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ABSTRACT In a multi-objective optimization process, several goals are traditionally combined into
a single fitness function. In such cases, the choice of the objective function is critical, as it should
accurately represent the desired optimization goals. Here, we introduce a new class of multi-objective
functions with non-linearity and switching behavior, and also provide a method for objective function
engineering. Notably, the proposed objective functions introduce versatile forms of fitness growth during
the optimization, and provide a systematic approach for integrating the expertise in antenna design with
the optimization process. The proposed optimization processes are applied in antenna optimization to
demonstrate their enhanced performance. Our optimization examples consider problems based on both
analytical electromagnetic models and full-wave simulation. Specifically, we consider the designs of an
end-fire array, a pyramidal horn antenna, a Yagi-Uda array, and a wideband patch antenna. Our results
suggest that, with minimum computation effort, the proposed non-linear fitness functions produce better
performing designs when compared to a linear summation-based fitness function, e.g., 12% higher forward
gain for the Yagi-Uda array, 9.3% lower side lobe level for the horn antenna, 23.38% higher directivity
for the end-fire array, and approximately 1.5 times higher bandwidth for the wideband patch antenna.

INDEX TERMS Antenna optimization, cost function, multi-objective functions, non-linear function,
particle swarm optimization.

I. INTRODUCTION

THE DESIGN of antennas for RF applications requires
optimization of geometrical parameters. At the same

time, multiple goals such as gain, bandwidth, and impedance
matching must be met. The key challenge in such opti-
mizations is how to formulate the multivariate fitness
functions that relate the RF performance metrics with
the antenna geometrical parameters. Often, this depen-
dence exhibits multiple local maxima (or minima), widely
varying curvatures and saddle points located across the func-
tional search space. Therefore, such designs are typically
non-convex optimization problems. Furthermore, the multi-
dimensionality (i.e., multivariate nature) of such problems
makes the visualization of input-output relations difficult.
Hence, the trial-and-error approach, or the multi-dimensional

parametric sweeps do not provide good optimization strate-
gies. Also, to achieve a truly optimized design, the number
of testing points, where the design should be tested, increases
exponentially as the number of geometrical parameters
increases.
In numerical method based RF optimizations, the fun-

damental requirement of fast convergence toward global
extrema requires a reduction in the number of full-wave
electromagnetic (EM) simulations. Toward this goal, prior
research has provided different approaches to achieve this.
For example, heuristic optimization algorithms, e.g., evo-
lutionary optimization algorithms [1], [2], physics-inspired
algorithms [3], [4], and swarm-intelligence based algo-
rithms [5]–[8] have produced optimal designs due to their
global search characteristics, which stem from randomness,
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an inherent feature of these algorithms. To elaborate, such
randomness allows the search algorithm to escape local min-
ima or maxima and efficiently explore the entire design
space. A comparative performance of heuristic optimization
algorithms (e.g., speed of convergence) has been studied
[9]–[11]. Among other approaches, surrogate-models (or
digital-twins) using kriging interpolation [12], support vec-
tor regression [13], random forest algorithm [14] etc., have
been applied to reduce the computational effort by replac-
ing the actual problem with an equivalent computationally
inexpensive problem. Surrogate modeling approaches have
been further improved by using several methods including
dimensionality reduction [15], nested kriging [16], [17], and
constrained sampling [18], [19]. In general, these meth-
ods belong to the system-by-design paradigm [20], which
is a systematic optimization approach that handles a set of
interconnected blocks, each one related to different design
operations (e.g., synthesis, analysis, configuration, etc.).
In multi-objective optimizations, Pareto-front based

optimization [21] is a widely used approach in optimization
of conflicting objectives. In this approach, an ideal solution
is selected from a set of solutions (or a Pareto-front) with
levels of trade-offs between the objectives [22], [23]. The
selection is made based on the knowledge of objective prior-
ities (i.e., domain expertise) after the Pareto-front is created.
Nonetheless, the computational efficiency of this approach
should be carefully considered, since the optimization is
directed toward a frontier of points [24], [25]. With an
increasing number of objectives, the computational workload
to find the Pareto-front is expected to increase exponentially.
In this context, combining many objectives into a sin-

gle objective function can reduce computational effort since
domain knowledge can be integrated into its design, result-
ing in a single solution rather than a Pareto-front solution.
In this approach, different methods have been pursued, e.g.,
weighted sum of objectives [6], [7], [26]–[32], lexicographic,
weighted Tchebycheff, and weighted product methods [33].
Other methods utilize non-linear functions [8], [34] and
adaptive (e.g., fuzzy) functions [35], [36] while forming the
multi-objective function. In fact, the weighted sum method
and its variations form a class of optimization methods that
are widely adopted in solving EM optimization problems. For
example, a variation of this method uses Heaviside switch-
ing [37], [38] to set hard limits on specific objectives during
the optimization. In such cases, the weights of individual
objectives, such as gain, S11, etc., can be adjusted to give
preference to the desired objectives.
In multi-objective antenna optimization, designing the

objective function is an important task, as the composite
fitness of a candidate solution should accurately repre-
sent the desired antenna design. To address this issue, we
propose a scheme for integrating individual optimization
goals into composite fitness functions by applying non-
linear switching functions to help optimization algorithms
in antenna synthesis. Specifically, we utilize the switching
functions [39], which are used in artificial neural networks

and are well-known for their activation behavior [40], [41],
to adaptively adjust the weights of objectives during the
optimization process. The proposed scheme includes a class
of topological functions to cover various possible scenarios
of fitness growth as desired by the user. Furthermore, an
objective function design is proposed as a pre-optimization
step by plotting objective versus fitness function plots using
the proposed functions. Overall, the scheme provides an
effective method to engineer objective functions before con-
ducting the full-wave EM simulations, and saves time by
solving the problem of designing the objective function. The
enhanced performance of our method is proven by applying
it for particle swarm optimization (PSO) [42], [43] of the
considered antenna examples, namely, an end-fire array, a
pyramidal horn antenna, a Yagi-Uda antenna, and a wideband
patch antenna.

II. THE PROPOSED MULTI-OBJECTIVE FUNCTION
For comparison, we first consider the widely used approach
of combining several objectives using linearly weighted sum
fitness functions. Then, we present our proposed method that
incorporates non-linear switching in multi-objective fitness
functions.

A. LINEAR WEIGHTED SUMMATION OBJECTIVE
FUNCTIONS
In the linear weighted sum method, the multi-objective func-
tion, F, can be defined in terms of objectives xn (N is the
total number of objectives) using the relation

F =
N∑

n=1

Hn =
N∑

n=1

wn(xn ± kn), (1)

where wn is the weight assigned to the objective param-
eter xn, and kn is any constant that may be added to the
fitness. The objectives can be antenna performance parame-
ters, including S11, bandwidth, and gain. Each parameter wn
controls the weight of the nth objective and this parameter
remains constant through the entire optimization process.
Therefore, in this case, the fitness vs. objective curve is
linear, as indicated in Fig. 1(a). However, a non-linear gra-
dient could be beneficial, as it would allow the gradient
of the fitness vs. objective curve to change as the objec-
tive xn changes during the optimization process, as shown
by the curved lines in Fig. 1(a). For example, the weight
of an objective can be reduced, or its fitness can be sat-
urated, when the objective has reached a desired value.
Therefore, non-linearity will eliminate over optimization of
objectives.

B. MOTIVATIONS FOR NON-LINEAR FITNESS
FUNCTIONS
Here, we illustrate the advantages of using non-linear switch-
ing functions through the following example. Specifically,
in (2), (3), and (4), we formulate objective functions
using linear weighted sum method and gradually apply
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FIGURE 1. (a) Comparison of different y-normalized fitness growths with respect to an x-normalized objective (e.g., S11, gain, bandwidth etc.). (b)-(d) Heat map representation
for a two-objective (i.e., |S11| and directivity) fitness function using: (b) a linear relation shown in (2), (c) a linear method with activation and saturation terms as in (3), and (d)
our proposed method that includes both activation terms and gradient control terms as in (4). The color bar indicates normalized objective function fitness.

non-linear switching on the objective terms. Figs. 1(b)–1(d)
illustrate the corresponding objective-space plots of these
functions.

F = 1 · |S11(dB)| + 5 · D (2)

F = logsig(D− 3)× |S11(dB)|
+ logsig(|S11(dB)| − 10)× 5 · D (3)

F = logsig(D− 3)× 30 · tanh

( |S11(dB)|
30

)

+logsig(|S11(dB)| − 10)× (5 · D+ 40 · logsig(D− 10))

(4)

For this example, S11 and directivity, D are chosen as
two objectives, and in Figs. 1(b)–1(d), color represents the
normalized fitness value. The testing points are scattered in
this 2-D search space, and they move to reach the global
maximum. Notably, in Fig. 1(b), due to the linear summa-
tion, we see a linear gradient with no regard to the RF
relevance of the values of S11 and D. In contrast, by using
the non-linear switching functions of (3) and (4), we can
control how to explore the 2-D objective space. Specifically,
we can achieve the following: (a) reduce the priority of
less important regions (i.e., false-positives) in the objec-
tive space, e.g., |S11(dB)| < 10 and D < 3, as shown in
Fig. 1(c), and (b) provide equal priority to all |S11(dB)| >10
points as long as they exhibit high directivity, as shown in
Fig. 1(d).
A second issue of linear summation functions is the over-

optimization of a single objective (i.e., over-fitting), which
can potentially produce designs with high fitness values that
are not truly optimal for all objectives. For example, for a
typical transceiver application, an antenna with S11(dB) in
the order of −30 dB offers nearly the same performance as
one with S11(dB) in the order of −40 dB. However, a design
with S11(dB) in the vicinity of −40 dB could provide a high
fitness value, which can trigger the optimization process
to stop, without truly optimizing the values of the other
objectives.

C. FORMULATION OF NON-LINEAR FITNESS
FUNCTIONS
The previous section explained the issues of multi-objective
optimizations that are based on linear fitness functions and
showed the advantages of non-linear fitness functions. In this
section, we provide the general mathematical formulation of
non-linear multi-objective fitness functions that eliminate the
issues of false positives and over-fitting, which significantly
slow down the heuristic optimizations. Specifically, we intro-
duce logistic activation functions, such as logsig and tanh, to
control the growth rate of each objective, and build a com-
posite fitness function as shown later in (5). The choice of
logistic functions is based on their ability to precisely con-
trol the objectives’ individual growth curves with desired
guidelines for gradient, upper limits, and lower limits [44].
Moreover, logistic functions produce objective functions that
are continuously differentiable, which is an essential feature
in gradient-based optimization algorithms [45]. Even though
specific use of logsig and tanh is shown in this paper, other
logistic functions with similar shapes can also be chosen.
The form of our proposed composite fitness function is

as following:

F =
N∑

n=1

⎧
⎨

⎩

N∏

m�=n
logsig(xm − bm)

⎫
⎬

⎭Hn(xn) (5)

where, Hn is a function of the nth objective that enables gra-
dient control (i.e., weight adjustment between the objective
terms), and can be defined using one of the following forms:

Hn(xn) = sgn(xn − an) (6)

Hn(xn) = wn · (xn ± kn)± c · ed·(xn−an) (7)

Hn(xn) = wn · (xn ± kn)± sgn(xn − an). (8)

In these expressions, sgn(x) denotes the generalized logistic
function [44] shown in Fig. 2(d), and can be expressed as:

sgn(x) = U − L

1 + e−γ x
+ L (9)
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FIGURE 2. (a)-(c) Fitness growth curves (y-normalized) for the topical functions
in (6)-(8). Specifically, (a) shows growth curve for saturated fitness, as per (6), (b)
shows growth curve for vigorously increasing fitness, as per (7), and (c) shows growth
curve for linearly increasing logistic fitness with desired gradient at threshold, as
per (8). (d) A standard logistic function, as per (9).

where U is the upper asymptote, L is the lower asymptote,
and γ is the rate of initial growth or final decay. The solid
lines in Figs. 2(a)–2(c) represent the functions in (6), (7),
and (8), respectively. At any point, the weights allocated
between the N objectives can be found from the gradients
of Hn functions of the respective objectives. Furthermore,
the product term,

∏N
m�=n logsig(xm − bm) ensures that while

improving the fitness of nth objective xn, all other objectives
denoted by subscript m are also satisfied beyond the targeted
threshold of bm (i.e., are ‘activated’), where bm < an. In the
following section, we discuss the selection criteria of the
individual fitness function, Hn to formulate different types of
fitness growth curves that may be desired in an optimization
process.

D. TOPICAL FUNCTION SELECTION
A critical step in multi-objective optimization is the design
of objective function, which should be performed accord-
ing to specific design goals of the problem under study. The
design of the proposed composite fitness function introduced
in Section II-C is controlled by the selection of the func-
tions in (6)-(8), each representing a unique design scenario.
Here, to investigate the performance of the proposed func-
tion as in (5), a rigorous analysis is performed with respect
to (6)-(8).
First, the function in (6) is used when the optimization goal

of an objective has an upper (or lower) limit. In this case,
it is desired that the goal does not contribute to the fitness
after the objective reaches a certain value. For example,
the contribution of an antenna’s S11 objective to the fitness
function should diminish as S11 approaches −30 dB, since
obtaining an S11 that is less than −30 dB is not typically

needed in antennas. In such cases, the choice of (6) allows
a gradient decay, as shown in Fig. 2(a), and the fitness
of the objective saturates (or reaches a plateau). For this
case, the upper and lower limits are defined by U and L,
respectively. Moreover, γ controls the gradient around the
threshold, and an controls the point after which the fitness
needs to be saturated. Specifically, higher γ corresponds to
higher gradient around an, and vice versa. For instance, if
|S11(dB)| is the objective xn, an = 10 can be considered to
begin the gradient decay when S11(dB) < −10 dB. Then,
the choice of U, L, and γ can be considered, depending on
the desired softness around the plateau. Notably, the initial
gradient, i.e., gradient at xn = an of this function is γ (U −
L)/4.

Secondly, for objectives that do not require an upper (or
lower) limit (e.g., gain of an antenna), functions in (7)
or (8) are respectively chosen, based on the required level of
aggression in optimization. For example, (7) provides expo-
nential change in the weight of an objective, with increasing
value of the objective, as shown in Fig. 2(b), and this rate
is controlled by parameters c and d, and threshold point
an. Specifically, higher d with lower c corresponds to steep
gradient change around an, and vice versa. This function is
useful when an objective needs to be vigorously optimized
near a known or estimated objective extremum, e.g., axial
ratio of a circularly polarized antenna. Finally, the function
in (8) changes the gradient of an objective within limits,
and around a threshold point, an, using linearly increasing
logistic function, as shown in Fig. 2(c). Here, γ controls
the rate of gradient rise or decay around the threshold point,
an, and U and L control the upper and lower limits of the
updated gradient. This function is useful when an objec-
tive extremum is unknown, thereby, its weight should be
updated within a range. For both functions in (7) and (8),
the general linear term, wn · (xn ± kn), with fixed gradient,
wn, defines the linear fitness in the pre-threshold regime, i.e.,
xn < an.

To select one of (6), (7), and (8), along with a suitable set
of different parameters, and to ultimately formulate a fitness
function that appropriately represents the optimization goals,
the following steps are suggested:

• Set the fixed weights, wn, based on the priority of the
objectives.

• Select a non-linear function from (6), (7), and (8) for
each objective, based on the use cases elaborated in the
preceding paragraphs of this section.

• Plot the individual fitness functions, as shown in
Figs. 2(a)–2(c) with arbitrary values of the hyper-
parameters, e.g., c, d, γ , an etc.

• Tune the hyper-parameters by observing the individual
fitness function plots mentioned in the previous step.

• Apply the desired activation terms [e.g., the logsig(xm−
bm) terms in (5)] on the individual fitness function and
form the composite fitness function, F.

• Further tune the hyper-parameters, if needed, with the
help of 2-D objective-space plots (or heat maps), as
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shown in Figs. 1(b)–1(d). For N objectives,
(N

2

)
number

of 2-D heat maps will be required.

We note that the preceding steps to appropriately formu-
late a fitness function can be conducted without running a
full-wave EM analysis, which saves significant time, and
is a practical method for formulating the composite fitness
function.

III. MULTI-OBJECTIVE OPTIMIZATION WITH THE
PROPOSED FUNCTION AND RESULTS
The effectiveness of the proposed class of multi-objective
functions for electromagnetic optimization is validated
through four examples including both analytical design prob-
lems and full-wave optimization. As our work focuses on
the formulation of objective functions used in optimiza-
tions the findings can be applied to various optimization
algorithms. Here, to illustrate the performance of our objec-
tive functions, we have chosen to use the particle swarm
optimization (PSO) algorithm [43]. PSO was chosen due to
its ease of implementation, and its well-known applications
for antennas [43], [46].
The PSO algorithm uses a population of Np particles,

where each particle explores the search space by updat-
ing its ‘position’ over Niter iterations with the help of its
‘velocity’. The position and velocity are calculated using
expressions (10) and (11), respectively. Here, vi(k) and xi(k)
are the velocity and the position of particle ‘i’ in the kth

iteration, respectively. In addition, pbesti(k) and gbest(k) are
the personal best position of a particle, and the best position
among the entire population in the kth iteration. Also, c1
and c2 are acceleration constants, and w is the inertia term.
Finally, rand1 and rand2 are uniformly distributed random
numbers between 0 and 1. Over the optimization process,
PSO requires to evaluate Np×Niter candidate solutions. More
details of the PSO algorithm are described in [47]. In our
optimization examples, the PSO hyper-parameters, namely
c1, c2 and w, are taken from [48]. To set an upper limit
on the number of objective function evaluation (i.e., total
computational time), Np is set to 30, as suggested in [43],
and Niter is set to 20, unless it is stated otherwise.

vi(k + 1) = w · vi(k)+ c1 · rand1 · [pbesti(k)− xi(k)]

+c2 · rand2 · [gbest(k)− xi(k)] (10)

xi(k + 1) = xi(k)+ vi(k + 1) (11)

For each antenna design problem, we consider a compari-
son between the objective functions using linear summation
shown in (1), and non-linear summation shown in (5).
Moreover, the objective vs. fitness curves were designed
to have the same gradient up to, or near the threshold point.
This is illustrated in Figs. 2(a)–2(c) for a single objective
variation. Also, the linear summation function does not con-
tain activation function terms. As shown in Figs. 2(a)–2(c),
at, or near the threshold point (e.g., xn = an), all the
curves exhibit the same gradient. The hyper-parameters
of (1) and (5), e.g., wn, an, bm, γ etc., are arbitrarily

TABLE 1. Fitness gradient of an objective in the two multi-objective functions and
parameter constraints.

chosen before running the optimizations with a view to
achieve an optimal set of objectives for the respective
design problems. The conditions relating the initial gra-
dients of Hn in (1), and (5) are summarized in Table 1.
Finally, to compare the numerical efficiency of the proposed
approach with respect to Pareto-front optimization, each
optimization problem is solved using the multi-objective
PSO (MOPSO) algorithm [49]. Hyper-parameters for the
Pareto-front search are also taken from [49]. The consid-
ered optimization problems are elaborated in the following
subsections.

A. OPTIMIZATION OF A LINEAR END-FIRE ARRAY
As our first optimization problem, we consider the design
of a uniformly spaced and uniform amplitude 10-element
end-fire array, as shown in Fig. 3(a), where the optimization
of excitation phases and inter-element spacing is pursued.
The goal is to obtain a highly directive end-fire array. The
end-fire array design is a well-known problem with ana-
lytical solutions. Specifically, an end-fire radiation criterion
is achieved by maximizing the array factor function along
θ = 0◦ using the condition, β = −kd [50, p. 299], where β
is the phase lag between the elements, and k = 2π/λ. The
parameter d represents the inter-element spacing and for an
end-fire radiation, d should be less than half a wavelength.
Also, end-fire array directivity maximization is proposed in
the Hansen-Woodyard design, which provides higher direc-
tivity than the ordinary end-fire array by using the criteria
d ≈ λ/4, and β ≈ −kd + 2.92/N, where N is the number
of array elements [50, p. 304].
Notably, further enhancement of directivity is possi-

ble, if optimization is pursued for parameters d and β,
since Hansen-Woodyard design uses approximations. Such
optimization is performed here by pursuing the following
three goals: (1) maximization of the end-fire directivity (i.e.,
maximization of the array factor in the end-fire direction
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FIGURE 3. (a) Geometry of a uniformly spaced and phased end-fire array, (b) objective space for Pareto-front search (denoted by yellow points) using the MOPSO
algorithm [49] and for all PSO runs (denoted by blue and orange points). During optimization, results under two algorithm configurations (e.g., Np = 30, Niter = 20, and Np = 15,
Niter = 10) are shown, (c) optimized d and β for all 1,000 runs under the aforementioned PSO configurations compared with a standard end-fire array and a Hansen-Woodyard
array, (d) directivity (in linear scale) of the end-fire array for all cases.

of θ = 0◦, (2) minimization of the first-null beamwidth
(FNBW), and (3) minimization of the first minor lobe or
the side lobe level. The design parameters, namely, d and
β are searched in the range of d ∈ {0.2dqw, 1.5dqw}, where
dqw = λ/4 and β ∈ {−1.5kdqw,−0.5kdqw}. Isotropic radia-
tors were used to represent the array elements. The chosen
multi-objective optimization functions for the typical linear
summation method, and the proposed non-linear method are
shown in (12), and (13), respectively,

F = 2 · AFmaj + 2 · (−AFmin + 1)+ 1 · (−B+ π) (12)

F = AAFmin × AB × sgn(−2AFmaj)U=2,L=−2,γ=2

+ AAFmaj × AB

×
[

2 · (−AFmin + 1)+ tanh

(−AFmin + 0.3

0.1

)]

+ AAFmaj × AAFmin ×
[
(−B+ π)− e

2
3 ·(B−5)

]
(13)

where, AFmaj, AFmin, and B represent the value of the array
factor at θ = 0◦ [50, p. 295], the value of the array fac-
tor at the first minor lobe, and the first-null beamwidth
(in radians), respectively, whereas AAFmaj , AAFmin , and AB

are the three activation terms of (13) involving AFmaj,
AFmin, and B respectively, and are defined as AAFmaj =
logsig(−AFmaj + 0.3), AAFmin = logsig(−AFmin + 0.6), and
AB = logsig(B − 83

99π). Notably, the two functions were
designed so that they follow the constraints mentioned in the
last paragraph of Section III, and in Table 1. Gradient con-
trol component, Hn, for this optimization problem is shown
in Table 2. Afterward, the objective coefficients of the lin-
ear function of (12) are updated as shown in (14) in an
attempt to apply gradient changes similar to (13), and the
optimizations are repeated with the updated linear function.

F = 1 · AFmaj + 2 · (−AFmin + 1)+ 1 · (−B+ π) (14)

As this study uses analytical calculations for each test-
ing point, it allows us to consider more ensemble attempts.
Specifically, the PSO optimizations were repeated 1,000
times for observing the variations resulting from the
heuristic nature of the optimization algorithm. The opti-
mized objectives obtained using the objective function-based
optimization and the Pareto-analysis are shown in Fig. 3(b).
Also, the optimized values of β and d, as an outcome of these
attempts with reference to the designs of the ordinary end-fire
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TABLE 2. Gradient control component, HN , for the end-fire array optimization using
our proposed objective function.

TABLE 3. Summary of optimization results for the end-fire array.

array (d = λ/4, β = −kd) and the Hansen-Woodyard array
(d = λ/4, β = −kd+ 2.92/N), are shown in Fig. 3(c). The
optimizations were repeated with a smaller population size
(Np = 15) and a fewer number of iterations (Niter = 10) to
observe the change in optimization results for both type of
functions. Under both PSO configurations (e.g., Np = 30,
Niter = 20 and Np = 15, Niter = 10), we observe that, the
linear objective function lead to a broader range of solutions
when compared to the proposed function. This indicates that,
under limited computational resources, the proposed function
is more likely to find ‘good’ solutions, due to the reduction of
‘false-positive’ regions and gradient control, when compared
to the linear objective functions.
Fig. 3(d) compares the directivity of our optimized designs

(based on our proposed and the linear objective functions
with Np = 30 and Niter = 20) with the directivity of the
ordinary and Hansen-Woodyard end-fire arrays. Notably,
the best designs from each objective function is chosen.
Also, Table 3 summarizes the details and performance of
all these designs. There is a difference of approximately
15◦ in phase and 0.07λ in inter-element spacing between
the optimized design by our proposed method and the
Hansen-Woodyard array. Also, the optimized array by our
proposed function provided at least 23.38% higher direc-
tivity, and 27.2% narrower beam than the one with the

initial linear objective function in (12). Notably, the Hansen-
Woodyard condition was derived to maximize the directivity
for infinitely large end-fire arrays. Since our analysis was
performed for a 10-element array, this condition might not
provide maximum directivity. Our heuristic optimization
based on the proposed non-linear objective function allows
slightly better optimization. Specifically, we achieved 7%
higher directivity with our proposed objective function than
the Hansen-Woodyard end-fire array. On the other hand,
the linear objective function resulted in improved directiv-
ity pattern after adjusting the objective weights, as shown
in (14). Notably, we may have to make multiple optimization
attempts by adjusting the linear objective function’s weights,
or providing additional iterations for the optimization pro-
cess, to converge to an optimal solution, which increases the
computational cost significantly.
In this example, all the experiments were completed under

a minute, since the analytical expressions for calculating the
end-fire array directivity are computationally inexpensive.
However, with both type of objective functions (e.g., linear
and proposed), the number of design evaluations were signifi-
cantly lower than the Pareto-front search. Specifically, during
the Pareto-front search, 10,000 designs were evaluated (with
Np = 100, and Niter = 100) whereas the objective functions
needed only 600 design evaluations in each optimization
attempt, which reduced the computational time by a factor
of approximately 16.67. However, within these 600 design
evaluations, the optimization result of the proposed objec-
tive function was significantly better (e.g., 23.38% higher
directivity) when compared to the result of the traditional
linear objective function.

B. OPTIMIZATION OF A PYRAMIDAL HORN ANTENNA
As our second optimization problem, we consider the radi-
ation pattern optimization of an X-band pyramidal horn
antenna, as shown in Fig. 4(a), at 10 GHz frequency. High
directivity and low side lobe level are typically desired from
such antenna. The far-field radiation characteristics of a
horn antenna can be controlled by changing the E-plane
and H-plane flare angles (ψe and ψh, respectively), and the
effective length of the horn (ρ), which is the distance of the
horn aperture from the phase center. Optimization of horn
antennas is commonly pursued using heuristic methods [51],
[52] due to its multi-dimensional nature.
In practice, the effective length and the flare angles can be

controlled by changing the horn length, P, and the aperture
dimensions, a1 and b1, respectively. At 10 GHz, a stan-
dard 20 dB horn antenna design is given in [50, p. 749].
Here, we pursue directivity enhancement and side lobe level
reduction of this reference antenna by considering P, a1,
and b1 as variables. We define three goals, namely, (1)
maximization of directivity along the horn axis (i.e., along
z axis), (2) minimization of the side lobe level at the E-
plane, and (3) minimization of the half-power beamwidth,
to enhance the antenna directivity. It is worth noting that,
the third objective is pursued with a view to supplement the
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FIGURE 4. (a) Geometry of a pyramidal horn antenna, (b) objective space for Pareto-front search (denoted by yellow points) using the MOPSO algorithm [49] and for all PSO
runs (denoted by blue and orange points). Optimization results under two PSO algorithm configurations (e.g., Np = 30, Niter = 20, and Np = 15, Niter = 10) are shown, (d)
E-plane directivity (in dB scale) of the horn antenna for all cases.

improvement of the first goal (e.g., directivity). Moreover,
the search space for the three parameters are P ∈ {8λ, 10λ},
a1 ∈ {3λ, 5λ}, and b1 ∈ {2λ, 4λ}, where λ is the wave-
length at 10 GHz frequency. The analytical expression in [50,
p. 750] is used to calculate far-field directivity along the
E-plane (e.g., y-z plane). We compare the optimization
results involving the linear objective function in (15) and
the proposed objective function in (16),

F = 2 · Dmaj + 1 · |SLL| + 1 · (−Bhp + 60) (15)

F = ASLL × ABhp
× [

2 · Dmaj + sgn(Dmaj − 19)U=20,L=0,γ=1
]

+ ADmaj × ABhp
× [

1 · |SLL| + sgn(|SLL| − 12)U=20,L=0,γ=0.4
]

+ ADmaj × ASLL

× [−Bhp + 60 − sgn(Bhp − 25)U=20,L=0,γ=0.4
]

(16)

where Dmaj, SLL, and Bhp are the directivity (in dB) along
the horn axis, the side lobe level (in dB), and the half-
power beamwidth, respectively. Moreover, ADmaj , ASLL, and
ABhp are the three activation terms of (16) involving Dmaj,
SLL, and Bhp, and are defined as ADmaj = logsig(Dmaj−17),
ASLL = logsig(|SLL| − 8), and ABhp = logsig(−Bhp + 30),
respectively. Similar to the example in Section III-A, the two
functions are designed following the constraints mentioned
in Table 1. Finally, we update the gradients of (15), as shown
in (17), to achieve results similar to the ones we expect to
obtain with (16).

F = 5 · Dmaj + 2 · |SLL| − 1 · (Bhp − 60) (17)

Fig. 4(b) shows the optimized objectives for different
types of objective functions under two PSO configurations
placed next to the MOPSO results. Here, the linear objec-
tive function converged to multiple distant points, similar to
the results obtained in Section III-A, Fig. 3(b). Also, when
fewer PSO particles and iterations are utilized, the use of the
linear objective function results to solutions, scattered in a
wide range of ‘optimal’ solutions, compared to the solutions
of the proposed objective functions that are more clustered
[see Fig. 4(b). Therefore, results with the proposed function

shows high robustness with the reduction of computational
resources.
Fig. 4(c) shows the far-field directivity (E-plane)

for optimized horn antennas obtained from optimiza-
tions using different objective functions. Here, patterns
for the median designs are shown, e.g., (Pe, a1, b1) =
(10λ, 5λ, 3.8325λ) for the linear function in (15),
(Pe, a1, b1) = (10λ, 5λ, 3.8327λ) for the linear function
in (17), and (Pe, a1, b1) = (10λ, 5λ, 3.2975λ) for the
proposed function in (16). Both the linear and the proposed
objective functions have nearly same directivity along θ = 0◦
(linear function results in only 1% higher directivity).
However, the side lobe level from the proposed objective
function is 9.3% lower than the ones from the linear func-
tions. Although the half-power beamwidth with the proposed
function is larger by 2◦, the desired goals of directivity
maximization and side lobe level reduction is achieved with
the proposed objective function. Notably, adjusting the lin-
ear objective function did not provide significant side lobe
level reduction, indicating the necessity for additional weight
adjustments and optimization repetition.
In this example, the objective function-based optimization

(with Np = 30, and Niter = 20) needed approximately
10 minutes to converge to an optimal solution, whereas,
the Pareto-front discovery effort (with Np = 100, and
Niter = 100) required approximately 2 hours and 47 min-
utes. This suggests a minimum computational cost reduction
by a factor of 16.67 with the objective function approach
when compared to the Pareto-front search using MOPSO
algorithm. Nonetheless, with a fixed number of objective
function evaluation, better performing designs (e.g., 9.3%
lower side lobe level) can be achieved using the proposed
function when compared to the traditional linear objective
function.

C. OPTIMIZATION OF A FIVE-ELEMENT YAGI-UDA
ANTENNA ON A MIURA-ORI SUBSTRATE
As our third example, we consider a full-wave numeri-
cal analysis based optimization of a five-element Yagi-Uda
antenna designed on a Miura-Ori substrate, as shown
in Fig. 5(a). Recently, Miura-Ori [53] patterns have
been proposed for reconfigurable and deployable antennas.
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FIGURE 5. (a) Yagi-Uda antenna on Miura-Ori substrate, (b) objective space for the optimized designs obtained using different methods, (c)-(e) two- objective plots for the
optimized designs obtained using different methods, (f)-(h) evolution of different design objectives over PSO iterations of the Yagi-Uda antenna.

Miura-Ori represents a class of origami with a system-
atic mathematical formulation for folding and unfolding.
But this design comes at the price of time-consuming geo-
metrical CAD model constructions, and optimizations [54].
Automated optimization using heuristic approaches could
play a crucial role for the fast modeling of such designs.
Here, optimization was conducted for 6 geometrical param-
eters, namely, the lengths of the five Yagi-Uda antenna
elements and their uniform inter-element spacing, d. Notably,
the inter-element spacing, d, is controlled by the folding
angle of the Miura-Ori substrate. The parameter space for
this optimization is given in [55]. The optimization goals of
this optimization are good impedance matching, high for-
ward gain, and low side lobe gain. Our origami modeling
toolset [55] was used to perform the automated modeling of
the Yagi-Uda antenna in ANSYS HFSS.
The two chosen objective functions, which combine the

individual goals, based on the typical linear summation

method and the proposed non-linear method, are shown
in (18) and (19), respectively,

F = 1 · (|S11(dB)| − 10)+ 5 · (
Gfw − 4

) + 3 · (−Gsl) (18)

F = AGfw × AGsl × 30 · tanh

( |S11(dB)| − 10

30

)

+ AS11 × AGsl ×
[
5 · (

Gfw − 4
) + e0.7(Gfw−5.5)

]

+ AS11 × AGfw × sgn(−Gsl)U=50,L=−50,γ=0.12 (19)

where, Gfw and Gsl are the forward gain (in dBi), and the first
side lobe level gain (in dBi), respectively, and AS11 , AGfw , and
AGsl are the three activation terms of (19) involving S11(dB),
Gfw, and Gsl, respectively. Specifically, they are defined as
AS11 = logsig(|S11(dB)| − 10), AGfw = logsig(Gfw − 3), and
AGsl = logsig[ − (Gsl − 1)]. Similarly to the two previous
examples, the choice of different terms in (18) was based
on the equal weight constraints near or around the threshold
points. The selection of the gradient control component, Hn,
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TABLE 4. Gradient control component, HN , for the Yagi-Uda antenna optimization
using our proposed objective function.

for the three objectives is given in Table 4. Additionally,
a second linear objective function, as in (20), which has a
different set of weights, is also considered with the goal of
optimizing the three objectives. Each objective function was
tested via five optimization attempts to observe the statistical
variations.

F = 3 · (|S11(dB)| − 10)+ 3 · (Gfw − 4
) + 3 · (−Gsl) (20)

Figs. 5(b)–5(e) show the optimized objectives found using
different objective functions next to the Pareto-front search
results. Also, Figs. 5(f)–5(h) show the evolution of S11(dB),
forward gain, and first side lobe gain of the best solution in
each PSO iteration. All five PSO attempts for each objective
function are shown by light colored lines and their average is
shown by dark colored line. On average, the proposed objec-
tive function resulted in lower S11(dB), and approximately
11% higher forward gain compared to the designs produced
by the linear objective function in (18). However, the linear
function resulted in significantly lower side lobe gain, which
indicates over-optimization of the side lobe objective at the
cost of under-optimization of others (e.g., S11 and broad-
side gain). On the other hand, the updated linear objective
function in (20) shows over-optimization of S11(dB) and
under-optimization of the two other objectives. The results
clearly highlight the problems associated with the definition
of appropriate weights in the linear objective function and
also the need for the proposed non-linear objective function,
especially for optimizations involving numerical analysis.
Figs. 6(a)–6(c) compare the S11 versus frequency, real-

ized forward gain versus frequency, and elevation radiation
pattern at 2.1 GHz of the optimized designs produced
by the two types of objective functions. It is seen that
the proposed objective function provided a well-matched
Yagi-Uda antenna at approximately 2.1 GHz, with approx-
imately 12% higher forward gain and good side lobe gain
(e.g., approximately 14.5 dB lower than the forward gain)
compared to the ones obtained using the linear objective
functions.
In this example, total time for each optimization attempt

(with Np = 30, and Niter = 20) was approximately
20 hours for both types of objective functions. On the
contrary, the Pareto-front discovery effort (with Np = 50,
and Niter = 50) required approximately 83 hours, which

FIGURE 6. (a) S11(dB) vs. frequency, (b) realized gain (dBi) vs. frequency, and (c)
elevation realized gain (dB) at 2.1 GHz for the origami Yagi-Uda antenna.

translates to minimum computational cost reduction by a
factor of 4.15 with both types of objective functions (e.g.,
linear and proposed). In essence, the results suggest that
the proposed objective function enables significant compu-
tational cost reduction when compared to MOPSO based
Pareto-front search, and better performing designs when
compared to a linear objective function under identical
computational budget.

D. OPTIMIZATION OF A PATCH ANTENNA WITH
PARASITIC ELEMENT
As our final example, we consider the optimization of
a microstrip patch antenna with U-shaped parasitic ele-
ments operating in a band around 5 GHz, as shown in
Fig. 7(a). The design is inspired by [56] and is selected
due to the widespread relevance of patch antenna designs
and large number of parameters in this design. As indicated
in Fig. 7(a), the parameters to be optimized are the length, L,
and width, W, of the main patch element, horizontal width,
W′, and vertical width, L′, of the parasitic elements, hori-
zontal gap, GW , vertical gap, GL, gap between two parasitic
elements, Gm, and the position of the coaxial feed from the
edge of the patch element, dfeed. The range of values consid-
ered for the optimization are shown in Table 5. The design
used an FR4 substrate with thickness of 4 mm, dielectric
constant of 4.4 and a loss tangent of 0.02. The design goals
were good impedance matching (low S11), high broadside
gain, and large impedance bandwidth. The gain was calcu-
lated at 5 GHz, and the bandwidth was defined based on
the frequencies where S11 ≤ −10 dB. The optimization rou-
tine was implemented in MATLAB, and Visual Basic (VB)
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FIGURE 7. (a) Microstrip patch antenna with parasitic elements, (b) objective space for the optimized designs using different methods, (c)-(e) two- objective plots for the
optimized designs obtained using different methods, (f)-(h) evolution of different design objectives over PSO iterations of the wideband microstrip patch antenna.

scripting was used to interface MATLAB with the ANSYS
HFSS full-wave simulation software.
For the optimization of the patch antenna considered here,

the performance of the typical linear summation objective
function shown in (21), and the proposed non-linear objective
function shown in (22) is compared, where G is the broadside
gain in dBi, BW is the bandwidth, and AS11 , AG, and ABW
are the three activation terms associated with S11(dB), G,
and BW terms, respectively.

F = 2.4 · (|S11(dB)| − 10)+ 20 · (G− 5)+ 20 · BW (21)

F = AG × ABW × 60 · tanh

( |S11(dB)| − 10

25

)

+ AS11 × ABW ×
[
20 · (G− 5)+ e0.5·G]

+ AS11 × AG ×
[
20 · BW + 2 · e2·BW]

(22)

Specifically, they are defined as AS11 = logsig(|S11(dB)| −
10), AG = logsig(G− 0), and ABW = logsig(BW − 0). Both
objective functions have the same weight distribution of goal
terms up to their defined corresponding thresholds, as in
the previous examples. For our proposed objective func-
tion, the gradient components, Hn, which were used for the
three objectives in this optimization, are defined in Table 6.
Furthermore, with the goal of optimizing the three objectives,
a second linear objective function is considered, as shown
in (23), with a new set of weights. Separate PSO optimiza-
tions were performed using (21), (23), and (22), and each
objective function was tested over five optimization attempts
to observe statistical variations. Both objective functions have
the same weight

F = 1 · (|S11(dB)| − 10)+ 30 · (G− 5)+ 30 · BW (23)
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FIGURE 8. (a) S11(dB) vs. frequency, (b) realized gain (dBi) vs. frequency, and (c)
elevation radiation pattern at 5 GHz for the patch antenna.

TABLE 5. Specified limits of the optimization parameters for the patch antenna.

Figs. 7(b)–7(e) show the optimized objectives found using
different objective functions next to the Pareto-front search
results. Figs. 7(f)–7(h) show the evolution of S11(dB), broad-
side gain, and bandwidth corresponding to the global best
solution over the PSO iterations. All five PSO attempts for
the objective functions are shown by the light colored lines,
and their average value is shown by the dark colored line.
On average, when compared to the linear objective functions
in (21), and (23), the proposed objective function provided
approximately the same return loss. However, 23.6% higher
broadside gain, and 147% higher impedance bandwidth was
observed on average, when compared to the linear objective
function in (21). Also, 10.7% higher broadside gain, and
53.7% higher impedance bandwidth was observed on aver-
age, when compared to the updated linear objective function
in (23). The performance of three optimized antenna designs,

TABLE 6. Gradient control components, HN , for the patch antenna optimization
using our proposed objective function.

produced by the linear and the proposed non-linear objective
functions, is compared in Figs. 8(a)–8(c) in terms of S11,
realized broadside gain (dBi), and radiation pattern at eleva-
tion at 5 GHz. In summary, the proposed objective function
resulted in a well-matched patch antenna at 5 GHz, with
approximately 60% and 32% wider −10 dB S11(dB) band-
width, 30% and 19% higher broadside gain at 5 GHz, and
more uniform gain performance over a wider frequency band,
when compared to the antenna designs calculated by linear
objective functions in (21) and (23), respectively. Notably,
the non-linear functions applied to the proposed function
enabled the PSO algorithm to find better designs with the
same number of full-wave simulations. As indicated by our
findings, multiple unique sets of objective weights may need
to be explored to achieve an appropriate design with the
linear objective function.
Each optimization with PSO (with Np = 30, and Niter =

20) required approximately 21 hours of time for both types
of objective functions. On the contrary, the Pareto-front dis-
covery effort (with Np = 50, and Niter = 50) required
approximately 88 hours, which translates to minimum com-
putational cost reduction by a factor of 4.2 with both types
of objective functions (e.g., linear and proposed). However,
as compared to the results of the linear objective function,
the optimization result of the proposed objective function
was significantly better (e.g., approximately 60% wider
bandwidth and 30% higher gain).

IV. CONCLUSION
In objective function based multi-objective optimizations,
the linear weighted sum approach of combining objec-
tives into a composite objective function is limited as it
leads to under-fitting and over-fitting. We introduced a new
class of objective functions that leverages non-linear prop-
erties of switching functions to provide adaptive gradient
control, fitness saturation, and threshold features, thereby
exploring the search space more optimally. Specifically, our
proposed approach eliminates issues of false-positive fit-
ness and over-fitting by integrating domain expertise in the
engineered objective function. To validate the performance
of our proposed optimization methodology, four antenna
optimization problems were considered. The first two
optimization problems involved analytical expression-based
computation of a 10-element end-fire array and a pyrami-
dal horn antenna. We also optimized an origami Yagi-Uda
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antenna, and a wideband patch antenna with parasitic ele-
ments to show the effectiveness of our optimization method
in full-wave simulations. Our proposed functions produced
better designs than the ones provided by linear objective
functions for all four problems compared to the linear
weighted summation type objective functions. In each case,
a cost comparison with a Pareto-front based optimization
(e.g., MOPSO) is also presented. In conclusion, our proposed
multi-objective functions enable heuristic optimization algo-
rithms, such as PSO, to efficiently find designs in fewer
steps, thereby saving computational time and memory.
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