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ABSTRACT A horizontal planar scanner with an approximate size of 40 m x 40 m has been implemented
using the Unmanned Aerial Vehicle (UAV) technology. The UAV is not wired to the ground to maintain
the flexibility and short setup time of a non-tethered flight. In this configuration, the UAV-mounted
continuous-wave source is not phase-locked to the on-the-ground receiver. A dual-polarized reference
antenna placed on the ground is hence used to retrieve the relevant phase information. The presented
approach has been applied on the Pre - Aperture Array Verification System (Pre -AAVS1) of the Square
Kilometre Array, which is a digital beamformed array with 16 active elements. An inverse source technique
has been applied on measured Near-Field (NF) data acquired on two different sets of points (one for each
electric field component) from all the receiver channels. In this way, Embedded Element Patterns (EEPs),
array calibration coefficients and pattern have been determined from NF data only. The achieved results
have been validated using a complementary set of Far-Field (FF) measurements and simulations.

INDEX TERMS Antenna measurements, near-field measurements, unmanned aerial vehicle, digital
beamforming array, phased-array radio telescopes, array calibration.

I. INTRODUCTION

N RECENT years, UAV technology has been exper-

imented as antenna measurement solution [1]-[3] for
very large antennas that cannot be placed in an ane-
choic chamber or have to be characterized in-situ.
Due to its portability, low cost, and ability to per-
form arbitrary paths, the UAV proved to be a powerful
tool for Far-Field (FF) measurements [4]-[13]. However,

Near-Field (NF) strategies [14], [15] become necessary
when the Antenna Under Test (AUT) is so large that the
Fraunhofer distance (greater than hundreds of meters) is no
longer compliant with flight altitude regulations. In these
cases, a Near Field to Far Field (NF-FF) transformation
can be used to determine the FF quantities of interest from
NF data. Such technique generally requires the knowledge
of both magnitude and phase of the sampled NF signal.
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FIGURE 1. The UAV equipped with the transmitter, balun and dipole antenna flies
over the array under test (pre AAVS1 array). On the right (inside the white circle):
reference antenna exploited for the phase retrieval.

However, in a UAV-based measurement setup, where source
and receiver are generally not connected, the measured phase
is continuously drifting during the flight.

One solution to overcome this problem is to con-
nect (tether) the UAV to the ground equipment with a
RF-over-fiber link [15], [16] to provide a valid phase ref-
erence. However, the UAV flight is constrained by the
presence of the cable that makes the flight more difficult
to perform and to setup. This is especially cumbersome
for horizontal scans where the UAV has to fly above the
AUT. Another possibility is to resort to phaseless tech-
niques [2], [17] or phase retrieval algorithms [18], [19], e.g.,
alternating minimization methods, least squares formulations
and lifting methods. These methods rely on magnitude-only
measurements and minimize a nonlinear and non-convex cost
functional. For this reason, these techniques could lead to
an ill-posed problem that suffers of local minima. Another
possible solution to avoid phase measurements is the use of
an additional (reference) link between source and receiver.
This is the case of interferometric [20]-[21] and holographic
techniques [22], [23] where magnitude-only measurements
of combinations of direct and reference signal are generally
used.

In this work, the additional link between source and
receiver is achieved through a known antenna (herein after
referred to as the reference antenna) that is placed in the
proximity of the AUT (see Fig. 1). Signals from both the
AUT and reference antenna are sampled (magnitude and
phase) by a common receiver that is not phase-locked to the
continuous-wave source placed on-board the UAV. A phase
reconstruction method is hence proposed that uses the mea-
sured phase difference between AUT and the reference
antenna signals. This method can be seen as a generalization
of the standard procedure [24] found in FF test ranges which
uses a reference antenna to retrieve the phase information.
However, in the standard procedure, source and reference
antenna are fixed while the AUT rotates. In the present
UAV-based measurement setup, the source is instead moving
with respect to both the AUT and the reference antenna
(see Fig. 1). The proposed technique allows to maintain
the advantages of a non-tethered flight. Furthermore, the
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NF-FF transformation problem remains linear through the
availability of the reconstructed phase information.

Due to the non-regularity of the UAV path, (e.g., not
planar, or spherical) the inverse source approach has been
selected [25], [26] as NF-FF transformation strategy. This
procedure allows to compute the desired FF pattern through
equivalent electric and magnetic currents defined on a vir-
tual surface enclosing the AUT. Such equivalent currents are
determined from the NF measured data through an inverse
problem.

Experimental results on a VHF array of 16 active
elements with digital beamforming are used to demon-
strate the technique. The considered array is the Pre -
Aperture Array Verification System (Pre -AAVS1) (see
Fig. 1) of the Square Kilometre Array [27]-[30] located
at the Mullard Observatory in Cambridge (UK). Embedded
Element Patterns (EEPs), calibration coefficients and array
pattern are obtained from a horizontal NF planar scan with
an approximate size of 40 m x 40 m. To the best of authors’
knowledge, such a large size has never been reached with
conventional mechanical scanners.

In Section II, the AUT and its digital acquisition system
are presented. The measurement setup and the phase recon-
struction method through the reference antenna are discussed
in Section III. Results on the NF-FF transformation at
175 MHz are presented in Section IV. Finally, some
conclusions are drawn.

The novel contributions of this work are:

1) A large (almost 40 m size) NF horizontal scanner that
provides both magnitude and phase is implemented using a
UAV;

2) Differently from other solutions in the literature, such
a scanner is implemented using a non-tethered UAV to
maintain flight flexibility, agility and short setup time;

3) The two tangential components of the electric field
used as input in the NF-FF transformation are sampled on
two different sets of points.

4) To the authors’ knowledge, this is the first time that
an inverse source NF-FF transformation is applied to UAV
measurements of an array with digital beamforming.

5) The calibration of the digital beamformed array is
performed on the transformed EEPs.

Il. THE ANTENNA UNDER TEST AND ACQUISITION
SYSTEM

The results presented in this paper have been obtained dur-
ing the development of the Square Kilometre Array (SKA)
low-frequency instrument (50-350 MHz) [31]. In this frame-
work, the Pre - Aperture Array Verification System (Pre
-AAVS1) (see Fig. 1) is located in Mullard Observatory in
Cambridge (UK) and is composed of 16 active dual-pol
log-periodic elements arranged in a pseudorandom (ape-
riodic) configuration (see Fig. 2). The average inter-
element (center-to-center) spacing is approximately 1.8 m.
Each array element, called SKALA-2, is a 9-dipole log-
periodic antenna equipped with a differential Low Noise
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FIGURE 2. Configuration of the Pre - Aperture Array Verification System (Pre
-AAVS1) and el 1t numbers. Inner (el 1t 12) and outer (element 15) elements are
highlighted in red.

Amplifier (LNA) integrated on the top. The antenna has a
footprint of 1.2 m x 1.2 m and an overall height of 1.8 m.
Detailed pictures, dimensions and performance can be found
in [32], [33].

The array has an overall size of 9.2 m (see Fig. 2) and
is placed over a ground plane mesh of 16-m diameter. One
polarization is along South-North (y-axis) direction whereas
the orthogonal polarization (x-axis) is in the West-East
direction.

In this receiving system, the two polarizations of
each antenna are connected to the analog inputs of a
Tile Processing Module 1.2 (TPM) [34], the precursor to
the TPM that is used for Phase One of the SKA. The
TPM houses 32 Analog to Digital Converters (ADCs), with
a programmable amplifier connected to each, and two Field
Programmable Gate Arrays (FPGAs). The voltage signals
are sampled at 800 MS/s, generating an observable band
of 400 MHz. The digitized and amplified signals pass
through a polyphase filter bank which splits the band into
512 frequency channels of ~92.6 kHz width, spaced by
781.25 kHz. Even if a real-time digital beamformer is present
in this system, the beamforming has been performed offline
exploiting all the digitized signals to achieve more flexibility
e.g., perform offline calibration. A server hosts the monitor-
ing and control software which can initialize and configure
the TPMs [35], as well as the data acquisition system [36].

The large size of this radio telescope prototype oriented
the development of the large NF scanner presented in this
work. Moreover, the presence of active antennas constrained
the UAV to operate in TX mode.

A previous prototype has been already characterized using
a FF flights [30] with good results. The NF approach
presented in this work has been investigated as a valuable
alternative for the test of even larger arrays, e.g., SKA-low
full stations. For such arrays, the FF condition cannot be
reached within the flight altitude regulation limits, generally
of 120 meters.
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FIGURE 3. Yellow and blue line represent the UAV path for the y-oriented raster
(view from above). Black, red and green dots represent the array, the considered
elements and reference antenna, respectively.

lll. NEAR-FIELD PLANAR SCANNER

Planar NF scanning is a well-established technique for
antenna characterization [37]. The probe usually scans a rect-
angular grid with constant spacing (usually half wavelength)
on a plane. Other planar acquisitions are also possible, e.g.,
spiral [38] or planar with non-constant spacing [39]. The
measurement is usually combined with a NF-FF transforma-
tion in order to obtain the AUT pattern.

A. UAV AND SCAN STRATEGY

The core of the proposed strategy is an Unmanned Aerial
Vehicle (UAV) (Fig. 1) equipped with a continuous-wave
RF source. Through a preprogrammed flight path, the UAV
is capable to perform autonomous navigation. Quasi-planar
flights (Fig. 3 - 4) were performed by the UAV acting as a NF
scanner. More precisely, the micro hexacopter was equipped
with a continuous-wave synthesizer, a balun and a dipole
antenna. The transmitter power was 5 dBm. An attenuator
of 30 dB was inserted in order not to saturate the antenna
LNA. The UAV-mounted dipole (aluminum tube) was half
wavelength at 175 MHz with a diameter of 6 mm. The
UAV position was acquired by a differential GNSS system
with a few centimeters of accuracy. Such position accuracy
can be considered acceptable at the considered frequency
of 175 MHz (wavelength 1.7 m). The UAV orientation was
measured by the onboard Inertial Measurement Unit with an
accuracy of about 2 degrees.

The dipole antenna onboard the UAV transmits only one
field component. Therefore, two quasi-planar flights were
performed to acquire both field components (labeled by
x-oriented raster and y-oriented raster). In this scan strat-
egy (differently from standard NF setups), the samples for
the two field components are not co-located. Nevertheless,
such information is manageable within the inverse source
method described in Section IV-B.

The UAV path of the y-oriented raster is shown in Fig. 3 as
a 2D view whereas both x-oriented and y-oriented rasters
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FIGURE 4. The extracted path for the two UAV flights: x-oriented (green) and
y-oriented (blue line) rasters.

are shown together in Fig. 4 in a 3D fashion. Each of these
two quasi-planar rasters scans a square area of approximately
40 m x 40 m. From each flight, a scan of 36 m x 36 m has
been extracted as input for the NF-FF transformation. This is
because measurement points where the UAV curved (yellow
points in Fig. 3) are source of uncertainty due to the rapidly
changing UAV angles (UAV angles are not properly sampled
in these regions). For this reason, these points were discarded
and rectilinear paths only (e.g., blue points in Fig. 3) were
considered as input of the NF-FF transformation. During
each flight, complex voltages were acquired at each array
element by a complete digital back-end (already described in
Section II). With a maximum speed of 3 m/s, the UAV flight
time was about 15 minutes (without landing and takeoff)
for each flight. The mean altitude of the UAV flight was
approximately 25 meters. Hence, the NF region of the array
under test was scanned.

Flights were programmed as constant altitude rasters with
a constant spacing of half wavelength (0.9 meters) between
the parallel linear cuts. However, since the UAV is not
capable to precisely follow the programmed flight (see the
measured trajectories in Fig. 3 - 4), the half wavelength
sampling criterion was not fulfilled in all the scanning
regions (orthogonally to the UAV path direction, e.g., along
x-axis for y-oriented raster, see Fig. 3), nevertheless, an
average distance of half wavelength was achieved. The max-
imum (orthogonal) distance was about one wavelength, this
condition occurs for less than one percent of the useful flight
path (blue line in Fig. 3). On the other hand, the field is heav-
ily oversampled along the UAV path thanks to the very fast
receiving acquisition system on the ground (average distance
between two successive samples is less than 1 cm).

During each flight, the dipole over the UAV was always
tangential to the UAV path e.g., in the x-oriented raster
the dipole was almost aligned with the x-axis whereas in
the y-oriented raster with the y-axis. In standard planar NF
scans, the two tangential components of the electric field
are acquired. Note that these two components are usually
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measured over the same spatial points. On the contrary, in
the present measurement setup, the two components were
acquired over two different sets of points (see Fig. 4). It is
evident that such points follow surfaces that are not planar
and not regular either. The altitude of the UAV trajectory
ranges from 24 to 27 m, i.e., approximately two wavelengths
at the considered frequency. In such a distance, the phase
of the field can vary significantly (more than 360 degrees).
Interpolations of data on a regular planar grid will hence
require significant redundancy of measurement points (e.g.,
a cloud of points) which will in turn lead to prohibitive
flight time. For this reason, standard NF-FF transformations
are hardly applicable. All the results presented in this paper
have been obtained with the inverse source technique (see
Section IV-B). Such a technique is capable to efficiently deal
with a set of measurement points with arbitrary locations.

B. NEAR-FIELD PHASE RECONSTRUCTION USING
REFERENCE ANTENNA

Phase information is crucial to maintain the inverse source
NF-FF transform linear and well-posed. In this work, a refer-
ence antenna (see Fig. 1, 3) is used to reconstruct the desired
phase information. A preliminary attempt has already been
performed in [40] with a single polarized reference antenna.
The dual polarization capability of the reference antenna has
been exploited in order to reconstruct the phase for both NF
electric field components. As described in the following, this
introduces an additional step to equalize phases from the two
polarizations of the reference antenna.

The distance between the reference antenna and the AUT
has to be sufficiently large in order not to perturb their
field distribution. According to Fig. 3 (green diamond), the
reference antenna is 20 m far from the array center, i.e.,
about 12 wavelengths. The combination of such distance
and the UAV flight height justifies a FF interaction between
source and reference antenna. Fig. 5 shows a scheme of the
measurement setup where A;{l7 ), <p,§” Jare the magnitude and
phase of the received signal measured at the n-th element
with polarization p (with the acquisition system described
in Section II) for n = 1,..., N and p = x, y whereas Ag, @
are the magnitude and phase of the source signal (g is
unknown) onboard the UAV.

The phase difference needed to apply the NF-FF transfor-
mation to the n-th element can be expressed as

Apll) = o) — g (1)

where the dependence on the relative position between source
and AUT is understood. However, ¢; is unknown because the
transmitter is not phase-locked to the receiver. Therefore, the
phase variation between measurement points suffers from a
drift (i.e., variation of ¢s) between the UAV-mounted source
frequency reference and the receiver clock.

In our approach ¢y is eliminated exploiting the measured
phase <p£Z]Z at the g-polarized reference antenna (g = x, y),
the knowledge of the reference antenna and source radiation
pattern and their relative position and orientation. According
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FIGURE 5. Measurement setup. The UAV flies over the array and the reference
antenna. Each antenna is dual polarized, only one output signal is shown for
simplicity (superscripts (p) and (q) described in the text are understood).

to a FF approximation of the transmission link between the
source and the reference antenna (determined from [41]), it
can be shown that

08 = o — kot + | (P4} £,) + 0 ©)
where ko is the free-space wavenumber, r,,r is the distance
between reference antenna and source, | denotes the phase
of a complex number, p, and pgz; are the polarization unit
vectors (p = e/le|] where e is the FF radiation pattern,
E(r,0,¢) = e, ¢) e*jkor/(4rrr) is the electric field and
(r, 8, ¢) are the spherical coordinates; the dependance of the
source position and orientation is understood) of the source
and the reference antenna with polarization ¢, respectively,
with ¢ = x, y. It should be noted that p,; and pr} contain
the radiation pattern of UAV-mounted source and reference
antenna, respectively. In this work, the source radiation pat-
tern has been computed considering both the geometry of the
dipole and the UAV frame using CST Microwave Studio. The
reference antenna pattern has been simulated using FEKO
(same model as AUT described in Section IV-A).

The phase shift ¢£gf), which is unknown, is related to all
the components from the reference antenna to the digitizer
including LNA, cables, the receiver. It is therefore indepen-
dent of the relative position between the UAV and reference
antenna. Similarly, (see Fig. 5) signals from all the array
elements have unknown phase shifts ¢, . It means that the
reconstructed phase patterns will be computed up to addition
by a constant phase shift. Their effect will be removed by
the calibration procedure discussed in Section I'V-C.

The unknown source phase ¢; can be computed from
(2) and substituted into (1). In this way, the desired phase
difference A(p,(,’;) is obtained

AQD = ¢ — ) — korvey + L(pﬁff) -ps) +o0 G
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Apart from the unknown phase constant ¢§gZ, the right-

hand side of (3) is fully determined by measured quantities
(gp,(lp ), (pff}, T'ref, T€lative position and orientation) and a-priori
knowledge of the source and reference antenna radiation pat-
terns. It should be remembered that (3) implies the usage of
a reference antenna located in the FF of the UAV-mounted
source.

It should be noted that (3) does not contain ¢s. Therefore,
the effect of its variation in time has been also eliminated.
Such cancelation occurs in the difference <p,§” ) _Q";Z; because
these two quantities are affected by the same drift between
UAV-mounted source frequency reference and the receiver
clock (see measurement scheme in Fig. 5). The phases (p,(,p )
and gpfe(? are acquired coherently from two channels of the
same digitizer.

The proposed technique can be seen as a generalization of
the measurement solution traditionally adopted in standard
FF test ranges which use a fixed reference antenna for phase
measurements [24]. In the latter case, the source does not
move with respect to the reference antenna (while the AUT
rotates), therefore, the only varying term in the right-hand
side of (3) is the phase difference (p,(lp ) gofz; In this work,

the terms ko7yef, L(pfz; -p,) are instead exploited to account
for the relative movement of the source with respect to the
reference antenna.

In this work, y-polarized elements of Pre-AAVSI1 (see
Section II) are analyzed, i.e., p = y. Equation (3) can be used
when only one component of the electric field is measured
(as in [40]), say the y component. In this case, g =p =y is
chosen in (3). Then, NF-FF transformations exploiting only
one component of the field are applicable. For this purpose,
only one flight (e.g., a y-oriented raster) is needed and the
constant phase shift ¢£Zf does not affect the reconstruction
and its presence in (3) can be neglected. However, as it will
be shown in Section IV-D (Fig. 22), the usage of only one
NF component leads to inaccurate cross-polarization values.

When both components of the electric field are needed,
samples along two orthogonal flights must be acquired (e.g.,
an x-oriented and a y-oriented raster). In this case, when the
source polarization is orthogonal (or quasi-orthogonal) to the
chosen reference antenna polarization, the signal received at
the reference antenna may have a low signal-to-noise ratio.
This degradation of the received signal may result in a poor
phase reconstruction. For this reason, a dual-polarized refer-
ence antenna should be used, and the signal received through
the polarization that matches the one of the source should
be exploited. More precisely, for the data acquired along the
x-oriented raster (3) is applied with ¢ = x whereas for the
data acquired along the y-oriented raster (3) is applied with
g = y. In this way, polarization-matching between source
and reference antenna is obtained and high signal-to-noise
ratio for the measured receiving signal is ensured.

Since ¢ff} is generally different from ¢2}, such a pro-

cedure leads to an unknown constant phase shift qbg} -
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¢r(:} between the two phase reconstructions from the two
orthogonal flights. Due to this phase shift, the whole phase
reconstruction is not coherent and cannot be directly used
as input for a NF-FF transformation.

The unknown phase shift ¢g} - ¢£:; can be evaluated
performing the difference between equations (2) with ¢ = x
and (2) with ¢ = y, i.e., eliminating again the common
term ¢y

» ()] »
(’brzf - ¢£:f) = 90er - (pg} - {(Prif 'ps) + L(Piﬁ} 'ps) (4)
Applying (4), the phase reconstructions of the two orthogo-

nal flights are now consistent to each other and the NF-FF
transformation can be applied.

C. FLOW CHART OF THE OVERALL MEASUREMENT
PROCEDURE

The flow-chart in Fig. 6 highlights the fundamental steps for
the characterization of a digital beamformed array by means
of a non-tethered UAV performing large horizontal planar
NF scans.

Regulations and UAV performances represent fundamental
limitations and must be carefully taken into account in order
to program a correct UAV flight trajectory. Moreover, the
UAV scan size must be chosen ensuring the desired angular
validity of the NF-FF transformed pattern. For this purpose,
the AUT size must be known (see Section IV-C) [42]. For a
complete characterization of the AUT pattern in terms of its
co- and cross-polar components, two UAV rasters are needed
(one raster for each field component), e.g., see Fig. 4.

During each flight, complex voltages are acquired at each
array element by the digital beamforming back-end (see
Section II). The RF data shares a consistent time reference
with the UAV-mounted GNSS, i.e., they are also referenced
to UTC time by means of a GNSS receiver on the ground.

The correct phase information of the sampled voltages is
retrieved by UAV position and orientation data, the refer-
ence antenna signal and the knowledge of their FF pattern
(see Section III-B). It should be recalled that FF interaction
between UAV-mounted source and reference antenna is
assumed.

The NF RF data in magnitude and phase are used as
input of the inverse source method to compute the equivalent
currents. Then, FF EEPs are determined through radiation
integrals of the computed inverse source currents.

Finally, the array is calibrated equalizing the complex
EEPs toward the observation direction, and the array pattern
is obtained by summation.

IV. RESULTS

The presented technique has been applied on the Pre
AAVSI1 array described in Section II to demonstrate the
feasibility of the overall approach. For the sake of brevity,
results for y-polarized elements are only shown. However,
the same dataset (no additional flights) has been processed
to determine FF patterns for the x-polarized elements with
similar consistency.
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UAV flight limitations {UAV-mounted source pattern!
v

UAV flight planning

l flight plan data

Execution of the two UAV flights and
RF data acquisition by digital back-end

Complex voltages from AUT and reference antenna
UAV position and orientation data

Phase reconstruction

lNear-ﬁeld RF data (magnitude and phase)
UAV position and orientation data

Calculation of inverse source currents

llnverse source currents

Calculation of far-field EEPs

l Complex EEPs

Array calibration and far-field pattern

lArray pattern and calibration coefficients

FIGURE 6. Flow chart of the proposed procedure for UAV-based NF antenna
measurements.

Acquired NF, NF-FF inverse source transformation and FF
data are presented in Section IV-A, IV-B and IV-C, respec-
tively. The two elements labeled as “inner element” and
“outer element” correspond to the two red dots in Fig. 2, 3.
Finally, in Section IV-D the calibrated array beam pattern is
presented.

A. MEASURED NEAR-FIELD DATA

Fig. 7 - 8 show the measured NF power at 175 MHz along
the UAV path (in a 2D view) received by the inner and
outer elements (see red dots in Fig. 2, 3), respectively. Each
measured NF pattern resembles a low-directivity radiating
element whose position is highlighted with the red dot. It
should be noted that, in some regions near the boundary of
the scanned area, the measured power is only 5 dB lower
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y-oriented raster for the inner element. The red dot marks the position of the inner
element.
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FIGURE 8. Normalized magnitude (in dB) of the measured power along the
y-oriented raster for the outer element. The red dot marks the position of the outer
element.

than the maximum (see Fig. 7 - 8). As it will be stated
in Section IV-C, this is not enough considering that a level
of —30 dB from the maximum is generally required along
the boundary of the scan plane [43]. Such limited NF scan
size was dictated by the UAV flight duration. Through NF
simulations (not shown here), it has been observed that the
field at the boundary has a —15 dB level from its maximum
when the same UAV scan in Fig. 3 - 4 is performed at half
height (about 12 m). For a better fulfillment of the above-
mentioned criterion, a flight at a quarter height (about 6 m)
must be performed. Such an altitude is still feasible for flight
safety and it will be considered for future experiments.

However, the lower flight altitude would imply higher
interaction between the UAV and AUT that should be veri-
fied. On the contrary, for the considered flight (see Fig. 4) the
interaction between AUT and UAV has been found to be
negligible using full-wave FEKO simulations.
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FIGURE 9. Reconstructed phase (deg) by (3) of the signal along the y-oriented
raster for inner element. The red diamond marks the position of the inner element.
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FIGURE 10. Simulated phase (deg) of the signal along the y-oriented raster for inner
element. The red diamond marks the position of the inner element.

The phase information has been retrieved according to
the procedure described in Section III-B through the dual-
polarized reference antenna. The phase equalization constant
¢g} — qbfj} between the two orthogonal reference antenna
polarizations computed through (4) is approximately 70°.

Reconstructed phases of the inner and outer elements are
shown in Fig. 9, 11. The element phase diagrams are consis-
tent with the characteristic phase pattern of a spherical wave
centered at the element position. For the sake of compari-
son, the simulated phases are reported in Fig. 10, 12 showing
good consistency with the measured results. For the simu-
lated phase, the electric field component along the UAV
dipole direction has been computed from a complete NF sim-
ulation in FEKO. Such model included all array elements on
an infinite ground-plane. The element dipoles were modeled
using the thin wire approximation.

As a further verification, the reconstructed phase is com-
pared to the simulated one along a quasi-rectilinear cut at
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FIGURE 11. Reconstructed phase (deg) by (3) of the signal along the y-oriented
raster for outer element. The red diamond marks the position of the outer element.
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FIGURE 12. Simulated phase (deg) of the signal along the y-oriented raster for outer
element. The red diamond marks the position of the outer element.

x = 1.47 m for the y-oriented raster. Very good agreement
can be observed between the blue markers (simulation) and
black solid line (reconstructed by (3)) in Fig. 13.

B. INVERSE SOURCE

The UAV path (see Fig. 3 - 4) is not regular (neither planar
nor uniformly spaced) and thus standard NF-FF transforma-
tions cannot be applied. For this reason, an inverse source
approach [26] has been adopted as NF-FF transformation
method. Such technique has been applied to each array ele-
ment in order to compute its FF EEP. The inverse source
approach is based on equivalent electric and magnetic cur-
rents placed over a virtual (non-physical) surface surrounding
the AUT. These unknown currents are computed enforcing a
null radiated field inside the virtual surface and a field equal
to the measured one on the UAV measurement points (e.g.,
Fig. 7, 9 for the inner element). Through this choice, Love’s
currents (null field inside the virtual surface) are exploited.
In this way, the computed currents are directly related to the
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FIGURE 13. Reconstructed phase by (3) (black solid line) (deg), FEKO simulation
(dotted blue markers) and phase of the NF field radiated by inverse source currents
(dashed orange) along a quasi-linear cut at x = 1.47 m (y-oriented raster) for the inner
element.

actual electromagnetic field radiated by the AUT. The com-
plexity of the operator that has to be inverted is increased by
the addition of the null field condition. However, this choice
drastically improves the condition number of the operator,
resulting also in a more stable solution. It should be noted
that reciprocity is exploited since the AUT is actually in
receive mode. Moreover, the measurement points belong to
two different raster scans (one for each flight of the UAV)
and only one field component is acquired at each raster scan
(see Fig. 4). The usage of equivalent currents allows enforc-
ing different constraints at different measurement points by
its very formulation (point-matching method is used to test
the integral operator, i.e., it is not required that the two com-
ponents are enforced at the same measurement point). This
aspect has been verified applying the computational core
described in [26] to a set of simulated NF data where only
one field component was used for each of the two orthogo-
nal rasters in Fig. 4. The results are not shown here because
in good agreement with direct FF simulations that will be
shown in Section IV-C and IV-D (maximum discrepancies
of 0.3 dB and 0.5 dB for the co and cx-polar component,
respectively).

A vertical cylinder of 5-m radius and 3.5-m height has
been used as virtual surface (the array layout presented in
Section II can be contained within a radius of 4.6 m). The
presence of the ground-plane has been taken into account
into the inverse-source process. The surface of the cylinder
has been discretized with approximately 36.000 Rao Wilton
Glisson functions [44] of order zero for a total number of
72.000 unknowns for the electric and magnetic currents. The
total number of measurement points was 900.000, consider-
ing both x and y-oriented rasters. The linear system arising
from the discretization has been solved in a least squares
sense using an iterative method coupled with a memory
saving matrix factorization and a fast matrix-vector multi-
plication [45], [46]. In this way, for each array element, the
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FIGURE 14. Magnitude of the equivalent electric current over the virtual cylindrical
surface for the inner element. The red dot marks the position of the inner element.
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FIGURE 15. Magnitude of the equivalent electric current over the virtual cylindrical
surface for the outer element. The red dot marks the position of the outer element.

computation of the currents took approximately 16 GB of
the Random Access Memory (RAM) and 32 minutes (27 for
the matrix factorization and 5 minutes for the linear system
solution) on a workstation with a processor Intel Xeon ES5-
2697 v2. Electric equivalent currents are shown in Fig. 14
- 15 for the inner and outer elements, respectively. The red
dot marks the position of the considered antenna on the
ground. Although currents are mainly concentrated on the
upper part of the cylinder, they are non-vanishing also on
its lateral part because of the finite dimension of the cylin-
der. Magnetic equivalent currents are not shown due to their
similarity to electric ones.

As a verification example, the phase of the NF radi-
ated from the computed equivalent currents (along a cut
at x = 1.47 m for the y-oriented raster) is also reported
in Fig. 13 with the orange dashed line. A good agreement
can be observed between these curves, with a maximum
discrepancy of approximately 10 degrees.
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FIGURE 16. Normalized Embedded Element Pattern (dB) of the inner element array
element. Blue, orange and purple curves represent the far field from simulation, NF-FF
transformation and FF resy ly. Solid and dashed black lines show
the angular validity range of the NF-FF transformation (see Section IV-C).
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FIGURE 17. Embedded Element Phase Pattern (deg) of the inner element. Blue,
orange and purple curves represent the far field from simulation, NF-FF
transformation and FF resp ly. Solid and dashed black lines show
the angular validity range of the NF-FF transformation (see Section IV-C).

C. EMBEDDED ELEMENT PATTERNS (EEPS)

The radiated FF patterns at 175 MHz are computed from the
equivalent currents over the cylindrical surface. NF-FF trans-
formations exploiting larger cylinders (8 and 10 m radius)
were also performed obtaining similar results to the presented
case (5-m radius). Figures 16 - 19 show magnitude and phase
of the transformed FF EEPs (orange solid line), co-polar
component, for the inner and outer array elements high-
lighted in Fig. 2, 3 with red dots. For brevity, only E-plane
patterns are presented in this Section.

For the sake of comparison, a FF flight was performed due
to the feasible Fraunhofer distance. The UAV altitude was
approximately 100 m. A flight time of 5 minutes is required
for a single FF cut. The transmitted power of 5 dBm is
sufficient to achieve a good signal-to-noise ratio. Moreover,
the differential GNSS position accuracy of few centimeters
translates to a negligible angular error of about 0.03 degrees.
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FIGURE 18. Normalized Embedded Element Pattern (dB) of the outer element. Blue,
orange and purple curves represent the far-field from simulation, NF-FF
transformation and FF measurement, respectively. Solid and dashed black lines show
the angular validity range of the NF-FF transformation (see Section IV-C).
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FIGURE 19. Embedded Element Phase Pattern (deg) of the outer element. Blue,
orange and purple curves represent the far-field from simulation, NF-FF
transformation and FF measurement, respectively. Solid and dashed black lines show
the angular validity range of the NF-FF transformation (see Section IV-C).

Magnitude and phase of the FF EEPs have been extracted
from this measurement as in [47], [48]. In particular, the
reference antenna has been used also in this FF case for the
computation of each EEP measured phase. This formulation
exploits two independent links between UAV-mounted source
and AUT and between UAV-mounted source and reference
antenna. For this reason, the fulfillment of the FF condition
should be satisfied considering the AUT size only (reference
antenna is smaller than the AUT), i.e., without including the
distance between AUT and reference antenna.

The measured FF EEPs are reported with purple lines in
Fig. 16 - 19. As further verification, a FF simulation has been
performed in FEKO and is also reported in Fig. 16 - 19 with
a blue line.

It is well known that NF planar scans suffer from some
limitations. First, the transformed FF pattern of the AUT is
valid only over a limited angular range. The angular bound
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FIGURE 20. Orange (blue) line represents the Root Mean Square of the
log-difference between FF measurement and NF-FF transformed (simulated) EEPs in
the angular range 22° degrees.

for the validity of such transformed EEPs depends on the
aperture of the AUT and both the scan size and height.
Considering the array size of 9.2 m, the angular validity
for the transformed FF can be estimated in the order of =+
29° [42]. On the other hand, considering the dimension of
the array with its ground plane, i.e., 16 m, the maximum
angle of validity reduces to & 22°. In Fig. 16 - 19, solid and
dashed vertical black lines represent the validity range of the
reconstruction corresponding to 22° and 29°, respectively.

Second, as a standard requirement for NF
measurement [43], the signal level at the edges of
the planar scan must be 30 (or even 40) dB below the
maximum. In this work, the measured power is however
only 5 dB from the maximum (see Fig. 7 - 8) in some
regions along the boundary. This happens because the scan
size (36 - 40 m) is not large enough for the considered
scan height (about 25 m). These two parameters have been
selected considering flight duration and safety (to avoid
collision between UAV and top of the AUT). For this
reason, an even smaller angular validity (with respect to
criteria discussed above) is expected in the EEPs.

It should be also mentioned that the (UAV-mounted)
source dipole-like pattern has been found almost constant
within the angular validity range discussed above. Therefore,
probe correction issue has not been addressed in this work.
Moreover, as written in Section III-A, the scan path also
shows small regions where the half wavelength sampling
criterion is not fully satisfied (the considered set of points in
Fig. 4 has been tested using simulations, see Section IV-B).
Nevertheless, results are still quite satisfactory. In Fig. 16 the
agreement between NF-FF transformed and measured mag-
nitude patterns of the inner element is reasonably good (less
than 1 dB discrepancy) within the + 22° angular region.
The discrepancy is a little bit higher for the outer element.
This is related to the more significant truncation effect (see
Fig. 7) i.e., the element is closer to the boundary of the scan
area.
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FIGURE 21. Normalized array pattern magnitude, E-plane cut, CO polar component.
Blue, orange and purple curves represent the far-field from simulation, NF-FF
transformation and FF measurement, respectively. Solid and dashed black lines show
the angular validity range of the NF-FF transformation (see Section IV-C).

As far as the phase of EEPs is concerned, as can be seen
from Fig. 17, 19, the NF-FF transformations show a good
agreement for both inner and outer elements.

As a figure-of-merit, the Root Mean Square (RMS) of the
logarithmic difference [49] is shown in Fig. 20 for all array
elements. For the sake of readability, the definition of the
logarithmic difference LD is here reported

LD(6k) = 20 logiglemeas(Or)| — 20 logigleaB)  (5)

where epeqs is the co-polar component of the measured
FF EEP of the considered array element, the subscript a
refers to the simulated or NF-FF transformed EEP and
O is the angle of the k-th field sample. The RMS of
the logarithmic difference LD (see (5)) on the 6; sam-
ples is reported for simulated and NF-FF transformed EEPs
with blue and orange dots, respectively. The measured FF
EEPs are considered as reference. The considered angu-
lar range is £ 22°. Fig. 20 suggests that the quality of
the NF-FF transformed EEPs is comparable to the simula-
tion one. Inner and outer elements are reported as element
number 12 and 15, respectively (see Fig. 2). Data for ele-
ment 8 are not available because that receiver channel was
connected to the reference antenna. On the contrary, the
error value for the NF-FF transformed EEP of element
11 is not reported because the corresponding NF mea-
sured signal exhibited lower quality due to non-optimal
setting in the acquisition system. As a general remark,
all measured data suffered from minor non-linearity and
packet loss phenomena. Further optimization of the acqui-
sition system setup will probably lead to smaller overall
discrepancies.

D. ARRAY PATTERN

Array calibration is a fundamental task for phased array
with digital beamforming. Calibration coefficients need to
be accurately determined to focus/steer the array beam in

578

or ] I
—simulation

—— NF-FF transformation (2 comp.)
= = =NF-FF transformation (1 comp.)

10+

-20

(dB)

N

-60 -40 -20 0 20 40 60
zenith angle (deg)

FIGURE 22. Normalized array pattern magnitude, E-plane cut, CX component. Blue,
solid orange and dashed orange curves represent the far field from simulation and
NF-FF transformation (two electric field components as input) and NF-FF
transformation (only one electric field component as input), respectively. Solid and
dashed black lines show the angular validity range of the NF-FF transformation (see
Section IV-C).

a particular direction. Such coefficients depend on both the
antennas and acquisition system. The presented method rep-
resents a viable solution to determine calibration coefficients
from NF measurements.

As reported in Section IV-C, all the EEPs have been
obtained by NF-FF transformation from NF measurements.
The calibration coefficients can be obtained by equalizing
all such EEPs (in magnitude and phase) for a particular
observation direction. In this way, both antenna and receiver
contributions are accounted for.

The sum of all the equalized EEPs produce the full array
beam. Fig. 21 shows the co-polar component of the E-plane
beam pattern for the array under test pointed at zenith. The
NF-FF transformation describes the main lobe and first nulls
quite well. Simulated and measured FF EEPs are reported
with blue and purple lines, respectively. This validates the
presented end-to-end procedure.

The cross-polar component is shown in Fig. 22. The result
represented with orange solid line has been obtained with
both x and y-oriented rasters in Fig. 4 whereas the orange
dashed line only uses the y-oriented raster. The lack of the
x-component information in the latter is clearly visible in
Fig. 22. The simulated cross-polar pattern is reported with
blue line (measured cross-polar FF data are not available).
Even if sampling both NF components doubles the UAV
flight time, this is necessary to achieve an acceptable accu-
racy for the cross-polar component. The good agreement
between simulation (blue line) and NF-FF transformation
(solid orange line) confirms the validity of the sampling
approach based on two different rasters (see Fig. 4), one for
each polarization.

For a complete comparison over the full azimuthal angle,
Fig. 23 - 24 show the magnitude of the NF-FF transformed
and simulated 2D FF array patterns pointing at zenith.
Quantities & and ¢ correspond to the zenith and azimuth
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FIGURE 23. NF-FF transformed array beam magnitude (2D view). The black circles
show the angular validity range of the NF-FF transformation (see Section IV-C).
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FIGURE 24. Simulated array beam magnitude (2D view). The black circles show the
angular validity range of the NF-FF transformation (see Section IV-C).

angles of the spherical coordinate system, respectively. Solid
and dashed black circles correspond to 22° and 29°, respec-
tively. As reported in Section IV-C, these angle values denote
the validity of the NF-FF transformation across the zenith
angular range. The agreement between the 2D patterns is
quite satisfactory, i.e., main lobe size and first sidelobe loca-
tions and levels are in agreement. The 2D FF measured
pattern is not available due to its prohibitive time duration
(only a few FF cuts can be scanned by the UAV in a single
flight [47]). For example, a complete FF pattern measure-
ment within the £ 29° angular range with a resolution of
1° will require a flight duration larger than 120 minutes.
It is clear that such a flight time becomes unfeasible for
larger apertures where a higher Fraunhofer distance (UAV
altitude) is necessary. A NF flight is instead more convenient
to perform. For example, the total duration of the NF flights
presented here was in the order of 30 minutes (15 min-
utes per electric field component). The complete FF pattern
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is then computed from these two NF flights through the
procedure summarized in Fig. 6.

As mentioned above, in this work the NF-FF transfor-
mation has been applied separately to each array element
obtaining EEPs for all the elements. Then, EEPs have
been equalized (calibration) and summed together to obtain
the array beam. Alternatively, if calibration coefficients
are known a priori, the NF-FF transformation can be
directly applied to the beamformed signal (only one NF-FF
transform).

V. CONCLUSION

A UAV equipped with a RF source has been used as an
in-situ planar NF scanner covering a horizontal scan area of
about 40 m x 40 m. The usage of optical fiber links from
the UAV to ground has been avoided to maintain the flight
flexibility and short setup time, i.e., the UAV is untethered.
Furthermore, all the measurements have been performed
using the acquisition system of the radio-telescope prototype
instead of either a dedicated receiver or a Vector Network
Analyzer (VNA).

The presented measurement setup faces the problem of
the missing information of the transmitter phase. In this
paper, this information is reconstructed by exploiting a dual-
polarized reference antenna. The method has been applied
on measurements of the Pre - Aperture Array Verification
System (Pre-AAVS1) of the Square Kilometre Array. Due
to the irregularity of the UAV scan path, an inverse source
technique has been adopted as NF-FF transformation. A sat-
isfactory agreement between the NF-FF transformed results
and a set of FF measurements has been reached for both
EEPs (magnitude and phase) and array pattern. Both are
consistent with simulated data. FF calibration coefficients for
the digital beamforming system have been computed from
experimental data by equalizing all the EEPs towards the
observation direction. The presented results demonstrate the
feasibility of the method and suggest that our approach rep-
resents an effective and fast way to characterize large antenna
arrays in their operating environment. The method is capable
to characterize digital beamforming arrays by means of two
planar UAV flights at low altitude. It can be also applied to
aperture antennas and analog beamformed arrays by exploit-
ing a receiver with three phase-coherent channels (one for
the AUT and two for the dual-polarized reference antenna).
Future studies will be devoted to analyze the applicability
of the presented phase reconstruction strategy without the
necessity of a reference antenna in the FF of the UAV-
mounted source. This will probably require a more complex
post-processing strategy.
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