FIGURE 3. Flowchart of our proposed optimization process for our rollable RA.

B. APERTURE PHASE DISTRIBUTION OPTIMIZATION

To minimize all these effects, we propose a rollable RA
design, as shown in Fig. 2(c). As the aperture rolls, the
elements rolled out of the illumination window are out of
the sight of the feed antenna. Simultaneously, optimized ele-
ments, shown in green, are rolled in the illumination window.
The optimized elements serve three purposes: (1) maintain
the effective aperture size constant, (2) maintain high aper-
ture efficiency by minimizing spill over and maintaining
uniform amplitude tapering, and (3) minimizing total phase
errors of the illumination window. To minimize the total
phase errors, the reflection phase of the elements rolled in the
illumination window are optimized to radiate in the direction
of the scanned beam, b;p = l;i, as shown in Fig. 2(c).

The flowchart for our proposed phase distribution
optimization process is shown in Fig. 3. In Step 1, the phase
distribution of a N x M element RA is synthesized to radiate a
main beam towards the broadside direction (¢ = 0°, 8 = 0°)
using the ray-tracing method [20]. Then, in Step 2, the RA
elements are rolled laterally a distance d, which is equal to
the width of one element column, to the first rolling position,
i = 1. Next, in Step 3, the column of elements shifted out of
the illumination window is eliminated to simulate it being
rolled behind the ground plane and out of sight of the feed
antenna. In Step 4, the radiation pattern of the remaining
N x (M — 1) element array is calculated using array the-
ory [20]. In Step 5, the direction of the main beam, (¢y,,
0p,;), from the radiation pattern calculated in Step 4 is found.
In Step 6, a column vector of N elements, positioned in the
empty column created by the roll in Step 2, is synthesized
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to radiate towards direction (¢, 0p;). In Step 7, the column
of elements obtained from Step 6 are concatenated with
the N x (M — 1) elements generated in Step 3 to form a
new N x M phase distribution in the illumination window.
Then, Steps 2 through 7 are repeated on the new N x M
phase array to generate an optimized column of elements for
the second rolling position, i = 2. This process is repeated
for the number of column rotations required to achieve the
desired beam-scanning angle. The result of the procedure is
a N x (M + 2i) phase distribution matrix.

To illustrate how our optimization process works, we
examine an example aperture with dimensions 10A x 10X
with 0.5) inter-element spacing. Fig. 4 shows the 20 x 20
element matrix for this aperture at three different rolling
positions i = 0, 5, and 10. In Fig. 4(a), the RA aperture
is shown in the reference position, i = 0, where the ele-
ments shown in black are synthesized in Step 1 to scan
the main beam towards the broadside. After 5 iterations of
the optimization procedure in the —x-direction, the RA is
at the fifth rolling position, i = 5, resulting in 5 columns
of optimized elements in the illumination window, shown
in green in Fig. 4(b). After 10 iterations, the RA is at the
tenth rolling position, i = 10, and there are 10 optimized
columns on the illumination window, as shown in Fig. 4(c).
If the optimization process is stopped after 10 column rota-
tions, i = 10, in both directions, the resulting aperture phase
distribution would consist of a 20 x 40 phase matrix, where
the first 10 columns of the matrix are optimized for rolling
in the +x-direction, the next 20 columns contain the phase
distribution for the reference position, i = 0, and the last 10
columns are optimized for rolling in the —x-direction.

C. CHARACTERIZING THE ROLLABLE RA
PERFORMANCE ANALYTICALLY

To study the performance of our proposed RA, we consider
a square aperture with length A discretized by a square lat-
tice with unit-cell length d, as shown in Fig. 4(a). In this
setup, the feed is assumed to be a point source positioned
at the broadside direction at a distance f/A = 0.8, where f
is the focal distance. The feed antenna pattern is defined by
cos24(0) [20], with a g-factor of 4.25. Four different aperture
sizes are considered in our analysis: A = 10A, 204, 304, and
40X. For each of the these apertures, four unit-cell sizes, d,
are analyzed: d = 0.3A, 0.4X, 0.5A, and 0.6A. Specifically,
for each combination of the aperture and unit-cell size, a rol-
lable aperture is synthesized using the procedure described
in Section III-B. In total, 16 rollable RA apertures were
synthesized. Then, the performance of each aperture is char-
acterized by calculating the radiation pattern for each rolling
position, i, analytically using array theory [20]. The results
of our analytical study are shown in Fig. 5. Specifically, the
directivity and beam direction are plotted versus the rolling
position, 7, in the —x-direction until the grating lobes of
the rollable RA overtake the main beam (i.e., SLL = 0).
The results for rolling in the +x-direction are symmetric;
therefore, they are omitted for brevity. From the results, it
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(c) d =0.51, and (d) d = 0.61.

can be seen that for all the cases beam direction is a rel-
atively linear function with respect to the rolling position,
i. In other words, for any given case of aperture and unit-
cell size, the beam direction at any i can be approximated
by a line with slope equal to the scanning precision (SP),
which is the degrees of beam-scanning achieved per wave-
length distance of translation (°/x). The maximum deviation
of beam direction from the linear approximation was < 2°
for all cases.

1184

1) EFFECT OF APERTURE SIZE ON BEAM-SCANNING
PERFORMANCE

The theoretical maximum directivity of a reflecting aper-
ture with area, Ay, is given by Dy =4nAap/A2, where
A is the wavelength at the frequency of operation. When
the side length of the aperture, A, increases, the maxi-
mum directivity (Do) of the aperture increases. However,
increasing A reduces the scanning range due to a faster gain
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degradation. For example, in Fig. 4(c) it can be seen that
for a maximum allowable directivity variance of 1.5 dB,
an aperture with A = 10X can achieve a scan angle of
33.4°, while a A = 40A aperture can only achieve 1.2°.
The maximum scanning angle is inversely proportional to A
because larger apertures have more reflecting elements that
introduce larger cumulative phase errors when the columns
of the aperture are rolled. In turn, these larger cumulative
phase errors generate side lobes and degrade the main beam.
Therefore, increasing the aperture size to achieve higher
directivity comes at the expense of smaller beam-scanning
angle.

Furthermore, our results show that SP is inversely propor-
tional to the aperture size, A. Specifically, as A increases,
the focal distance, f, should increase to maintain high aper-
ture efficiency [56]. Therefore, for larger apertures, a smaller
defocusing angle 6y = arctan(d/f) is created after each col-
umn roll. For example, Fig. 4(c) shows that an aperture with
size A = 10A or A = 40X can steer the beam with a SP of
6.21°/A or 1.71°/x, respectively. Therefore, a larger aper-
ture requires a higher number of rolled columns to reach a
specific beam-scanning angle. It should be mentioned that
SP is a function of the feed position and can be increased
by using a less directive feed antenna which would reduce
the f/A ratio.

2) EFFECT OF UNIT-CELL SIZE ON BEAM-SCANNING
PERFORMANCE

In our design, the unit-cell size, d, determines the rolling
step of the aperture. Therefore, the effects of d on the
performance of the rollable RA were also investigated.
Our results illustrate that d has negligible effect on the
performance of our rollable RA. Specifically, Fig. 4 shows
that for a given aperture size, A, the beam-scanning angle
and SP remain relatively constant for variable d at the —1.5,
—3, and —4 dB directivity levels. This demonstrates that our
optimization process can be applied to any design regardless
of unit-cell size. Notably, for a fixed size aperture, the inter-
element spacing of an RA is determined by the unit-cell
size, and the amount of mutual coupling between the ele-
ments of an RA depends on its inter-element spacing [20],
[61], [62], [63], [64]. Our study was conducted analytically
using array theory; therefore, the effects of mutual coupling
were not included, but should be considered in the design
process.

This analysis shows that our novel phase synthesis
technique achieves good beam-scanning performance for
different combinations of A and d. However, it should
be mentioned that the rollable RA aperture is a plat-
form that can support any phase synthesis technique used
for translating apertures. For example, a phase synthesis
approach for a translating aperture is presented in [65].
Similar designs using a bi-focal approach were presented
in [66] and [67]. These techniques, among others, could be
implemented on the rollable RA aperture to achieve the
desired beam-scanning performance.
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FIGURE 6. WR-75 waveguide measurement setup showing: (a) unit-cell element in
the measurement flange, (b) waveguide connected to the VNA, and (c) measurement
flange and element batch #1.

IV. EXAMPLE ROLLABLE RA DESIGN

Our optimization procedure is used here to design a rol-
lable beam-scanning RA. Specifically, in this section, we
present the unit-cell characterization for our RA as well as
our simulation and measurement results.

A. UNIT-CELL CHARACTERIZATION

Our proposed rollable aperture must use a flexible substrate
that can wrap around two rotating columns. Apart from
being flexible, the substrate must possess appropriate dielec-
tric material properties to achieve adequate phase range and
acceptable losses. Therefore, by carefully reviewing different
materials, a sheet of 0.762mm thick low-density polyethy-
lene (LDPE) was chosen for our application. Even though the
properties of this material were reported by the manufacturer
(i.e., ¢, = 2.3 and rané = 0.001 at microwave frequencies), it
was not clear what the material properties are at our design’s
operational frequency of 14 GHz. To accurately design our
proposed RA and minimize any phase errors that would
occur from not accurately knowing the material properties
of our substrate, we chose to perform a material characteriza-
tion. A waveguide measurement setup was established using
a VNA and a WR-75 waveguide to replicate an infinite array
scenario, as shown in Fig. 6. A custom flange was fabricated
out of brass to fit the WR-75 waveguide. Reflecting unit-
cells with different sizes of square patches were fabricated
and measured. Specifically, three batches of unit-cells with
different sizes were made to characterize how the dielectric
properties of our substrate vary across the material sam-
ple that we purchased. Each batch consisted of 13 different
sizes of unit-cells, ranging from 5 to 8mm at 0.25mm incre-
ments. The unit-cells were made by applying copper tape
with conductive adhesive to the top and bottom surfaces of
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FIGURE 7. Comparison between simulated and measured data of our unit-cells at
the operating frequency (14 GHz): (a) Waveguide simulation setup (WG Sim),

(b) Master/slave boundary simulation setup (MS Sim), (c) reflection phase (S-curve),
and (d) reflection magnitude.

the LDPE material. The patches were created on the top sur-
face with a CNC cutting machine and the excess tape was
removed. Then, the reflection phase and magnitude of each
unit-cell were measured and recorded. The average curves
of the reflection phase and magnitude of the three batches
were calculated and fitted using a polynomial function.
Then, the measured unit-cells were simulated on ANSYS
HFSS by modeling a waveguide with PEC boundaries
fed by a wave port, as shown in Fig. 7(a). The dielec-
tric properties of the material were found numerically by
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FIGURE 8. CAD model of the rollable RA prototype used in our full-wave
simulations.

running parametric simulations until the results of the sim-
ulation matched our measurements. Through this process
we arrived at these properties for our substrate: €, = 2.1
and fand = 0.01. Finally, the material properties were simu-
lated with a single unit-cell using master/slave boundaries, as
shown in Fig. 7(b). The simulated results for the waveguide
(WG Sim) and master/slave boundary (MS Sim) models are
compared to the measured data and the polynomial fitting
function of the average data of the three measured batches
(AVG) in Figs. 7(c) and 7(d). The excellent comparison
of the simulated and measured data validates the material
properties that we calculated following our process. Also,
Figs. 7(c) and 7(d) show that our unit-cell achieves a phase
range of 300.4° and a maximum reflection loss of 0.9 dB,
which are both sufficient for our rollable RA design.

B. ROLLABLE RA SYNTHESIS, PROTOTYPING, AND
MEASUREMENT
After characterizing the material properties of our flexible
substrate, we proceeded to synthesize our rollable RA at
14 GHz. Specifically, our design has an illumination window
of 121 x 121 and uses 0.5A square unit-cells (i.e., A = 122,
d = 0.5)). The aperture phase distribution of our RA was
synthesized using our optimization process and was designed
to accommodate a maximum of 12-column rolls in either
direction. Therefore, the total RA aperture size is 24 x 48
elements. A linearly polarized MVG SH2000 horn antenna
was used as the feed. Its radiation pattern was measured and
its maximum gain was 12.7 dBi at 14 GHz (i.e., g-factor
= 4.25). The optimal feed position occurred at f/A = 0.75.
This was calculated considering a feed offset of 20°, to
reduce feed blockage, and it corresponds to a maximum
aperture efficiency of 70%.

Our RA design was then modeled and simulated using
ANSYS HFSS, as shown in Fig. 8. The RA is excited by a
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TABLE 1. Gain budget.

Parameter Value (dBi)
Maximum Directivity (D = 47 A/)\?) 32.6
Feed Loss
Spillover -0.80
Ilumination -0.81
Impedance Mismatch -0.11
Feed Blockage -0.45
Material Loss
Dielectric -0.89
Conductor -0.04
Fabrication Loss
Patch Quantization (5004m) -1.40
Machining Tolerance (250m) -0.12
RMS Surface Error (1mm) -1.04
Quadratic Bow Surface Error (2mm) -1.50
Measurement Setup Loss
Feed Offset Angle Misalignment (£5°) -0.18
Polarization Misalignment (£5°) -0.11
Feed Height Misalignment (+2mm) -0.22
Total Loss -7.67
Predicted Gain 24.9
Predicted Aperture Efficiency 17.1%

linked far-field source whose radiation pattern is the imported
measurements of the SH2000 horn antenna. A total of
25 simulations were performed, one for each rolling position.
The simulation setup considered ideal conditions to reduce
the computational load. These ideal conditions reduced the
required computing time and memory by 96% and 86%,
respectively, saving 915 hours of total computing time. To
estimate the gain penalty imposed by deviations from the
ideal simulation setup, an extensive tolerance analysis was
performed. The effects of feed blockage, conductor losses,
machining tolerances, surface roughness, aperture bowing,
and alignment errors were accounted for by conducting para-
metric simulations. Table 1 lists the sources of loss and shows
that for the worst-case scenario of fabrication and misalign-
ment errors, the estimated gain is 24.9 dBi and the estimated
aperture efficiency is 17.1%.

A prototype of our RA design was fabricated to validate its
performance. Specifically, the aperture was fabricated using
a CNC cutting technique. First, a layer of copper tape (which
has conductive adhesive) was applied to the top and bottom
surfaces of a 700 x 300 x 0.762 mm? sheet of LDPE with
a press. Then, the 24 x 48 elements array of variable size
patches was etched into the top layer with a precision CNC
cutting machine, the Silhouette Cameo 4, which was found
to have a machining tolerance of 250um. Then, the ground
plane was etched into the bottom layer using the same CNC
cutting technique. Figs. 9(a) and 9(b) show our manufac-
tured RA aperture. To create our rollable design, we sewed
the ends of the aperture and re-enforced this connection with
epoxy. Due to space limitations of our antenna chamber, a
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FIGURE 9. Rollable RA prototype: the flexible aperture fabricated with reflecting
elements printed on the (a) top side and a ground plane on the (b) bottom side, then
placed in the (c) measurement setup.

structure was designed to hold the aperture upright and roll
vertically, as shown in Fig. 9(c). The flexible aperture was
then wrapped around two pipes and tension was applied to
create a flatter surface. However, approximately 1-2mm of
quadratic bowing on the aperture was exhibited due to the
low elasticity of the material. This bowing accounted for
the largest source of loss (1.5 dB) which was determined
through full wave simulation and measurement of an equiv-
alent square aperture held flat by adhering it to a rigid plastic
sheet. The performance of the proposed rollable RA could
be significantly improved by using materials or manufac-
turing techniques that minimize aperture bowing. Notably,
our manufacturing method was chosen due to our available
equipment, low-cost material, simplicity, and adequate fabri-
cation tolerances to demonstrate the rollable beam-scanning
concept. However, this prototype is not optimized for space
applications. A space bound aperture should consider the
effects of several environmental and material factors, such
as, temperature gradients, solar radiation, material stresses,
and expected life cycle.
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TABLE 2. Results of simulations and prototype measurements.

Realized
Gain (dBi)

SP
e/

Nap
(%)

BSW (°)

-1.5 dB Level
SLL (dB)

-3 dB Level
BSW(°) SLL (dB)

-4 dB Level
BSW(°) SLL (dB)

Predicted 249 17.1 2.8

20

-16.2 23 -9.4 26 -1.4

Measurements 25.1 17.8

2.9

21

-16.3 23 -9.4 25 -7.0

& nap is the aperture efficiency.

b SP is the scanning precision.
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FIGURE 10. Elevation plane cuts (¢ = 0°) of the co-pol realized gain pattern for
rolling positions, i, in the (a) —x-direction, and (b) +x-direction. In (c), the HPBW
(black) and Scanning Losses (red) are presented as a function of i.

The measurements of our RA were conducted in an MVG
StarLab near-field measurement system. The different rolling
positions were realized by rotating the aperture manually.
However, faster and more precise rotation can be achieved by
using motors. Figs. 10(a) and 10(b) show the simulated and
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¢ BSW is the beam-scanning width.
d SLL is the side lobe level.

measured xz-plane co-pol normalized gain patterns for the
RA rolling towards the —x and +x directions, respectively.
These results show good agreement between the simulations
and the measurements. Specifically, the maximum predicted
and measured realized gain are 24.9 and 25.1 dBi, respec-
tively. It is also seen that the measured gain is higher than the
predicted gain which indicates that the errors in the measure-
ment setup and fabrication process were lower than the most
conservative estimate. This resulted in maximum predicted
and measured aperture efficiency (14) of 17.1% and 17.8%,
respectively. The maximum deviation between the predicted
and measured gain for all beam directions is 0.2 dB, and the
average deviation is only 0.09 dB. The maximum deviation
between the simulated and measured beam direction is only
1.8°. This deviation is due to phase errors from the machin-
ing tolerance and alignment errors due to the manual rolling
of the aperture. Notably, our prototyped design achieved 42°
of lateral beam-scanning while maintaining a maximum gain
deviation of only 1.5 dB over the entire scanning range. A
summary of the measured and simulated performance of our
RA design is shown in Table 2.

V. CONCLUSION

In this work, a novel rollable RA with beam-scanning
capabilities was presented. Specifically, beam-scanning is
achieved by defocusing the reflecting elements of the aper-
ture as it rolls. Also, a phase distribution optimization
process was proposed to reduce the phase errors and achieve
optimal performance. Simulations and measurements were
used to characterize our RA design and they exhibited good
agreement. Our prototyped design achieved realized gain of
25.1 dBi and 42° of continuous lateral beam-scanning with a
gain deviation of only 1.5 dB, while the SLL was maintained
below —15 dB. Therefore, our proposed RA provides high
directivity and beam-scanning capabilities using a simple,
low mass, low profile, and efficient design, which makes it
ideal for SmallSat applications.
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