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ABSTRACT In this paper, a novel antenna array diagnostic approach is presented. The failures in antenna
arrays are detected by means of a non-Hilbertian Lebesgue-space [? technique to solve the underlying
inverse problem. The solution of this inverse problem enables to retrieve the distribution of faulty feed
excitations of the antenna under test starting from far-field measurements. The developed approach has
been numerically validated. Simulations concern planar arrays where different rates and distributions of
failures have been tested. Results show good capabilities in detecting damaged regions in the analyzed

scenarios.

INDEX TERMS Antenna diagnostics, antenna arrays, inverse source, Lebesgue spaces.

I. INTRODUCTION

OWADAYS, arrays of antennas are key components in

a large number of applications [1]-[4], such as radar,
telecommunications, and electromagnetic imaging [5]-[8].
Indeed, by using proper architectures combined with smart
synthesis techniques, such antennas may provide enhanced
radiation properties and allow reconfiguring the radiation
pattern electronically [9], [10].

In this framework, a crucial job consists in array diagnos-
tics. Modern arrays are usually constituted by a large number
of elements, and the possibility of detecting and localizing
the failures is fundamental for assessing the correct function-
alities of the antenna and to recover it in case of damages.
Indeed, failures in the array may cause significant deviations
in the radiated fields, e.g., variation in the direction of array
beam and increment of the sidelobe level. If a proper diag-
nostic technique to identify the faulty elements is available,
only such faulty components can be repaired, to restore the
desired radiation characteristics.

In the past years, a wide number of techniques have
been proposed to face the problem of antenna diagnostics.
Many of them formulate antenna diagnostics as an inverse-
source problem [11], [12], with the aim of retrieving the

distribution of current over the antenna under test by means
of measurements of the radiated field. This inverse problem
is usually quite challenging to solve due to the ill-posedness
of the related equations. Consequently, ad-hoc algorithms
are necessary to tackle this problem [12].

In the scientific literature, at first, the backpropagation pro-
cedure (BP) exploiting the Fourier relationship between the
field on the array aperture and the far-field measurements has
been applied followed by the matrix method (MM) [13]-[15].
Moreover, approaches based on neural networks and machine
learning concepts have been developed [16]-[18]. In the last
years, several techniques based on the equivalent source
reconstruction method (SRM) have also been proposed in
this context. These methods allow the reconstruction of an
equivalent currents distribution on a surface surrounding
the antenna under test (AUT) from near-field measure-
ments through Huygens’ principle [19]-[23]. This family
of diagnostic procedures has been found effective in using
arbitrary-geometry measurements and antenna arrays.

Recently, several methods based on compressive
sensing (CS), which is a sparse recovery technique
proposed in many research fields including electromag-
netic imaging [24]-[29], have also been proposed [30]-[33].
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Indeed, in several cases, faulty elements may be repre-
sented as a sparse distribution. Moreover, these methods have
usually the benefit of requiring a smaller number of measure-
ments (thanks to the a-priori information about sparseness),
which results in a lower measurement time.

In this paper, a novel diagnostic technique, based on the
use of an inversion scheme performing a regularization in
the framework of the Lebesgue spaces L”, is proposed. In
particular, this procedure is applied to solve, in a regu-
larized way, the underlying inverse problem and retrieve
the distribution of faulty excitations from measurements of
the radiated field performed in the far-field region. It is
worth noting that inversion techniques in Lebesgue spaces
are potentially able to provide significant enhancements in
the reconstruction of the unknowns with respect to both
classical Hilbert space approaches and compressive sens-
ing methods. Indeed, both these two kinds of approaches
have some limitations. In particular, regularization tech-
niques developed in the framework of Hilbert spaces are
usually affected by oversmoothing effects, that may limit
the reconstruction of small and sparse solutions. Conversely,
compressive sensing techniques, at least in their common
formulation, allow obtaining good reconstructions of sparse
targets, but may fail when non-sparse unknowns need to
be found. Moreover, usually, compressive sensing tech-
niques strictly require that some specific conditions, such
as the restricted isometry property (RIP) [29], [34], [35],
are satisfied. Instead, Lebesgue-space inversion allows good
reconstructions in both conditions. Indeed, it has been found
in microwave imaging applications that the use of low values
of p allows to promote the sparsity of the solution [36]-[38],
without strictly requiring specific conditions on the opera-
tor, whereas higher values lead to good reconstructions of
extended targets. Consequently, the proposed approach has
the advantage of allowing a correct retrieval of both sparse
and non-sparse fault distributions, provided that a proper
choice of the norm exponent is performed.

The developed approach is validated by means of numer-
ical simulations concerning both simplified and realistic
arrays. In particular, two different failure distributions have
been analyzed: (a) damaged elements randomly selected
from a uniform distribution, and (b) failures with normal
distribution around a certain location. Thus, the case in
which failures are spread all over the surface, as well as
the one with clustered damages, have been considered and
tested [39]-[41].

The paper is organized as follows. The mathematical
formulation of the developed approach is discussed in
Section II, whereas in Section III numerical results are
provided and discussed. Lastly, conclusions are reported in
Section IV.

Il. METHODS AND PROCEDURES

The antenna configuration considered in this paper is shown
in Fig. 1. A planar array composed by N elements placed
at positions (x,,y,) and with excitations weights ¢,, n =
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FIGURE 1. Geometry of the planar array diagnosis problem.

1, .., N, is assumed. The electric field radiated by the AUT
is collected in the far-field region on a hemispherical surface
along M directions (6,,, ¢n), 0 € [0°,90°], ¢ € [0°, 360°)
with sampling step A8 = A¢. Under such a configuration,
the antenna diagnostics problem can be stated as follows:
given the set of measurements of the field radiated by the
AUT, identify the possibly present faulty elements.

A. ARRAY RADIATION MODEL

As it is well known, the field radiated by an antenna array
in the far-field region depends upon the geometry and the
excitations weights ¢, of its elements. In details, the far-field
radiation pattern of the ideal reference array (i.e., without
failures) in the direction (6,,, ¢,,) is given by [42], [43]

EOps om) = Eo O, &) + Ep (O, b
N
— Z CnPn (Gm , ¢m)€127ﬂ (anil‘l QmCOS ¢771 +y,,sin 0,,,sin ¢m)
n=1

e))

where A is the wavelength in free space at the working
angular frquency wpa and P, (6, ) = Pno (O, ¢n)0 +
Py (O, dm)¢ is the embedded pattern of nth element along
the mth direction. In particular, P, (6,,, ¢,,) represents the
far-field pattern produced by the array when the nth ele-
ment is excited (with ¢, = 1) whereas all the other elements
have ¢; = 0 for [ # n with [ = 1,..., N and are termi-
nated with matched loads [33], [42], [44]. In such a way,
the embedded pattern takes into account not only the single
element structure but also the possible couplings between the
elements, enabling a correct representation of the radiated
far-field even in the case of real antennas [45], [46].

By combining all the M directions, the following linear
systems (one for each polarization) are obtained:

¢/ = [Hlg/pc 2
where
Eg/4 (01, ¢1) c1
e a E@/dz(?z, ¢2) 2 sz )
Eg/4(Om, M) CN
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and [H]g,e is a M x N matrix whose elements are given by

(1176} 2 P O, ) 5 0 osb st
“)

As regards the AUT, it is assumed that a subset of
Ny = kN array elements is damaged, k being the failure
rate. Consequently, the AUT excitation vector ¢ is in general
different from the ideal one ¢, and can be expressed as

®)

where v, € [0, 1]. In particular, v, = 1 for the correctly
working elements, and v, < 1 for the faulty elements.

The array excitation vector ¢ is related to far-field
measurements, ¢, by equations similar to (2), i.e.,

Cn = VnCy

(6)

As usually done in the literature [31], [33], [34], in this
work it is assumed to have at our disposal both the far-field
measurements due to the ideal reference array and to the
AUT. Under this assumption, the failure vector, Ac =c—7C
can be related to the differential samples of the radiated
field, Aey /6 = €o/¢ —ée /b by means of the following linear
model:

&g/ = [Hlg pcC

)

If measurements of both components of the field are
available, the inverse problem to be solved can be thus
written as:

s [22]- [

In case only Ae, or Ae, is available, the inverse problem
reduces to the solution of (7), i.e., Ae = gé)/(b and [H] =
[H]p,4 (by considering only the relevant polarization).

It is worth noting that Ac contains the differences among
the excitations of the AUT and reference array (these lat-
ter being known by design). Consequently, the knowledge
of such a quantity is sufficient to fully identify the faulty
elements.

The solution strategy applied to invert (8) is outlined in
the following Section.

Aey,y = [Hlg pAc

®)

B. INVERSION PROCEDURE

As it is well known, the inverse problem in (8) is strongly
ill-posed; consequently, a regularized solving scheme needs
to be adopted. To this end, in this paper the task of retrieving
the AUT failure vector, Ac, starting from the measurements
of the radiated field is performed by using a truncated
Landweber-like method in L? spaces [36], [47]. In particular,
the regularization is attained by means of an early truncation
of the iterations. In this regard, it is assumed that the fail-
ure array and the differential measurement vectors belong to
Lebesgue spaces, i.e., Ace X CLP and Aec Y CLP. It is
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worth remarking that such an approach minimizes the cost
functional @ : X — R given by

1
P(A0) = 7 [IH1AC — Ac;, ©)

where ||£||p = (Z%:I |rm|P)1/p (with r, the components
of r) denotes the norm of the functional space L [48] and
r = [H]Ac — Ae is the residual vector. However, differently
from standard Hilbert-space approaches, the minimization
is performed in the dual space X* of X, moving along
nonstandard gradient directions that are different from the
standard descent ones of classical Hilbert-space approaches.
In this way, the regularization properties of the approach are
enhanced by exploiting the different geometrical properties
of the adopted Lebesgue spaces. Specifically, from an empir-
ical point of view, it has been observed that low values of
p (i.e., close to 1) are better suited for the reconstruction of
sparse unknowns characterized by a low number of non-zero
elements [37]. In such a way, the sparsity of the solution can
be promoted without requiring specific sparsity conditions,
e.g., that the RIP condition on the “measurement matrix”,
are satisfied [29], [34], [35], [49]. Conversely, higher val-
ues of p (i.e., close to 2) result in a stronger filtering and
over-smoothing effect (as it often happens with Hilbert-space
approaches), and are thus better suited for naturally smooth
unknowns [37] . Clearly, if p = 2, that is X and Y are L?
Hilbert spaces of square-integrable functions, the proposed
approach reduces to a classical well-known least-squares
minimization [36].

The steps of the developed algorithm can be summarized

as follows:

1. Let p > 1 and Ac, be a suitable starting guess (a null
vector Acy = 0 is assumed if no a-priori information
about defective elements is available)

2. Update the current solution performing the follow-
ing steps.

a. Map the current solution Ac; and the residual
vector r; onto their dual spaces X* and Y*, i.e.,

Acf = Jx(Ac) € X*

1

= JY(L‘) ey*

; (10)
where Jy and Jy are the duality maps of the con-
sidered Lebesgue spaces X and Y. In particular,

Jx is defined as [50]
1 P~ sign(xr)
Ix(x) = x> (1n
[P~ sign ()

and a similar relationship holds for Jy.
b. Compute the next solution candidate in the dual
space as

Aciyy = Acf — o[H]'r}

-l

12)

where [H]* is the adjoint (i.e., the Hermitian
transpose in the considered settings) of [H].
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FIGURE 2. Magnitude of the reference excitation coefficients.

The step length « has been computed using the
following empirical formula

o = 025{ 1L + @ = DI — 12 )
(13)

c. Retrieve the solution in the original space X, i.e.,
%
Aciy ==JX*(é£H4)

where the duality map is computed as in (10)
by replacing p with its Holder conjugate p* =
p/(p—1) [50].
3. Tterate step 2. for i =0, 1, ..., L, or until a predefined
convergence criterion is satisfied.

(14)

lll. NUMERICAL RESULTS

The antenna diagnostics technique described in the previous
Section has been validated through a set of numerical simula-
tions, involving both ideal arrays (i.e., composed by isotropic
elements) and realistic structures. In all cases, the refer-
ence excitations are given by a Taylor one-parameter current
distribution [51]. The sidelobe level of Taylor array has been
set to R =25 dB.

A. IDEAL ARRAY

A planar array of N ideal isotropic elements with A /2 spacing
(f = 2 GHz) is considered. Fig. 2 shows the magnitude of
reference excitations of a planar array with N = Ny X N, =
18 x 18 = 324 elements.

In order to perform the diagnosis, at first, the reference
array without faulty elements has been simulated. Then,
a second simulation has been performed considering the
array with faulty elements. Afterwards, a white Gaussian
noise having zero-mean value and a signal-to-noise ratio
SNR = 25 dB has been added to the data in order to cor-
rupt them and simulate noisy measurements. In this way,
by subtracting the measurements in the far-field region pro-
duced by the ideal reference array, the differential samples
Ae have been obtained. In particular, the simulated measure-
ments have been collected in the far-field region along M
directions (6,,, ¢, 6 € [0°,90°], ¢ € [0°, 360°) with sam-
pling step A9 = A¢ = 10°. Consequently, M = 325 data
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FIGURE 3. Normalized mean square reconstruction error by varying the exponent
parameter p with failure rate k € [0.05, 0.25]. Uniformly distributed failures.

are provided in input to the proposed method to diagnose
the possibly faulty elements of the antenna array.

Concerning the failure configurations, two different types
of distributions of faulty elements have been considered. In
the first one, discussed in sub-section 1), the faulty elements
are randomly distributed in the whole array, thus leading
to failures that are sparse all over the array. In the second
case, described in sub-section 2), clustered failures are con-
sidered, i.e., the faulty elements are localized in a given
region of the array. In both cases, different failure rates
k € [0.05,0.25] have been analyzed, by randomly gener-
ating a configuration with total failures (i.e., characterized
by v, = 0).

In order to evaluate the accuracy of the results, the follow-
ing normalized mean square reconstruction error has been
used [31], [39]:

 Acu, - 2213

(15)
lAc,

,
alls

where Ac and Ac,., are the reconstructed and actual failure

——=act
vectors.

1) UNIFORMLY DISTRIBUTED FAILURES

A first analysis has been carried out considering an array with
randomly distributed faults over the whole antenna aperture.
In order to assess the performance of this technique, differ-
ent rates of failing elements have been considered. In details,
the failure rate in the AUT, k, has been varied from 0.05 to
0.25 and the value of v, defined in (5) has been set v, =0
for each faulty element, i.e., total failures have been con-
sidered. As regards the method parameters, a sweep on the
exponent parameter p between 1.1 and 2.0, for each different
failure rate k, has been carried out. Fig. 3 shows the relative
reconstruction errors on the excitations versus the parameter
p with k € [0.05, 0.25]. As can be noticed, except for the
cases k = {0.05,0.1}, in which the relative reconstruction
error, e, monotonically increases versus p and is smaller in
the lower bound p = 1.1, for all the other failure rate cases,
the error has a minimum for p = 1.2, and then it goes up
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FIGURE 4. Magnitude of the excitations of the antenna under test with failure
rate (a) k = 0.1, (c) k = 0.2, (e) k = 0.25. Magnitude of the best reconstructed failure
vector elements with (b) k = 0.1, (d) k = 0.2 and (f) k = 0.25. Uniformly distributed
failures.

again with greater values of p. In particular, as expected,
low values of p, close to 1, are beneficial in recovering very
sparse unknowns with a small number of non-zero elements,
whereas higher values of p may improve the estimation when
several non-zero elements of the unknown vector are present.
By increasing the failure rate, the unknowns are less and less
sparse; therefore, the optimum p slightly increases (although
it always remains significantly lower than 2). Moreover, it
is worth noting that for medium-high p the error decreases
as the failure rate increases, vice versa for low values of p,
the opposite trend can be observed. Thus, the value p = 1.2
represent a good trade-off since the method provides good
reconstruction results for different failure rates.

The magnitude of the reconstructed excitation vector
obtained using the optimal values of the norm parame-
ter p for some values of the failure rate are shown in
Fig. 4(b) (k = 0.1, p = 1.1), Fig. 4(d) (k = 0.2, p = 1.2),
and Fig. 4(f) (k = 0.25, p = 1.2). The corresponding
actual distributions are reported in Fig. 4(a), Fig. 4(c) and
Fig. 4(e). In all cases, a very good estimation can be
observed.

In this initial set of simulations, the number of itera-
tions has been set to the value L* providing the minimum
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normalized mean square error. In order to better analyze
the convergence of the method, the trend of the normal-
ized residual®y and of the error e, versus the number of
iterations has been studied. In particular, Fig. 5 shows the
graphs of the residual and error versus the number of itera-
tions L € [1, 10000] with a failure rate of 0.1 [Fig. 5(a) and
Fig. 5(d)], 0.15 [Fig. 5(b) and Fig. 5(e)], and 0.25 [Fig. 5(c)
and Fig. 5(f)], for the best exponent parameters p = 1.1,1.2,
respectively. As a reference case, the results obtained con-
sidering the conventional inversion in Hilbert spaces (i.e.,
with p = 2) are also provided.

In all the reported cases, the semiconvergence behavior of
the reconstruction error e,, which characterizes any iterative
regularization method, is clearly visible. Semiconvergence
means that the first iterations provide a good noise filtering,
and consequently the accuracy of the solution Ac; improves,
while the subsequent ones restore from data components with
higher noise, so that the accuracy starts to become worse.
It is worth highlighting that semiconvergence holds for the
reconstruction error e, only, not for the residual ®(Ac;). In
fact, the normalized residual [Fig. 5(a-c)] always decreases,
whereas the errors [Fig. 5 (d-f)] decrease until a minimum
value is reached (at the optimal iteration number L*) and then
start to rise. For this reason, the number of iteration plays the
role of regularizing parameter. In particular, when the optimal
norm parameter is considered, a fast-converging phase can
be observed, followed by a steep ascending trend. In the
Hilbert-space cases (p = 2), after an initial fast decrease, the
error curves tend to flatten, and after reaching the minimum
values undergo a steeper increase. The corresponding nor-
malized residual [Fig. 5(a-c)], when considering the optimal
values of p, tends to flatten out near the optimum value of
iterations L*. Instead, for the Hilbert-space case, the resid-
ual exhibits a plateau approximately corresponding to the flat
part of the error curve. It is also worth noting that the error
obtained with the optimal values of p is always significantly
lower than the corresponding results provided by conven-
tional Hilbert-space approaches. Moreover, as expected, the
difference between the errors is higher for the lower failure
rate and decreases when k increases, since a lower sparsity
is present.

As concerns the computational burden, II reports the times
required to perform the inversion on a personal computer
equipped with an Intel Core i7-11700F CPU at 2.50 GHz
and 16 GB of RAM,

2) CLUSTERED FAILURES

In this section, a second analysis is presented considering
an array with clustered faulty elements. Indeed, faults may
be generated by several phenomena, such as damages in the
array feed networks, mechanical and manufacturing errors,
and presence of deposit of particles on arrays (e.g., dust or
snow) [39], [52]-[54], and may be thus mainly localized in
a region of the array. In this case, random faulty elements
have been generated according to a normal distribution with
standard deviation o, = k(N,/3), o, = k(Ny/3), and mean
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FIGURE 5. Normalized residual with failure rate (a) k = 0.1 and p = {1.1, 2.0}, (b) k = 0.15 and p = {1.2, 2.0}, (c) k = 0.25 and p = (1.2, 2.0}. Normalized mean square error

with failure rate (d) Kk = 0.1 and p = {1.1, 2.0}, (e) Kk =0.15and p = {1.2, 2.0}, (f) kK = 0.25 and p = {1.2, 2.0}. Uniformly distributed failures.

0.5 TABLE 1. Computational times.
k=005 m
kk': =0f)1'; a Failure rate Time (s)
04 Joozm 0.05 0207
< ' 0.1 0.520
'é 03 Uniformly distributed failures 0.15 0.887
g 0.2 4.786
::E; 0.25 9.414
Z 02f 0.05 0.275
3 0.1 0.480
Clustered failures 0.15 3.884
o 02 8215
0.25 17.449
0

Exponent value, p

FIGURE 6. Normalized mean square reconstruction error by varying the exponent
parameter p with failure rate k e [0.05, 0.25]. Clustered failures.

My = Ny/3, uy = Ny/2. As in Section III-Al), the failure
rate in the AUT, k, has been varied from 0.05 to 0.25, and,
for each case, a random configuration with total failures have
been taken into account (i.e., in (5), v, = 0 is assumed). The
method has been studied by changing the exponent param-
eter p between 1.1 and 2.0 for each different failure rate k.
The iterations are stopped at the optimal iteration providing
the minimum error. Fig. 6 shows the relative reconstruction
error versus the exponent value p for the considered val-
ues of the failure rate k. The behavior is similar to the one

VOLUME 3, 2022

observed in Section III-Al). For k = {0.05, 0.1} the trend
of the error is growing monotonically, whereas for higher
values it has a minimum in p = 1.2. Moreover, the error for
p > 1.3 versus k is smaller compared with those reported
in Fig. 3. This is motivated by the different nature of the
unknown vector: here, the failures are mainly concentrated
in a particular region of the array aperture. However, by
comparing the trend of the error in Fig. 3 and in Fig. 6, it
is worth noting that the error reaches the minimum for the
same value of exponent p in both two cases for given fail-
ure rate, and the best exponent parameter p is always inside
the range p € [1.1, 1.2]. Fig. 7 shows the best reconstructed
excitation vectors, for k = 0.1 [Fig. 7(b) and p = 1.1],
k = 0.2 [Fig. 7(d) and p = 1.2] and k = 0.3 [Fig. 7(f)
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FIGURE 7. Magnitude of the excitations of the antenna under test with failure
rate (a) k = 0.1, (c) kK = 0.2 and (e) k = 0.25. Magnitude of the best reconstructed
failure vector elements with (b) k = 0.1, (d) k = 0.2 and (f) k = 0.25. Clustered failures.

and p = 1.2], compared with the actual excitations of the
antenna under test. A good estimation has been obtained for
all the three reconstructions. For completeness, I reports the
computational times required for the inversion.

B. VARIATION OF NUMBER OF MEASUREMENT POINTS
In order to estimate the behavior of the method versus the
number of measurements, a set of tests has been performed
by varying the sampling gap A6 = Agp. This analysis
has been conducted for the two different kinds of distri-
bution: uniform and normal ones. The configuration is the
same used in the previous Sections and k& = {0.1, 0.25}
has been considered for A6 = Ap = 9° (M = 401),
A = Ap =10° (M = 325), A6 = Ap = 12° (M = 211)
and A0 = A¢ = 15° (M = 145). As concerns method
parameters, the exponent parameter has been set to the
value p = 1.2. The trend of the reconstruction error on
the excitations, e,, is reported in Fig. 8. It is evident that
in all scenarios the best reconstruction result occurs with
a higher number of available measurements (e, < 0.05 for
the four analyzed cases and A6 = Ag¢ = 9°). Indeed, the
error monotonically increases by growing the sampling gap
and with AG = Agp = 15° the number of measurements is
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FIGURE 9. Normalized mean square reconstruction error with failure rate
k € {0.1, 0.25} by varying the signal-to-noise ratio SNRe [5, 30] dB.

not sufficient to suitably retrieve the excitations in all the
analyzed distribution both for k = 0.1 and k = 0.25.

Therefore, on the one hand, with a smaller number of
measurements, the input information decreases, and the
reconstruction error increases. However, on the other hand,
with low values of A = Ag, the reconstruction is accurate,
but the measurement procedure is more demanding since
a high number of field data is required. This way, with
AB = Ap = 10°, a good trade-off between number of mea-
surements and estimation can be attained. Such a value of
sampling gap, A6 = Agp = 10°, is also in agreement with
the number of degrees of freedom of the radiated field that
is Np = 324 [55].

C. VARIATION OF SIGNAL-TO-NOISE RATIO

Subsequently, the effect on the performance of the level of
noise introduced on data has been studied. In details, the
SNR has been varied in the range SNR € [5, 30] dB with a
step of 5 dB for both the distributions of faulty elements. The
obtained results are summarized in Fig. 9. As expected, for
both k = {0.1, 0.25} and for the two different distributions of
faults, the reconstruction error increases when SNR becomes
lower. Specifically, from the trends of the error in Fig. 9,
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TABLE 2. Normalized mean square reconstruction errors. Comparison with
compressive sensing technique.

Normalized mean square reconstruction error

Failure rate  L1-Magic L? Hilbertian space
0.05 0.0080 0.0006 0.1097
0.1 0.0131 0.0037 0.0993
0.15 0.0470 0.0153 0.1013
0.2 0.0622 0.0199 0.1158
0.25 0.1289 0.0339 0.1098

it can be observed that, for low SNR, the reconstruction
accuracy gets worse and highly noisy data (SNR =5 dB) do
not allow the obtain a suitable reconstruction. Nevertheless, a
SNR 2 15 dB enables to achieve good reconstruction results
by the proposed method in all the analyzed cases.

D. COMPARATIVE ASSESSMENT

In order to further assess the performance of the proposed
method, a comparison with L1-norm compressive sensing
techniques [34], which are widely used in antenna array
diagnostics [29], [56], has been performed. In particular,
the “L1-Magic” MATLAB package [57] with log-barrier
algorithm has been used for solving the inverse problem
in (8).

The ideal planar array of dimension N = 18 x 18 =
324 used in the previous Sections has been adopted.
M = 325 measurements collected with a sampling gap
A0 = Ap = 10° and SNR = 25 dB have been provided
as input to both the developed procedure and the com-
pressive sensing algorithm. Table 2 shows the normalized
mean square errors for the case of clustered faulty elements
and using failure rates k = [0.05,0.1, 0.15,0.2,0.25]. In
Table 2, the best recovery errors (achieved with p = 1.1 for
k = [0.05,0.1] and with p = 1.2 for k = [0.15, 0.2, 0.25])
have been reported for the proposed method. Moreover, the
errors obtained with classical Hilbert space approach are also
given. As can be noticed, in all cases, the classical Hilbertian
space method provides the worse results. Compared to
the compressive sensing technique, the proposed approach
enables a slightly better diagnostic accuracy especially when
the failure rate increases. Indeed, although with low values
of the failure rate (e.g., k = 0.05) both L” and L1 approaches
provide a quite good recovery error, when the failure rate
increases and the unknown is less sparse, the recovery error
of the proposed L” scheme increases more slowly.

E. REALISTIC ARRAY

To evaluate the proposed approach in the presence of real-
istic arrays, a planar array of patch antennas with size
Ly=Ly,=0622.1 mm and Ny = Ny, = 10 elements placed
with spacing Ao/2 (f = 2.4 GHz) has been considered. The
patches have dimensions W = H = 30.2 mm and a dielectric
substrate of thickness / = 1.5 mm characterized by a rela-
tive dielectric permittivity &, = 4 and dielectric loss tangent
tand = 0.015 is located between the patches and the ground
plane (perfect electric conductor). To feed each element, a
lumped port is set between the patch and the ground plane
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FIGURE 10. Planar array of patch antennas. Three-dimensional geometry and
radiation pattern in logarithmic scale obtained with openEMS simulation.

with an offset along the y axis of —5.5 mm with respect to
the patch center.

The FDTD open-source software openEMS has been used
to simulate the antenna array and compute the radiated fields
(those generated by reference and faulty antenna arrays and
embedded patterns) [58], [59]. The simulations of antenna
arrays have been performed with a domain of dimensions
647 x 647 x 25 mm. Mur’s absorbing conditions are imposed
at boundaries [60]. A Gaussian modulated pulse with a band
between 1.0 and 3.0 GHz has been used as excitation sig-
nal. A time step Ar = 1.48 x 1072 s is considered, and
Narray = 1.85651 x 100 adaptive cubic cells have been used
to discretize the simulation domain for computing the field
of reference and faulty antenna arrays whereas a discretiza-
tion of Ngp = 1.43501 x 10° elements has been adopted
to retrieve the embedded patterns. The failure rate in the
AUT has been set to k = 0.1 and total failures have been
considered (i.e., in (5), v, = 0). Similar to the previous
Section, at first the faults have been generated by consider-
ing a uniform random distribution over the array, and then
by considering a normal distribution (to simulate clustered
defective elements). As concerns the inversion method, the
exponent parameter has been chosen to the value p = 1.2.

Fig. 10 shows the three-dimensional geometry and the
radiation pattern of the reference antenna array. Moreover,
Fig. 11(a) and Fig. 11(b) report the radiation pattern in the
E-plane (¢ = 0°) and H-plane (¢ = 90°) both for reference
and faulty antenna arrays (k = 0.1, v, = 0 and uniformly
distributed failures), respectively.

The 6- and ¢-components of the electric far field are
collected with angular steps A9 = Agp = 10° in M = 325
points uniformly distributed on a hemisphere in the far-field
region. Field data generated by AUT are corrupted with a
white Gaussian noise having zero-mean value and a signal-
to-noise ratio SNR = 25 dB.

The reconstructed magnitude of the feed coefficients of
the elements compared with the actual excitations of the
antenna under test for k = 0.1 with uniformly and nor-
mally distributed failures are shown in Fig. 12 and Fig. 13,
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FIGURE 12. (a) Magnitude of the excitations of the antenna under test with failure
rate k = 0.1. (b) Magnitude of the reconstructed failure vector elements with kK = 0.1.
Uniformly distributed failures.

respectively. As it can be noticed, a good diagnosis is
achieved, since the failures are correctly localized, and their
reconstruction is accurate in both cases. The obtained recov-
ery error values are equal to e, = 0.007 and e, = 0.0097,
respectively.

IV. CONCLUSION

In this paper, a novel approach for antenna array diagno-
sis has been presented. The aim of the proposed strategy
is to retrieve the distribution of the faulty coefficients of
the antenna under test by solving the underlying inverse
problem. A Landweber-like scheme developed in the frame-
work of I spaces has been proposed to find a regularized
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solution of the inverse problem. The method has been vali-
dated through numerical simulations. In particular, a planar
array configuration has been assumed with failures extracted
from uniform and normal distributions. Moreover, different
failure rates have been taken into consideration. Numerical
results, which reveal the capability of retrieving diverse kinds
of faulty elements distributions with different failure rates,
show the effectiveness of the proposed diagnostics approach.
Future studies will be devoted to including an extensive
numerical assessment and testing the proposed approach in
more complex scenarios.
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