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ABSTRACT Microwave imaging approaches generally require the knowledge of the complex incident field
distribution inside the imaging domain. This task can be accomplished by probing the observation domain,
thus resulting in a time-consuming process, or assuming a numerical/simulated model. Alternatively, the
incident field can be collected on the measurement domain, and the field distribution can be successfully
retrieved on the whole imaging space. In this paper, a full phaseless, two-step strategy is described,
where the phase of the incident field is retrieved by exploiting a spatial domain indirect holography
technique, applied to the acquisition points only. The retrieved complex incident field can be so used for
the reconstruction of the incident field inside the domain of interest. More specifically, a modal expansion
technique and a source reconstruction method are adopted and compared to perform the above task. Once
performing the characterization of the incident field distribution, the proposed strategy is included in
the framework of a phaseless inverse scattering problem, where intensity-only data of the total field are
involved. The effectiveness of the combined approach is demonstrated by considering an imaging scenario
which involves a series of breast models as inhomogeneous targets.

INDEX TERMS Microwave imaging (MWI), incident field modeling, spatial domain holography, phase
retrieval problem, phaseless microwave tomography.

I. INTRODUCTION

MICROWAVE imaging (MWI) techniques make use of
electromagnetic inverse scattering solutions to recon-

struct the features of a generic region of interest (ROI). Those
different approaches include radar-based modalities, where
only the target location can be determined, as well as qualita-
tive and quantitative reconstructions – the former considering
some restrictions on the physical properties of the object
under test (OUT), e.g., limited size for the Born approxima-
tion, low-contrast compared to the background medium in

the case of the Rytov approximation, or combination of both
approaches, as recently provided in [1]. For what concerns
the quantitative case, pertaining strategies aim at retrieve
the dielectric profile of a certain object under test (OUT),
limited within the imaging domain D. Generally speaking,
the acquisition setup consists of a series of transmitters and
receivers, located on a certain measurement domain S, where
data are collected. Among the field captured in the pres-
ence of the target to be imaged, namely the total field,
the (complex) distribution of the incident field, i.e., the field
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evaluated without the presence of the target, needs to be
known. Apart from the knowledge of the incident field data
on the domain S, the incident field distribution inside the
domain D becomes crucial. On this context, the sampling
of the whole domain D can be performed, resulting in a
cumbersome measurement stage [2]. Therefore, rather than
performing intensive measurements on the domain D, the
incident field can be numerically modeled [3], [4], or, alter-
natively, it can be retrieved from measurements performed
along S. Furthermore, phase measurements at microwave
frequencies can suffer from poor accuracy, while phase-
less near-field data result to be more robust with respect to
probe positioning errors, in the case of a multi-view imag-
ing system [5]. Performing a phase retrieval (PR) stage for
the total field can be difficult to realize, when the measure-
ment space data does not have enough cardinality to span
the scattered field space. Furthermore, even if the inverse
strategy, based on the prior estimation of the scattered field
phase from amplitude-only data, allows a better control of
the non-linearity [6], [7], an inverse single-step approach is
preferred, since the errors in the phase computation of the
total field could propagate to the second step, resulting in a
non-linear amplification of such error. The authors believe
that the PR stage, limited to the incident field modeling only,
could not affect the overall reconstruction results, as com-
pared to the case where the complex incident is supposed
to be known.
According to the above statements, in this paper a full

phaseless microwave imaging approach is described.
The proposed inverse scattering problem (ISP) involves

two main steps:
1) the (complex) incident field distribution evaluation

from amplitude-only data;
2) the effective inverse strategy, where the retrieved inci-

dent field data and the amplitude-only data of the total
field are exploited.

Specifically, the paper mainly deals with the reconstruc-
tion method used for the incident field data evaluation,
pertaining to the first step. The estimation of the incident
field is based on a two-stage strategy, where, exploiting a
spatial domain indirect holography technique (SDIHT), the
incident field phase along the measurement points in S is
retrieved first. Once the incident field is known in complex
terms, two alternative approaches are investigated to retrieve
the incident field distribution inside the imaging domain,
namely the modal expansion (ME) technique and the source
reconstruction method (SRM).
In the second step, the retrieved incident field is provided,

together with amplitude-only data for the total field, and it is
given as data input to a phaseless contrast source inversion
method (P-CSI), validated for 2-D transverse magnetic (TM)
scattering problems. The effectiveness of the full phaseless
approach is investigated in the framework of an imaging sce-
nario. Furthermore, an insight on the inherent phase retrieval
capability of the method for the unused phase of the total
field is described.

FIGURE 1. Spatial domain indirect holography technique (SDIHT) scheme, applied
to a microwave imaging context, for the phase recovery of the incident field in the
measurement domain.

II. METHODS AND PROCEDURES
A. SPATIAL DOMAIN INDIRECT HOLOGRAPHY
TECHNIQUE (SDIHT) AS INCIDENT FIELD PHASE
RETRIEVAL STRATEGY
As opposite to the standard direct holography, the indirect
holographic approach assumes scalar near-field measure-
ments; those intensity data are exploited to perform a
phase retrieval step, thus recovering the complex near
field distribution on the sampled points. Specifically, the
SDIHT directly operates in the spatial domain, thus avoid-
ing the spectral component analysis of the samples, as
provided in [8]. Secondly, instead of performing measure-
ments on two-planes, as conventionally done in other phase
retrieval techniques [9]–[11] or alternatively by using two
co-planar probes [12], the SDIHT approach performs a set
of amplitude-only measurements for each probe location,
by introducing a proper phase shift to the reference field
data (Fig. 1). As opposed to the conventional holography
pattern solution, which is derived starting from a scattered
field sampling on the whole DOI, in this work the SDIHT
is exploited as a phase retrieval method along the receiving
points only.
As a matter of fact, the sampling in the SDIHT is limited

to the acquisition curve S, where the transceivers are located.
Then, for each transmitter location, the incident field values
along the receiving points on S are retrieved, exploiting the
SDIHT through amplitude-only measurements.
The use of this technique comes up to overcome a lim-

itation of the imaging solution previously proposed by the
authors, consisting of a phaseless inverse scheme based on
the contrast source inversion method (P-CSI) [13], [14]. In
the above method, the phaseless inverse scattering problem
considers amplitude-only data for the total field, while
assuming the knowledge of the incident field distribution
in complex form, which is obtainable from measurements
or numerical models. The latter assumptions are quite com-
mon in the microwave imaging context, where the incident
field distribution is assumed as a system characterization, to
be measured, or modeled, once and stored [15]–[17].
The use of the SDIHT, with a limited sample space, i.e.,

along the measurement curve S only, allows to realize a com-
plete phaseless condition in the inverse scattering problem,
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FIGURE 2. Spatial domain indirect holography technique (SDIHT) - retrieved phase
vs. phase from the numerical model of the incident field, evaluated on the receivers’
locations along the measurement curve S.

without performing a more dense near-field sampling of the
incident field inside the DOI.
Accordingly, the estimation of the incident field within

the imaging domain D is composed of two steps. Firstly, by
applying the SDIHT, three squared amplitude measurements
are performed, for three different phase values ϕ, imposed
by the phase shifter along the feedback line (Fig. 1), for each
transmitter-receiver couple. This measurement stage results
in the following squared amplitude data:

Iϕ =
∣
∣
∣EiS + Eϕ

R

∣
∣
∣

2

= |EiS + ERO · ejϕ |2 for ϕ ∈ (−π/2, 0, π/2) (1)

where ERO is the reference signal, while EiS is the field
coming from the receiving antenna. The squared amplitude
signals Iϕ are processed in order to retrieve the phase of
the incident field, on a fixed receiver location, as detailed
in [18]:

tan−1

[(

I0 − I−π/2
) − (

I0 − Iπ/2
)

(

I0 − I−π/2
) + (

I0 − Iπ/2
)

]

= φEiS
− φERO (2)

where φEiS
is the retrieved phase of the incident field, while

φERO can be set by adjusting the cable length L. The mea-
surements are performed for each transmitter and among the
different receiver locations.
The SDIHT is tested by considering the incident field of

a TMz line source, numerically represented in the form of a
Hankel function of the second kind −H(2)

0 . The three squared
amplitude signals are evaluated for each receiver position
along S, while fixing the transmitter position (Fig. 1). The
process is repeated for all the transmitter locations. The
comparison between the phase of the numerical model and
the retrieved phase values for a selected TX position, as a
function of the RX angle, is shown in Fig. 2.

B. INCIDENT FIELD RECONSTRUCTION – MODAL
EXPANSION (ME) TECHNIQUE
Once the complex incident field among S is retrieved, the
incident field distribution within the imaging domain D needs
to be found. The incident field distribution can be obtained by
applying a modal expansion (ME) technique [19], [20]. For

the case at hand, this task is accomplished by considering a
polynomial expansion in terms of Hankel functions, namely:

Ei(r, θ) = − j

4

Nc
∑

n=−Nc
cnH

(2)
n (kbr)e

jnθ(r) (3)

where (r, θ) are the coordinates of the observation point with
respect to the transmitter location, while kb is the wavenumber
in the background. The unknown cn coefficients are prelimi-
narily obtained by minimizing the squared distance between
the field into Eq. (3) and the retrieved incident field along S.
The truncation number Nc is properly chosen by following the
specifics outlined in [19]. The least squares problem is solved
through the use of the Singular Value Decomposition (SVD),
applied to the following matrix form:

EiS = Hc (4)

whereH is thematrix including theHankel functions. Once the
expansion coefficients are known, the incident field in D -EiD-
can be computed by using again Eq. (3), and considering the
discretization grid nodes in D as observation points.

C. INCIDENT FIELD RECONSTRUCTION – SOURCE
RECONSTRUCTION METHOD (SRM)
In alternative to the ME technique, once performing the
SDIHT, a Source Reconstruction Method (SRM) can be
exploited in order to obtain the incident field distribution
in D, [21], [22]. Based on the equivalence principle, the
SRM is an antenna diagnostics technique able to compute
the current distributions, which are evaluated on a closed
surface S′ around the antenna under test (AUT), starting
from a series of measurements performed on arbitrary point
series. Once the equivalent currents are obtained, the radiated
fields outside the equivalent current surface can be obtained
by using a numerical forward solver. Generally speaking,
for a fixed transmitting position, the electric field along the
measurement curve S can be defined as:

E(�r) = EJS(�r) + EMS(�r) (5)

where EJS is the field contribution due to the electric current
density JS, while EMS denotes the contribution coming from
the magnetic current density MS. In the case of TMz condi-
tion, the existence of the z-component of the electric current
only - JzS - and the two orthogonal magnetic currents - Mx

S
and My

S, allow us to express the corresponding contributions
as [23], [24]:

E
JzS
z (�r) = −ωμ0

4

∫
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(−→
r′

)

H(2)
0

(
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r′ |

)

dS′ (6)

E
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S
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4j

∫
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)
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(2)
1
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)
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dS′

(7)

E
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S
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∫
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(8)
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TABLE 1. Incident field reconstruction – root mean square error (RMSE).

Therefore, starting from the knowledge of the incident field
in S, coming from the SDIHT stage, by combining the
three contributions, the unknown equivalent currents can be
found. This problem is solved by using a conjugate gra-
dient least square method (CGLS) following the approach
provided in [25]. Once the currents are known, the incident
field distribution EiD inside the domain D can be computed
according to the radiation operators in (6)-(8).
Before applying the ME or the SRM technique, the

SDIHT data is corrupted with an additive noise, by using
the following expression [26]:

E
inoisy
S = EiS + max

(

EiS

) η√
2
(θ1 + jθ2) (9)

where θ1,θ2 are two real vectors, whose elements are ran-
dom values uniformly distributed in the range [−1, 1], while
parameter η indicates the noise percentage. The reconstruc-
tion results coming from the ME and the SRM methods, with
a 3% of noise, i.e., η = 0.03, are depicted in Fig. 3, and com-
pared with the numerical model, for a certain transmitting
location. The root mean square error (RMSE) is assumed
as a quantitative metric for the reconstruction, whose results
relative to the depicted case are listed in Table 1.

III. RESULTS
A. MWI RESULTS
Herein, the validity of the incident field reconstruction
described in the previous section is analyzed within the
regularized P-CSI iterative method for microwave tomogra-
phy (MWT). The targets consist of a series of MRI-derived
breast models [27], with different densities. For each model,
a tumour inclusion has been added, as shown in the corre-
sponding ground truth of Figs. 4(a)-7(a). The EM properties
are imported according to the values obtained from the
dielectric characterization of a set of realized mimicking-
tissue phantoms for the involved tissues, as discussed
in [28].
Each target is surrounded by 32 transceivers, displaced

along the measurement domain S, with an operating
frequency equal to 2 GHz, while immersed into a cou-
pling medium with εr = 18 as relative permittivity, which
is selected for the specific breast imaging case [29]. The
incident field required by the inverse strategy is retrieved
from one of the combined strategies presented in the
previous sections. Specifically, since the SDIHT + ME and
SDIHT + SRM exhibit similar performance in the incident
field reconstruction for the case of a non-directive source,

FIGURE 3. Example of incident field reconstruction - (a) numerical model, retrieved
incident field in D in the case of (b) combined spatial domain indirect holography
technique (SDIHT) and modal expansion (ME) and (c) SDIHT combined with the source
reconstruction method (SRM). The normalized real part is shown.

the differences achieved in the imaging results by using the
above two methods are not further investigated.
The synthetic total field data are numerically gener-

ated by using a forward solver based on the method of
moments (MOM) [30], [31]. The phase of the total field
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TABLE 2. Quantitative metrics for the different breast models.

is neglected within the inverse strategy. Moreover, as high-
lighted by the authors in [32], [33], the cost function, which
combines the contributions relative to the measured and the
imaging domain, is defined in a compact form as [34]–[36]:

F
(

χ(n)
)

= αS

NTX∑

v=1

∣
∣
∣

∣
∣
∣r(n)S,v

∣
∣
∣

∣
∣
∣

2

S
+αD

NTX∑

v=1

∣
∣
∣

∣
∣
∣ρ

(n)
D,v

∣
∣
∣

∣
∣
∣

2

D
(10)

where r(n)S,v is the discrepancy in the S domain between the
phaseless measured data and the correspondent scattering
model, while ρ

(n)
D,v includes the error affecting the scattering

equation in the conventional complex form within D [35],
whereas the terms αS−D represent normalization factors.

Furthermore, a regularization layer is included, based on
the total variation (TV) technique [37]. More specifically, the
discrete version of the following operator is implemented in
the contrast update stage [38]:

FR(χ) = 1

A

∫

D

|∇χ(r)|2 + δ(n)

∣
∣∇χ(n)(r)

∣
∣2 + δ(n)

dA (11)

where A denotes the area of the imaging domain D, while
δ(n) is the steering parameter, responsible for the influence
of the regularization as function of the number of iteration
and set to δ(n) = F(χ(n))/(
x
y), where (
x
y) is the
area of the single unit cell in the discretization grid. The
iterative procedure is stopped if the maximum number of
iterations is achieved or, alternatively, if the decrease in the
cost function is less than 10−5 between two consecutive
iterations.
The inversion strategy is tested for different inhomogeneity

levels of the breast targets. The corresponding reconstructed
real permittivity profiles are shown in Figs. 4(b)-7(b).
The quantitative aspects of the permittivity versus the

ground truth data are evaluated with a series of standard
error criterion. For the case at hand, the RMSE for the rela-
tive permittivity is evaluated with reference to the considered
targets [39].
As a second metric, the cross-correlation coefficient ρεr

is used to qualitatively estimate the similarity between the
actual and the reconstruction quantities. In the case of the
dielectric contrast, this can be defined as:

ρεr = εrtrue · εrest
∣
∣εrtrue

∣
∣
∣
∣·|εrest

∣
∣

(12)

FIGURE 4. Phantom ID: 010204 – Ground truth (a) and reconstructed real
permittivity (b).

The two above-mentioned metrics, evaluated for the dif-
ferent reconstructed targets, are summarized in Table 2. The
values of the metrics shows that the P-CSI, with the inclusion
of the incident field strategy from phaseless data, provides
good cross-correlation results, with a reduced accuracy in
terms of RMSE. At this stage, the method is able to identify
the abrupt permittivity variations, i.e., localizing the region
with a high contrast, while the reconstruction is less quanti-
tatively accurate in the case of low-contrast portions, such as
the malignant-modeled region within the fibroglandular tis-
sue. This limitations comes from the nature of the CSI itself,
while the SDIHT-based reconstruction methods for the inci-
dent field does not impact on the quantitative reconstruction
capabilities of the method.

B. A SIDE NOTE ON THE PHASE RETRIEVAL
CAPABILITY OF THE P-CSI METHOD
Apart from the analysis of the electromagnetic properties
reconstruction, the authors want to highlight an additive
peculiarity of the phaseless reconstruction method. Let us
consider the contribution of the cost function used in the
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FIGURE 5. Phantom ID: 012304 – Ground truth (a) and reconstructed real permittivity (b).

FIGURE 6. Phantom ID: 012204 – Ground truth (a) and reconstructed real permittivity (b).

FIGURE 7. Phantom ID: 071904 – Ground truth (a) and reconstructed real permittivity (b).

iterative scheme, and relative to the phaseless data samples
only, namely:

FS(ω
(n)
v ) = αS

NTX∑

v=1

∣
∣
∣

∣
∣
∣r(n)S,v

∣
∣
∣

∣
∣
∣

2

S
(13)

The term r(n)S,v into Eq. (13) gives the residual,
defined as:

r(n)S,v = ∣
∣EtotS,v

∣
∣2 −

∣
∣
∣Etot−modelS,v

∣
∣
∣

2
(14)
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It indicates the discrepancy between the measured inten-
sity of the total field |EtotS,v|, and the corresponding value,
obtained from the reconstruction model, |Etot−modelS,v |.

For the latter, according to the scattering problem, we
have:

Etot−modelS,v = EincS,v + GSωv (15)

where ωv is the contrast source obtained at the end of
the iteration, while the parameter v denotes the vth trans-
mitter location along the acquisition curve, and GS is
the Green’s operator involving the measurement points
on S.
The gradient relative to the cost function into Eq. (13),

used in the conjugate gradient scheme for the contrast
source (CS) update and calculated through the Fréchet
derivative, at the nth iteration, results to be:

g(n)
S,v = G∗

S

[

2Etot−model(n−1)rn−1
S,v

]

(16)

where [*] denotes the adjoint operator. Eq. (16) clearly shows
that the approximation of the total field coming from the
model is included within the residual error calculation. The
discrepancy between the retrieved total field at the end of
the iteration process, and the total field coming from the
forward solver – for which the phase content has been
neglected in the inversion strategy - is shown in Fig. 8.
This is relative to the last analyzed breast case, for all
the TX-RX pairs, in terms of both amplitude and phase.
Similar results can be obtained for the remaining test-cases.
Consequently, if the convergence is achieved, also the total
field, in its complex form, is implicitly retrieved within
the CS update stage. Therefore, the lack of the measured
phase information of the total field, due to the phaseless
approach, results to be compensated within the iterative
update procedure of the contrast source, by exploiting the
modeled (and not measured) total field in its complex form,
namely Etot−model.

IV. CONCLUSION
In this contribution, a spatial domain phase retrieval tech-
nique has been exploited for microwave imaging purposes.
Originally proposed for holography applications, the above
technique has been used to retrieve the phase of the incident
field, starting from intensity-only data, which are evalu-
ated along the measurement domain. Once the incident
field is retrieved in its complex form, a modal expansion
technique or, alternatively, a source reconstruction method,
has been used to reconstruct the complex incident field in
the imaging domain. The retrieved incident field quanti-
ties are then included within a phaseless inverse scattering
method, in which a phaseless acquisition of the total field
is adopted to recover the electromagnetic properties of the
target under test. Consequently, the combined approach sug-
gests the potential usage of amplitude-only data for imaging
applications. As future investigations, the extension of the

FIGURE 8. Reconstruction Errors for the total field at the end of the iterations –
Normalized Amplitude Error (a) and Phase Error (b).

proposed method to realistic 3D breast imaging will be
considered. Furthermore, even if actually applied to simple
TMz line sources, the extension of the outlined approach
will be considered in the case of incident field reconstruc-
tion for realistic antennas with specific shape and near-field
distribution.
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