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ABSTRACT This paper presents the experimental validation of a microwave imaging system for real-
time monitoring of brain stroke in the post-acute stage. The system exploits a low-complexity sensing
apparatus and a multi-frequency microwave imaging algorithm with a novel artifact removal feature.
Phantoms of a homogeneous anthropomorphic head and an ellipsoidal non-static stroke mimicking target,
varying gradually from 0 cm3 to 60 cm3, are employed for the experiments. The phantom and the evolving
target are filled with appropriate alcohol-based mixtures to mimic the different dielectric properties of
the relevant tissue. The microwave imaging scanner operates using a 22-antennas architecture formed
by printed flexible antennas with a custom-made matching medium. The system provides 3-D images
of the entire brain region, exploiting differential multi-view scattering measures and the distorted Born
approximation to build a pre-computed imaging kernel. The results show the system’s capability to follow
up the continuous progression of hemorrhage and ischemia zones with centimetric spatial resolution and
to provide information on whether the stroke is growing or shrinking.

INDEX TERMS Biomedical electromagnetic imaging, brain stroke monitoring, distorted born approxima-
tion, flexible antennas, hemorrhagic stroke, ischemic stroke, inverse scattering, microwave antenna array,
microwave imaging, microwave propagation.

I. INTRODUCTION

BRAIN stroke is a leading cause of death and disability
worldwide and its incidence is expected to increase in

the coming years due to rising average age and widespread
risk factors, such as an unhealthy lifestyle [1]. Clinically, a
stroke occurs when an artery to the brain clots or bursts; the
first case is referred to as an ischemic (IS) stroke, and it
accounts for nearly 85% of all strokes, while the remaining
cases have hemorrhagic (HEM) nature, and they are often
deadlier [2].
For either type, a continuous post-acute brain monitor-

ing would provide clinicians a vital instrument to assess the
effectiveness of administered therapies, thus, leading prompt
and tailored actions. However, the current gold-standards
image-based techniques, i.e., magnetic resonance (MRI) and

computed tomography (CT) lack real-time continuous moni-
toring capability, that limits the information about the stroke
status during the post-acute phase, which is thus an unmet
essential medical need.
In this context, microwave imaging (MWI) is a technology

owing to short acquisition times, easy and safe deployment,
cost-effectiveness, and portability, which enables bedside
use and continuous follow-up [3], [4], relying on the per-
turbation of an excited electromagnetic (EM) field caused
by the temporal variation of different dielectric proper-
ties of the stroke-affected tissue. Thus, MWI has potential
significance for clinical practice since it can provide fast
and continuous image outcomes with relevant information,
albeit limited in resolution in comparison to MRI
and CT.
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Several MWI solutions have been developed, aiming to
address the diagnosis and follow-up stroke, i.e., detection,
identification, localization, and monitoring of the stroke-
affected zone. [5] presents a multi-step learning-by-examples
strategy to monitor stroke location and discriminate the
typology in real-time, while [6] processes scattering data
from a low-complexity system with a machine-learning
algorithm, that allows stroke detection and classification
in pre-clinical trials; though, both these examples do not
provide the user with an image. Other systems exploit tomo-
graphic techniques to reconstruct an image of the brain and
localize the unhealthy area [7]–[10]. Reference [7] employs
a ring array of 8 antennas submerged in a liquid matching
medium of glycerin to validate an iterative imaging algorithm
able to quantitatively reconstruct the dielectric properties
within the imaging domain, with the limit of higher exe-
cution time, thus, not real-time performance. References
[8], [9] introduce a system composed of an antenna array
ring with 16 cavity-backed elements working in a multi-
view scheme. Reference [8] uses an adaptive Lebesgue-space
based inversion algorithm, while [9] upgrades the imag-
ing by developing a hybrid algorithm combining a fast
qualitative process output with an accurate non-linear inver-
sion. Both [8] and [9] provided 2-D experimental validation
using cylindrical phantoms and 3-D numerical one employ-
ing anthropomorphic cases. [10], now EMTensor, realizes a
high-complexity 3-D brain scanner with 177 probes fixed
in 8 rings around a spherical cap that retrieves tomo-
graphic images to monitor the pathology, entailing long
reconstruction times even using parallel computing [11].
Moreover, different imaging strategies provide fast qual-
itative reconstructions, focusing on stroke detection and
localization [12]–[14]. Reference [12] presents an algorithm
based on unsupervised machine learning exploiting the head
symmetry and using a 14-element array tested on a multilayer
phantom in hemorrhage-simulating scenarios. Reference [13]
tests a confocal multistatic beamforming in a 2-D configu-
ration, while in [14] the beamforming and polar sensitivity
encoding (PSE) algorithms are applied in 3-D brain imaging.
In this broad research context, it is evident that achieving
stroke monitoring through real-time 3-D imaging, with the
constraint of a low-complexity device, is still an open issue.
Furthermore, [15]–[17] present real-time MWI applied to

other medical issues. Reference [15] integrates Born and
Rytov linear approximations with quantitative microwave
holography, allowing leverage of their advantages depend-
ing on the object’s geometry and contrast. It experimentally
tests the technique in a simplified breast imaging case.
Finally, [16], [17] are examples of thermal monitoring, where
real-time imaging is accomplished with a precomputed linear
inverse scattering solution combined with scattering mea-
surements. Summing up, MWI generally represents a good
candidate for real-time imaging applications.
This contribution experimentally demonstrates for the first

time, to the best of our knowledge, the use of MWI for con-
tinuous real-time follow-up of both HEM and IS post-acute

FIGURE 1. Hardware architecture of the brain stroke scanner prototype. The signal
generated through a 2-port VNA is multiplexed via a switching matrix with 22 output
ports connected to the antennas in the array. A laptop controls the switches and the
VNA.

progressive evolution, localizing, and 3-D shape-retrieving
the transition. To this end, starting from the switching mech-
anism in [18], a new optimized, compact, low-complexity
radiating part of the MWI prototype is developed following
the same rigorous design procedures in [19]. The proto-
type system consists of 22 compact and flexible antennas
with custom matching mediums, collecting the multi-static
multi-view scattering matrix. Moreover, unlike the previous
works of the authors, where a single-frequency approach is
used, here, it is employed a multifrequency imaging algo-
rithm, providing information in a frequency band between
0.8 and 1GHz, combined with an artifacts reduction pro-
cedure dealing with the distortions generated by noise
propagation into the imaging kernel. The algorithm also
includes an innovative procedure based on the sign of
the retrieved dielectric contrast that indicates the recovery
or worsening of the stroke-affected tissues. A preliminary
analysis of the MWI scanner was recently presented in [20].
The paper is organized as follows. Section II describes the

MWI system, detailing the antenna realization. Section III
discusses the imaging algorithm and the adopted artifact
removal procedure. Section IV presents the phantoms’ real-
ization and outlines the experimental procedure and the
results. Finally, in Section V, the conclusion and the
discussion of future perspectives are presented.

II. MICROWAVE IMAGING SYSTEM
A. BRAIN STROKE MONITORING SCANNER PROTOTYPE
The overall scheme of the brain stroke scanner is depicted in
Fig. 1. A compact 2-port Vector Network Analyzer (VNA),
P9375A Keysight Streamline USB VNA [21], provides the
stimulus to the radiating unit and receives the response. The
signal is efficiently multiplexed to a 22 antenna array through
a switching matrix, allowing the acquisition of the complete
scattering matrix. The switching matrix is realized by com-
bining single-pole-four-throw (SP4T), single-pole-six-throw
(SP6T), and single-pole-double-throw (SPDT) electrome-
chanical coaxial switches interconnected with rigid coaxial
cables [22]. The connections between the VNA, the switch-
ing matrix, and the antenna ports are realized with flexible
coaxial cables. Finally, a laptop controls the switches col-
lecting and processing the data and presenting the resulted
images.
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TABLE 1. Materials composition and target dielectric parameters at 1 GHz.

To ensure an optimal trade-off between signal-to-noise
ratio and measurement time, the VNA was set with an input
power of 0 dBm and the intermediate filter (IF) to 100Hz,
allowing the collection of the complete scattering matrix for
5 frequency points in about 5 minutes. It is worth noticing
that the measuring time is mainly dictated by the mechanical
switching time in the multiplexing matrix.

B. MICROWAVE FLEXIBLE ANTENNA
The antenna array is arranged conformal to the upper part of
the head as shown in Fig. 1. It is a novel version of the one
used in the first generation device [23], in which the radiating
element has been redesigned, reducing its the overall size
and using flexible materials to improve the contact with
the skin (see Fig. 2(a)). Each element has a dimension of
48mm× 30mm, with a thickness of around 10mm, and is
back-fed via a coaxial connector. The antenna comprises a
ground (GND) plane, a triangular radiator and a feeding line,
all printed on flexible commercial polyimide film (50µm
thick). A flexible dielectric substrate, with thickness of 5mm,
is placed between the radiator and the GND, and another
one is the matching layer between the antenna and the head
skin, as shown in Fig. 2(b). Both the antenna substrate and
the matching layer are realized with custom mixtures of
urethane rubber and graphite powder (i.e., G35 and G25,
having 35% and 25% by volume of graphite, respectively)
to achieve the desired permittivity and minimize losses. The
percentage components in the materials and their dielectric
characteristics at 1GHz are summarized in Table 1.
The reflection coefficients of the antennas are plotted in

Fig. 2(c), where the antennas were placed on the phan-
tom head (detailed in Section IV). Due to the unavoidable
manufacturing errors, each antenna shows different behavior,
especially in the proximity of the resonance. To minimize
the impact of this variability on the imaging procedure and
results, the frequency band between 0.8 and 1GHz is selected
to acquire the data, since this band provides manufacturing
stability, and a good trade-off between penetration depth and
resolution capability in brain imaging applications [19].

III. REAL-TIME MONITORING ALGORITHM
The developed monitoring algorithm aims for an imaging-
based follow-up of a brain stroke condition in almost real-
time, retrieving a complex contrast 3-D mapping while using
input multi-frequency differential scattering parameters, col-
lected in a multi-view scheme. The algorithm both reveals

FIGURE 2. The antenna element. (a) Lateral view with the G35 substrate and G25
matching medium layer stacked; (b) top view. All dimensions are given in mm.
(c) Reflection coefficients amplitude; each line corresponds to the n-th antenna of the
MWI system, with n = 1, . . . , 22.

the presence of a change in the stroke and indicates if the
stroke is growing or shrinking. The algorithm scheme is
illustrated in Fig. 3, and detailed in the following.

A. MATHEMATICAL MODEL
To monitor the time evolution of the stroke, a differential
imaging scheme is adopted. In such an approach, the target
of the imaging is represented by the spatial distribution of
the variation of the electric contrast within the head between
t0 and t1:

�χ(t0, t1) = ε(t1) − ε(t0)

εb
, (1)

where ε(tn) is the complex permittivity distribution at the
time instant tn, n = 0, 1, and b indicates a reference
background scenario.
Since we face a monitoring scenario here, the dimension of

the stroke variation can be assumed to be small, considering
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FIGURE 3. Scheme of the imaging algorithm.

the controlled examination time frame, the stroke evolu-
tion pace, and the stroke space-concentrated nature. Hence,
we deal with a weak field perturbation determined by the
dielectric contrast and the spatial distribution, being reason-
able to linearize the scattering phenomena by adopting the
distorted Born approximation [24]. In this situation, the elec-
tric field produced by the transmitting antennas, interacting
with the evolving stroke, can be reliably approximated to a
reference one. As a result, the differential scattering matrix,
�S(t0, t1), obtained by subtracting the scattering parameters
measured by the system at two different time instants, t0 and

t1, is related to the differential contrast through the following
integral equation [25]:

�S(t0, t1) = − jω εb

2 ap aq

∫
D
Eref
p (r) · Eref

q (r) �χ dr, (2)

where D is the volume of the domain of imaging, j is the
imaginary unit, ω = 2π f is the angular frequency, and ap
and aq are the incoming root-power waves given at the p-th
and q-th antenna ports, respectively. The symbol “·” denotes
the dot product, and Eref

p , Eref
q are the fields radiated by

the p-th and q-th antenna inside the reference scenario, in

VOLUME 3, 2022 827



RODRIGUEZ-DUARTE et al.: EXPERIMENTAL ASSESSMENT OF REAL-TIME BRAIN STROKE MONITORING

which the head is approximated as a homogeneous medium
whose permittivity is given by the average complex one of
the brain.
When exploiting this model to describe the behavior of

the MWI scanner, characterized by N antennas operated at
nf frequency points, the integral equation (2) has to be dis-
cretized. In doing so, the first step is to obtain the reference
fields, Eref. To this end, a realistic EM full-wave simulation
of the reference scenario is performed using an in-house
3-D Finite Element Method (FEM) solver and computer-
aided design (CAD) models [26], [27]. The solver applies
the curl-curl formulation for the electric field and Galerkin
testing and discretizes the whole domain in a tetrahedral
mesh. The metal elements, e.g., within the antenna, are con-
sidered perfect electric conductor (PEC) surfaces, and the
dielectric sub-volumes, e.g., the head and dielectric parts of
the antenna, are modeled with the respective complex permit-
tivity. Moreover, the antenna feeding, which is a crucial part
to accurately calculate the scattering parameters, is modeled
as a section of a rigid coaxial cable (refer to [26] for details).
Then, the reference multi-frequency E-fields are interpolated
into a 3-mm side Cartesian mesh placed around the upper
part of the head consisting of Nc voxels. Finally, (2) is turned
into the matrix equation:

�S = L{�χ}, (3)

where L is a (N · N · nf ) × Nc matrix representing the dis-
cretized counterpart of the integral operator in (2), �S and
�χ are column vectors having (N ·N · nf ) and Nc elements,
respectively.
Due to the underlying ill-posedness of the linear inverse

problem, L is ill-conditioned and its direct inversion is not
possible. Accordingly, (3) can be solved in a regularized
form by adopting the truncated singular value decomposition
(TSVD) algorithm [28] as:

�χ =
Lt∑
n=1

1

σn
〈�S, un〉vn, (4)

where σn, un and vn are the n-th singular value, right and left
singular vectors, respectively, obtained via the singular value
decomposition (SVD) of the discretized operator L. In (4),
the truncation index Lt acts as a regularizer [28], which is set
here to −30 dB. Here it is worth mentioning that the singular
system is computed off-line, while the contrast retrieval, i.e.,
the inversion, is done real-time, taking a few seconds on a
normal laptop. However, the inversion in (4) can be also
approached using sparsity-promoting regularization schemes
as in [29], [30].

B. PRE-IMAGING
In the experiments, �S is obtained by subtracting the
(N · N · nf ) S-parameters column vectors measured at two
different time instants, t0 and t1. Before the �S generation,
the S-parameters are de-embedded to retrieve their amplitude
and phase at the antenna ports. The measured amplitude is

reduced and the phase shifted due to the paths through the
switching matrix and the cables that connect the VNA ports
to the receiving/transmitting (RX/TX) antennas, as shown in
the system diagram in Fig. 1. Thus, each channel (i.e., coax-
ial cables and switches) is first characterized off-line, and,
then, the amplitude reduction and phase shift are removed
via de-embedding [31].
In particular, we follow the procedure reported in [22],

where, for each pq-antenna pair, the measured scattering
matrix at the VNA ports, Spq, includes the scattering matrix
of the left path (from the VNA port to p-antenna port),
SpL, the scattering matrix at the antenna ports, SpqDUT, and
the scattering matrix of the right path (from the q-antenna
port to the VNA port), SqR. Considering the corresponding
transmission matrices, Tpq, TpL, T

pq
DUT, and T

q
R, respectively,

the following represents their relationship:

Tpq = TpL T
pq
DUT T

q
R. (5)

Thus the TpqDUT can be retrieved as

TpqDUT = (
TpL

)−1
Tpq

(
TqR

)−1
, (6)

and, finally, rewritten as a scattering matrix, SpqDUT, whose
amplitude and phase are now compensated. The de-
embedding stage is essential to recover the real and imag-
inary parts of the dielectric contrast, which is required to
characterize the dynamic behavior of the stroke as described
in the following section.

C. IMAGE FORMATION
Since we are dealing with a reciprocal network, the differen-
tial scattering matrix is expected to be symmetric. However,
due to inaccuracies and presence of measurement noise, this
ideal condition is not verified in practice. To overcome this
issue, the measured differential scattering matrix at each
frequency is split into its upper and lower triangular coun-
terparts, which are then rearranged into two [N ·(N−1)/2·nf ]
column vectors, say �Su and �Sl. Then, �Su and �Sl are
separately fed into (4) and processed to obtain two contrast
estimates, say �χu and �χl. Finally, low-pass filtering is
applied to both recovered images to remove the outliers from
the mapping, which could hide information of interest.
After the low-pass filtering, the two partial maps are

fused into a single image where artifacts are expected to
be removed or minimized. In fact, in the ideal case of a
symmetric differential S-matrix, the information contained in
either the upper or lower parts is the same and the retrieved
images must be identical within the linear inversion frame-
work herein adopted. This does not hold true in real-life
experimentation, where �χu and �χl will be actually differ-
ent. However, the random sources of errors have a different
effect on the two maps, so fusing them allow removing the
artifacts.
This procedure, named artifact removal algorithm in

Fig. 3, is made in two steps. First, an average image of
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the complex differential contrast is formed as:

�χ = 1

2

∑
β=u,l

�χβ, (7)

Then, this image is weighted by a normalized mask resulting
from the intersection of the normalized upper and lower
images:

�χ = �χ
∏

β=u,l
�̃χβ (8)

where

�̃χβ = |�χβ |
max(|�χ |) . (9)

The map resulting from (8) allows appraising the shape
and location of the contrast variation. However, the direc-
tion of the change which is occurring cannot be directly
determined from the normalized mapping. In other words,
one cannot distinguish the case of a growing stroke from
the case of a regressing stroke. To deal with this issue, we
recall the dielectric contrast definition in (1), noticing that the
sign of Re(�χ) depends on two factors during brain stroke
monitoring: first, the stroke status at t0 and t1, and, second,
the type of stroke. For the former, the sign is the oppo-
site between growing cases and shrinking situations. While,
for the latter, the contrast between the stroke-affected area
and its healthy surrounding defines the sign. Hence, a HEM
case presents a positive sign since the hemorrhagic zone
has a higher permittivity than the healthy tissues nearby,
either gray or white matter. Conversely, IS shows a negative
sign. Therefore, if one already knows the stroke type at the
moment of starting the monitoring, which is highly prob-
able in a follow-up situation when a preliminary diagnosis
is usually already performed, the unknowns determining the
evolution direction reduces to one.
Then, adopting a positive convention to indicate the stroke

spreading and a negative, when reducing, we can determine
this pathological parameter as

φ = st
Re

(
�χ

)
∣∣∣max

(
Re

(
�χ

))∣∣∣
, (10)

where st takes the value of 1 in the hemorrhagic case, and
−1 in the ischemic case.

IV. EXPERIMENTAL VALIDATION
Aiming to verify the MWI system performance and assess
its capabilities of tracking the pathology stage, we consider
different stroke stages for both HEM and IS conditions. This
section describes the experimental setup and the procedures
followed during the experiment and then analyses the results
for different monitoring scenarios.

FIGURE 4. Experimental setup and evolving stroke phantom. (a) Top view of the
system; (b, c, d) 20 cm3, 40 cm3 and 60 cm3 stroke, respectively.

A. HEAD AND NON-STATIC STROKE PHANTOMS
To validate the imaging system in presence of a brain stroke,
it is used a controlled scenario realized through the head
and stroke phantoms as depicted in Fig. 4. The set-up is
essentially composed of a static part, emulating the steady
surrounding tissues, and a dynamic one, i.e., the affected
area varying during the measurement.
An anthropomorphic phantom is used for the head, taking

as reference the one in [18]. It consists of a single-cavity
3 mm-thick container obtained through 3-D printing in clear
resin (polyester casting resin), with antenna supports added
externally to facilitate accurate positioning of the array. The
phantom was filled with an alcohol-water mixture, with
a small percentage of NaCl to increase the conductivity,
reaching the average dielectric properties of brain tissues
(considering a compound of 75% of white matter and 25%
of grey matter) [32]. The liquid was realized in conformity
with the standard recipes for SAR measurements reported
in [33], refining alcohol-based recipes to obtain a customized
formula with commercial 90% ethyl alcohol.
To emulate a stroke, it is employed a capsule-shaped

balloon, which can mainly expand in the longitudinal direc-
tion, allowing a more accurate assessment of the differences
between different scenarios. Then, it is realized a sim-
ple support to fix the capsule in the decided position
and avoid undesired movements during the experiments.
It is well known that different types of strokes exhibit
distinct dielectric properties in the microwave frequency
spectrum [34]–[36]. The HEM tissue has higher permittivity
and conductivity with respect to the surrounding brain tissue,
while the IS one has lower values and gives lower contrast.
Hence, the target is filled/emptied via a tube-syringe system,
with water-alcohol-NaCl mixtures achieving the properties of
HEM or IS stroke [35], [36]. All the recipes obtained for the
employed liquid mixtures are reported in Table 1, together
with the corresponding dielectric parameters at 1GHz (i.e.,
relative permittivity, εr, and conductivity, σ [S/m]). Figure 5
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FIGURE 5. Relative permittivity (left axis, lines without markers) and conductivity
(right axis, marked lines) of the liquid mixtures mimicking the average brain tissues,
the hemorrhagic stroke, and the ischemic stroke. The blue band includes the selected
working frequencies.

gives the properties of the liquids measured through the
Keysight dielectric probe 85070D and the Keysight N1500A
materials measurement software suite [37], in the band
0.5-2GHz which includes the working frequencies (blue
stripe in Fig. 5). Experimental tests demonstrated sufficient
stability of the liquids dielectric characteristics considering
the time required for the experiment.

B. EXPERIMENTAL PROCEDURE
The laboratory tests were planned to emulate different evolv-
ing stages of a brain stroke, considering both the growing
and shrinking conditions. In the literature, the documented
cases of stroke range from 2 to 200 cm3 depending on
different variables, e.g., time from the diagnosis and loca-
tion. Further, since continuous monitoring in the early stage
through image-based diagnostic is not a common clinical
practice, there is no full information about the stroke evolu-
tion during the acute phase, while it is known that the stroke
can still evolve after 72h after the onset [38]–[41]. On these
grounds, the authors tested different stroke dimensions, up
to a maximum volume of 60 cm3.
The experiment consists of differential sets of measure-

ments of a gradually changing scenario, in which, during
each set, starting from the empty condition, the target was
sequentially filled by adding 20 cm3 of the stroke-emulating
liquid via a tube-syringe system until the worst case, i.e., the
largest stroke, has been achieved. Each considered variation
corresponds to about 1.5 cm extension in the longitudinal
direction (sagittal axes of the human head), that is the range
of the estimated resolution (about 1 cm) of the realized MWI
scanner [26]. Conversely, the same volumes were repeated
voiding the balloon, representing stroke shrinkage. An equiv-
alent procedure was performed for both the IS and HEM
cases. Moreover, as aforementioned, each set of measure-
ments takes around 6min and includes frequency samples
at 0.8, 0.85, 0.9, 0.95, and 1GHz.
The collected data were given in input to the imaging algo-

rithm as multi-frequency differential scattering matrices, in
order to reconstruct the scenario at different stages/locations,
as detailed in Section III. In the following we consider the

FIGURE 6. Multi-freq differential scattering matrices for 0 to 20 cm3 volume
variation. (Top) Hemorrhagic case; (Bottom) Ischemic case.

differential scenarios between 0 and 20 cm3, 20 and 40 cm3,
and 40 and 60 cm3. For instance, Fig. 6 shows the 22 × 22
differential scattering matrices, at the 5 used frequencies,
obtained with a 0 to 20 cm3 case for the HEM and IS types
(top and bottom, respectively). It may be noted that the diag-
onal values, i.e., the reflection coefficients, are forced to
zero to underline the range of variation of the transmissions
between the antenna pairs, which is the information pro-
vided to the imaging algorithm. The data are approximately
symmetric, which confirms the reciprocity of the system,
comprising expected slight variations due to unavoidable
inaccuracies in the measured electrical path, that are com-
pensated via the procedure in Section III.III-C. Furthermore,
pointing out the color-map values, all the data in both cases
are well above −120 dB, that is the VNA noise floor, at
1GHz and with an IF filter of 100Hz [21].

C. RESULTS AND DISCUSSION
As mentioned in Section III, the retrieved contrast map can
be normalized using its amplitude, indicating location and
shape of the stroke variation, or normalized using its real part
and the stroke typology, indicating the changing direction.
In this section, we apply both approaches, considering first
the localization and shape estimation issue, and then the
changing tracking.

1) STROKE LOCALIZATION AND SHAPE ESTIMATION

Once classified the stroke, which is assumed to be done at
the patient’s admission, the location and shape estimation of
the variation of the lesion is vital for the clinical treatment.
We approach this medical need using the normalized retrieved
dielectric contrast 3-Dmap (9) as shown in Figs. 7 and 8, for the
HEM and IS cases, respectively. Columns I, II, and III indicate
the cases 0-20 cm3, 20-40 cm3, 40-60 cm3, respectively.

For the HEM case, Fig. 7 reports the three orthogonal
slices through the stroke region center, i.e., sagittal, frontal,
and transverse views. For clarity, we add reference dashed
lines indicating the approximate position and shape during
the experiment of the inflating balloon. From the image
it can be noticed that an estimation of the shape can be
reached using the values are above −3 dB, yellow zone
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FIGURE 7. Monitoring of HEM progression. Normalized reconstructed dielectric contrast sliced in the middle of the stroke region. (I) Case 0 (healthy) - 20 cm3; (II) Case
20 - 40 cm3; (III) Case 40 - 60 cm3. (a) Sagittal view; (b) frontal view; (c) transverse view.

FIGURE 8. Monitoring of IS progression, transverse view. Normalized reconstructed dielectric contrast sliced in the middle of the stroke region. (I) Case 0 (healthy) - 20 cm3;
(II) Case 20 - 40 cm3; (III) Case 40 - 60 cm3.

in the figure. For the IS case, in Fig. 8, we just report
the transverse view, since is the most significant, and the
others views behave similarly to the HEM case. From Figs. 7
and 8, it can be noticed that, first, the imaging algorithm with
artifacts removal is clearly able to localize and distinguish
the stroke variation, and, second, gives an indication of the

shape of the change for both the studied cases, demonstrating
its monitoring capabilities.
In order to verify the repeatability of the measurements,

the data collected at different times in the same scenario
have been compared. Figures 9 (I.a, I.b) present the differ-
ential scattering matrices for two HEM cases changing the
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FIGURE 9. Repeatability study: differential scattering matrices for the HEM case.
(I.a, I.b) Distinct measurements of equivalent variations 0 to 20 cm3 at 1GHz; (II.a, II.b)
distinct measurements of equivalent variations 20 to 40 cm3 at 1 GHz.

FIGURE 10. Repeatability study: normalized reconstructed dielectric contrast for
the HEM case. (I.a, I.b) Images from distinct measurements of equivalent variations 0
to 20 cm3 at 1GHz; (II.a, II.b) images from distinct measurements of equivalent
variations 20 to 40 cm3.

measured data from 0 to 20 cm3, while Figs. 9 (II.a, II.b)
refer to the case from 20 to 40 cm3. In both cases, the reached
matrix patterns are coherent between the same cases. Then,
using the mentioned differential data as input, we recon-
struct their respective contrast maps, obtaining very similar
counterpart responses, as shown in Fig. 10.
Moreover, the system has been tested against the occur-

rence of false positives. For this purpose, the data gathered
from the same scenario measured at different times were
differentiated and used as the input scattering matrix for
the algorithm. Figure 11 depicts the differential scattering
matrices considering the 20 cm3 and 40 cm3 HEM strokes
at 1GHz, and Fig. 12 shows the corresponding retrieved
contrasts, normalized with respect to the maximum contrast
value of the HEM cases of Fig. 7. It can be noticed that the
reconstructed values are always lower than −20 dB.

FIGURE 11. False positive test: differential scattering matrices between two
different measurements of the same HEM scenario at 1 GHz. (a) 20 cm3 stroke;
(b) 40 cm3 stroke.

FIGURE 12. False positive test: reconstructed dielectric contrast between two
different measurements of the same HEM scenario. (a) 20 cm3 stroke; (b) 40 cm3

stroke. The values are normalized with respect to the maximum contrast value as in
Fig. 7.

2) STROKE TRACKING

Considering a priori information on the stroke type, the
measured data were used to track the pathology shrink-
ing/enlargement, based on the real part of the dielectric contrast
map. Knowing the initial sign of the real contrast, the two
scenarios can be distinguished by opposite signs of the vari-
ations detected in the image. Then, applying this concept
by using (10), we can indicate an enlargement with values
tending to 1 and a shrink with values close to −1. Figure 13
shows the results considering HEM and IS conditions (case I
and II, respectively). The upper row plots are examples of
worsening situations when the stroke-affected area is grow-
ing: (I.a, II.a) from 0 to 20 cm3, (I.c) from 20 to 40 cm3,
and (II.c) from 40 to 60 cm3. On the contrary, the bottom
figures are obtained while the stroke is receding: (I.b, II.b)
from 20 to 0 cm3, (I.d) from 40 to 20 cm3, and (II.d) from 60
to 40 cm3. It can be noticed that the adopted convention gives
positive reconstruction (orange in Fig. 13) where the stroke
has spread and negative values (light blue in Fig. 13) where
it has retired. Concerning the artifacts aroused in the back of
the brain, especially in the IS case, a realistic hypothesis is
that it is due to the presence of the tube feeding the balloon,
which could undergo undesired movements.

V. CONCLUSION AND FUTURE WORK
The presented work assessed a novel low-complexity scanner
for brain stroke imaging dedicated to real-time pathol-
ogy monitoring during the post-event treatment path. With
the first generation prototype as a starting point [18], this
contribution presented, first, an innovative antenna array,
whose design was improved to meet portability and wearable
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FIGURE 13. Recovering tracking parameters: (I) HEM case; (II) IS case. Growth of the affected area corresponds to positive dielectric contrast (a, b), on the contrary, changes
from larger volumes to smaller ones give negative sign (c, d).

requirements. Second, a dynamic phantom was employed to
emulate stroke evolution over time, and third, an imaging
algorithm, integrated with artifact removal procedures, was
able to provide low noise dielectric contrast reconstructions.
The experimental outcomes demonstrated the reliability of

the system in localizing the variation of the stroke-affected
area with a sensitivity of about 1 cm, comparable with the
theoretical resolution. Moreover, it allows the assessment of
the disease progress, namely if there is growth or shrinkage
between following exams, of great interest for clinical practice.
To further validate the prototype system, the next steps

involve the engagement of multi-tissue head phantoms [42]
that is not trivial, aiming to incorporate static and non-static
components. In addition, substituting actual electromechan-
ical switches with solid-state ones will improve the device
performance by decreasing acquisition times by more than
10x, reaching scan times in the order of seconds [16].
Moreover, we plan to further enhance the resolution of the
imaging using physics-assisted deep learning algorithms as
in [43]. Finally, the authors will investigate novel calibration
techniques, such as the one presented in [44], in order to
improve the match between the real data and the EM numer-
ical model; in fact, it is well known that any difference
between them may affect the imaging operator reliability,
thus the image quality.
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