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ABSTRACT Using an alloy of non-toxic liquid metal (Galinstan) is proposed to implement multi-
reconfiguration in reflectarray elements. Reflectarray antennas are an interesting technology for
dynamically controlling, simultaneously or individually, different properties of the antenna (beam shape
and pointing direction, field polarization, and frequency of operation) according to the system’s demand.
The use of liquid metal, which can potentially be used to re-shape the topology of the unit cell, along
with advances in the micro-and nanofluidics field, provides more flexibility for efficiently implementing
such multi-reconfiguration. A frequency-reconfigurable reflectarray element is based on the well-known
aperture-coupled cell, and a phase-reconfigurable cell based on single-and multi-resonance dipoles is
proposed at 28 GHz. One advantage of microfluidics is that the concept can easily be extended to
much higher frequencies, where other devices start to be expensive, inefficient, or limited in terms
of multi-reconfiguration. The microfluidic technology required to implement the dipole-based element
is demonstrated using a microfluidic burst-valve chip. Additionally, a simplified RF proof-of-concept
is presented using the well-known waveguide simulator technique from 15 GHz to 22 GHz (WR51).
The results obtained constitute an important first step toward the implementation of multi-reconfigurable
reflectarray antennas.

INDEX TERMS Antennas, reflectarray, reconfiguration, microfluidics, liquid metal, PDMS.

I. INTRODUCTION

REFLECTARRAY antennas combine the main fea-
tures of parabolic reflectors and planar arrays [1],

highlighting the low losses, low cross-polarization, moder-
ate profile, and the possibility of implementing dynamic
reconfiguration [2]. This reconfiguration has traditionally
focused on steering or changing the beam shape. In recent
years, there has been a considerable need for antenna
systems with total flexibility not only in terms of spatial

reconfiguration, but also in terms of polarization and
frequency reconfiguration [3]–[4].
Derived from their application over almost two decades

in chemistry, biology, and medicine, microfluidics-based
technology offers a wide range of micro-devices such as
valves, mixers, pumps, and even lab-on-chip systems [5]–[6].
These devices and their associated fluid materials can
be exploited to manipulate the electrical properties of
antennas.
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Microfluidics, the field dedicated to studying the behav-
ior of fluids in microstructures, has found a broad range
of applications over the past two decades. In addition
to the inherent benefits of microfluidics, they include
the precise control of microenvironments, use of minimal
amounts of reagents to replicate macroscopic experimen-
tal conditions, high-throughput analysis, and the use of
non-inertial forces to actuating fluids at a small scale [7].
Microfluidics has recently permeated the telecommunica-
tions field, enabling the development of reconfigurable
elements, including liquid-reconfigurable patch antennas [8],
reconfigurable microstrip antennas for switchable multiband
systems [9], and wideband slotted bow-tie antennas [10].
The use of a fluidic-based approach to reconfigure only

the phase of a reflectarray cell was proposed in [11]. The ele-
ment was based on a coaxial stub microfluidic impedance
transformer operating at 3 GHz. Reactive loading of the
microstrip reflectarray element was used to achieve low-loss
and continuous phase control over the radiated signal. The
cell acted with the remotely manipulated flow of colloidal
dispersions beneath the antenna’s ground plane. Adjustments
of the nanoparticle concentration in the dielectric fluid alter
the permittivity, allowing the phase to be controlled by
reflection.
One alternative to dielectric fluids is the use of liquid

metal, which has been identified as a very interesting solution
for radiating elements in reflectarrays because they have
both the conductivity of metal and the fluidic properties of
a liquid, allowing the re-shaping of the element, thereby
introducing the possibility of dynamic reconfiguration. This
reconfiguration can be implemented in terms of frequency,
polarization, phase, or even a combination of these.
Owing to the toxicity of other liquid metals, in this work,

the use of a non-toxic metal alloy made of 68.5% gal-
lium (Ga), 21.5% indium (In), and 10% tin (Sn) [12], known
as Galinstan, with electrical conductivity of 2.3·106 S/m and
melting point around −19◦C, is proposed. To the best of our
knowledge, this is the first time Galinstan has been proposed
to implement reconfiguration in reflectarray elements.
This material has been successfully used in single-

patch antennas at 2.4 GHz [13]. In [14], a broadband
monopole antenna was designed for stretchable electronics.
The antenna consists of a liquid conductor for the radiat-
ing element and SEBS (Styrene-Ethylene-Butylene-Styrene)
for the antenna substrate, showing a maximum gain of
4.63 dBi at 5.8 GHz. A polarization-reconfigurable liq-
uid dielectric resonator antenna (DRA) incorporating liquid
metal was designed in [15]. The container comprises two
zones: one is the liquid dielectric zone for ethyl acetate and
the second zone is filled with Galinstan. A reconfigurable
liquid-metal dipole antenna was presented in [16]. By chang-
ing the position of Galinstan, five discrete states with varying
polarization states and null directions were obtained.
The incursion of microfluidics to the applied electro-

magnetic field is still emerging. The development of new
technology based on the amalgamation of fields will most

FIGURE 1. Proposed element for frequency reconfiguration (a) Expanded view and
four-cavity configurations for upper, central and lower frequencies from (b) All empty.
(c) Two filled. (d) Four filled.

likely grow significantly in the next few years. In this study,
we introduce microfluidic-based reflectarray elements that
can be reconfigured upon the actuation of liquid metals,
including a proof-of-concept of the microfluidic burst valve,
which is the first in the reflectarray antenna field.

II. LIQUID METAL AS RECONFIGURATION MATERIAL IN
REFLECTARRAY ANTENNAS
Two different elements are analyzed in the following sections
to determine the feasibility of using Galinstan in reflectar-
ray antennas. The first topology is based on the well-known
aperture-coupled configuration, in which the usual square
patch is replaced by an optimized patch whose shape can be
varied by injecting Galinstan into a discrete number of cavi-
ties. The shaping of the patch allows for dynamic frequency
tuning. The second topology is based on a resonant dipole
whose length can be adjusted to control the phase of the
reflected field at the element level. The introduction of more
dipoles improves the bandwidth of the cell.

A. FREQUENCY RECONFIGURATION IN
APERTURE-COUPLED ELEMENTS
Owing to its fluidic behavior, Galinstan can be easily dis-
placed into microchannels, modifying the shape of a metallic
layer into a reflectarray cell. In this subsection, a frequency
reconfigurable element is proposed in the frequency band
from 25.75 GHz to 34.50 GHz.
The proposed topology is shown in Fig. 1, and the

dimensions are listed in Table 1. It consists of a delay
line coupled through a rectangular slot to a metallic patch
with an optimized hexahedron shape. While the dynamic
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FIGURE 2. Matching of the proposed reflective cell for different volumes of the liquid
metal ( 25.85 GHz, 30.15 GHz, 34.45 GHz, intermediate frequencies).

TABLE 1. Dimensions for the element with frequency reconfiguration.

phase control produced by this topology has been widely
demonstrated [17]–[19], here, the effort is focused on
dynamically controlling the operation frequency, as this con-
trol can be implemented independently. Notably, this element
can be simultaneously reconfigured in phase if a second
control mechanism is implemented in the delay line (using
lumped elements or Galinstan again). For the frequency-
reconfigurable element, the patch consisted of a copper
section printed on the upper substrate (d3, εr = 2.33,
tanδ = 0.0012) and a discrete number of 34-µm-thick cavi-
ties, situated 50µm inside the substrate. The cavities and their
associated microchannels can be fabricated using a combined
process of laser ablation and lamination, which is a common
process in microfluidics, or using a high-resolution additive
manufacturing technique. These cavities can be dynamically
filled or emptied to Galinstan. The slot and microstrip line
in the proposed topology share a common dielectric (D2,
εr = 6, tanδ = 0.0023), whereas the spacer for placing the
ground plane is a foam (εr = 1.05, tanδ = 0.0017). In the
proposed reflectarray element, the operating frequency can
be adjusted according to the shape and number of pairs of
cavities and their states (filled or empty). Fig. 2 shows the
simulated matching at the input of the microstrip line for
different volumes of liquid metal obtained with CST Studio
Suite and infinite array boundaries. Designing an element
assuming a well-matched delay line is a common strategy
for obtaining broadband aperture-coupled elements [20]. An
open microstrip line replaced the matched line in a further
step. In Fig. 2, the green, blue, and red curves correspond to
the cases illustrated in Fig. 1 using four cavities: (b) empty
cavities, (c) filled cavities, and (d) filled cavities.

TABLE 2. Dimensions for basic element with single dipole.

In practice, the operating frequencies of all the cells in
the reflectarray are the same. This feature simplifies the
frequency control. All the elements must be filled with the
same quantity of liquid metal; therefore, a simple filling
mechanism is required to tune the operation frequency. It is
worth mentioning that the number of available frequencies
can be increased by having more cavities that produce
intermediate states (grey curves).
As mentioned, the previous element can also be used

for implementing phase reconfiguration simultaneously with
frequency reconfiguration if Galinstan is also used to change
the electrical length of the delay line, in a manner similar
to that described in the following dipole-based elements.
For the scope of this work, it is assumed that the frequency

switching time is not a constraint in the system but is a
constraint to be optimized according to the actuation system.

B. PHASE RECONFIGURATION IN DIPOLE BASED
ELEMENTS
Dipole elements have been proposed as efficient elements
in reflectarray antennas for fixed-[21] and reconfigurable-
beam applications [22]. Using this topology but replacing
the dipole metallization with a Galinstan-filled microflu-
idic channel allows phase reconfiguration to be obtained,
and opens the door to more complex topologies that also
allow reconfiguring the frequency or polarization. The gen-
eral scheme of the proposed element with dynamic phase
control working at a central frequency of 28 GHz is shown
in Fig. 3(a). The element consisted of two layers: a dielectric
substrate and a ground plane at the back face. The ground
plane was modeled as a perfect electrical conductor (PEC)
with zero thickness. The material used for the substrate was
PDMS, whose electrical permittivity and losses are given
by εr = 2.77 and tanδ = 0.0127. The microfluidic channel
through which Galinstan moved was located at the top of
the lower PDMS layer and had a thickness of 30 µm. An
electrical conductivity of σ = 2.3 · 106 S/m is considered
for Galinstan.
The optimized element is shown in Fig. 3 and corresponds

to the dimensions listed in Table 2. A segment is filled with
Galinstan for each state, starting with the one down (red)
and then filling in a sequential manner the segments (blue,
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FIGURE 3. Single dipole element. (a) Front view with micro-channels. (b) Phase and
amplitude of the reflection coefficient for simple model and detailed model
(considering the interconnection microchannels).

then green, etc.). As can be seen, the dipole length is dis-
cretized with more resolution in the zones in which the
change of phase is more important. Fig. 3(b) shows the
phase and amplitude of the reflected wave as a function
of the dipole length, comparing a simple model (contin-
uous dipole, neglecting the interconnection channels) with
a detailed model (considering the effect of the microchan-
nels). The simulations were performed using CST Studio
Suite, again considering the mutual coupling between the
elements. As can be seen, the results don’t change when the
microchannels are introduced. However, a dependence starts
to appear as the microchannels become larger; therefore,
they must be considered in the design.
Fig. 4 shows the simulated results for the case that consid-

ers the microchannels in a broadband range from 24 GHz
to 32 GHz. Although the 360◦ phase range is practically
obtained in the entire band, the phase variation as a function
of the dipole length has an abrupt response. This change
limits the bandwidth of the element and also reduces the
tolerance limit in the fabrication because a small error in
the length of the dipole can produce an important change
in the phase, increasing the phase errors in the design of an
antenna.

FIGURE 4. Reflection coefficient obtained with the optimized element as a function
of the dipole length for different frequencies.

TABLE 3. Dimensions for optimized broadband dipole based element.

A common solution for increasing the bandwidth in reflec-
tarray antennas when resonant elements are used is to use
more dipoles in the same cell but with a slightly differ-
ent resonant frequency. This allowed us to obtain a linear
variation of the phase as a function of the dipole length
in a broadband. A reflectarray element using microfluidic
technology with Galinstan as a liquid metal was optimized
using three dipoles. Table 3 shows the element’s dimen-
sions, in which two identical dipoles are collocated to the
sides of a central dipole. The lateral dipoles were scaled by
a factor of 0.6, and all were filled with Galinstan sequen-
tially from the first segment (red). As shown in Fig. 5(b), the
phase response has a linear dependence on the central dipole
length, and the phase range is increased to more than 500◦ in
a wide band. This element demonstrates the potential use of
Galinstan together with microfluidic technology to control
the phase of a reflected wave in reflectarray antennas and
will be used as the baseline for the micro-dynamic burst
microvalves proposed and demonstrated in the following
sections.
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FIGURE 5. Broadband element with three dipoles. (a) Front view with
micro-channels. (b) The reflection coefficient’s phase and amplitude as a function of
the central dipole length, from 24 GHz to 32 GHz.

III. CAPILLARY BURST MICROVALVES THEORETICAL
FRAMEWORK
The microfluidic reflectarray element design with capil-
lary burst valve included segments of 700 µm in width
and 1.5 mm in length, and interconnecting microchan-
nels of 400 µm in width by 100 µm in length. The
design was intended to demonstrate the control of the liquid
metal within the microfluidic reflectarray element. The chips
were fabricated using the lithographic technique described
in section IV-B. The sudden expansion at the intercon-
necting microchannel ends as a capillary burst valve. The
interconnections in the dipole act then as a series of cap-
illary burst valves to control the advancement of the liquid
metal as it flows within the microfluidic chip upon the
application of external pressure. The basic operation of the
microfluidic capillary burst valves is explained below. The
flow rate inside the microchannels can be obtained using the
Hagen-Poiseuille equation for laminar flow as follows:

Q =
(

πR4

8ν

)(
po − pint

l

)
(1)

where Q is the volumetric flow rate, R is the hydrodynamic
radius of the microchannel, ν is the dynamic viscosity of

FIGURE 6. A three-phase system comprises a sessile droplet on a solid surface
surrounded by a gas. The shape of the drop provides information about the wettability
of the solid surface. (a) Equilibrium state caused by interfacial and surface tensions in
a sessile droplet. The equilibrium contact angle θ is formed at the triple-phase contact
line. (b) Wettable or hydrophilic surface, where the CA is between 0◦ and 90◦ .
(c) Non-wettable or hydrophobic surface, where the CA is more than 90◦ . (d) Receding
CA using the needle method. The droplet volume is gradually drawn using the tip of a
needle. (e) Advancing CA using the needle method. The droplet volume is gradually
increased through the use of the needle.

the liquid, p0 is the liquid pressure at the entrance of the
microchannel, pint is the liquid pressure at the interface (i.e.,
the meniscus), and l is the distance from the microchannel
inlet to the air-liquid interface. Surface tension arising from
the interaction between the liquid, gas, and solid phases
is a key factor behind the microvalve principle of opera-
tion. Figure 6 illustrates a three-phase system sessile droplet
forming a contact angle (CA) θ under equilibrium condi-
tions. The surface energy of the solid σS acts along the
solid surface, whereas the solid-liquid interfacial energy
σSL acts in the opposite direction. The surface tension of
the liquid σL acts tangential to the droplet’s surface. For
hydrophilic surfaces, the CA is less than 90◦ (Fig. 6b) and
the meniscus at the air-liquid interface is driven by capillar-
ity, whereas for hydrophobic surfaces, it is more than 90◦
(Fig. 6c) and the interface can only be advanced by an exter-
nally applied pressure. The advancing and receding contact
angles were used to measure the dynamic CA of the three-
phase system during motion. The advancing CA, illustrated
in Fig. 6d, was measured during droplet expansion to provide
information on the dry-wetting behavior of the solid-liquid
interphase. A receding CA forms when the droplet volume
decreases as the liquid is drawn, as illustrated in Fig. 6e.
As detailed later, dynamic contact angles play an important
role in stopping and enabling motion in a microfluidic burst
valve.
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FIGURE 7. Schematic representation of a sudden microfluidic expansion.
(a) Equilibrium meniscus state of the liquid at the sudden expansion, which causes a
valving effect stopping the liquid. (b) Meniscus state at the verge of bursting due to an
increase in the applied force (i.e., pressure difference). An infinitesimal increase in
applied force results in the motion of the liquid into the expansion zone.

The Young-Laplace equation defines the capillary pressure
in a three-phase system:

patm − pint = 2σ

R
cosθ (2)

where patm is the atmospheric pressure or pressure outside
the liquid, σ is the surface tension, and θ is the liquid-gas
interface CA at the solid or static CA under equilibrium
conditions. The pressure difference may result in the motion
of a fluid within a microchannel, but the surface tension
enables the fluid to stop at a sudden expansion on a non-
wettable surface. To control the flow of liquid metal inside
a microfluidic-based reconfigurable reflectarray, we propose
the use of capillary burst microvalves that rely on sudden
expansions to control the microflow of a liquid. Details of the
physics behind the principle of operation of capillary burst
microvalves have been presented in [23]. Fig. 7 shows a
schematic of the microfluidic burst valves designed to control
the flow of liquid metal in the reconfigurable reflectarrays.
To stop the pressure-driven meniscus of the liquid metal, we
propose using an abrupt expansion section (Fig. 7a). The
pressure required to overcome the pinned liquid at the capil-
lary burst microvalve is expressed by Eq. (2). It is convenient
to introduce the critical advancing CA, θA, which is defined
as the angle at which the triple line starts to move in the
case of a sessile droplet on an inclined plane. The contact
line cannot advance when the static or advancing contact
angle is less than θA. When the liquid advances inside the
microchannel, there is an apparent dynamic CA, θaa, which

FIGURE 8. Microfluidic burst valve chip (a) CAD drawing used to produce the mask.
(b) Fabricated master used to cast the PDMS chips. Scale bar represents 5 mm.

is a function of the meniscus velocity and θA and is inher-
ently greater than θ . Under these conditions, θA and θaa
are of the same order of magnitude, and the pressure dif-
ference required to advance the meniscus at the air-liquid
interface can therefore be defined by Eq. (2), replacing θ

by θA. When the meniscus encounters an abrupt geometric
expansion, as illustrated in Fig. 7a, the CA is reduced to
θe = θA − θ2, where θ2 is the angle between the surface of
the diverging expansion and the horizontal (Fig. 7b); there-
fore, θe = θA − 90◦ for a sudden orthogonal expansion. The
meniscus then stops when θA becomes greater than θe. This
effect, which was first described for liquids encountering
sharp solid edges [24], forms the basis of the capillary burst
valve. For the meniscus to continue advancing, that is, for
the valve to burst, the interface should bulge until θe reaches
a value equal to θA. The new CA in the expansion relative
to the microchannel wall increases from θA to θA + θ2 [23].
However, 180◦ is the maximum CA that the meniscus can
attain; therefore, if θA + θ2 > 180◦, the bursting conditions
are reached when θ ’ equals 180◦, and Eq. (2) becomes:

po − pint = �p1 = 2σ

R
cosθ ′ (3)

where �p1 is lower than �p2, which prevents the advance-
ment of the meniscus under these conditions unless the
pressure difference increases sufficiently to burst the capil-
lary effect. The meniscus moved within the expansion section
once the pressure difference exceeded and the capillary valve
burst. As the CA of the meniscus advances, the pressure
across the air-liquid interface in the expansion section is
defined by the new CA with respect to the expansion wall.
These principles and considerations were used to design
the microfluidic chip shown in Fig. 8a. They were used
as a proof-of-concept for the control of Galinstan within the
different sections of the microchannels via capillary burst
microvalves.
For a liquid interface inside a rectangular channel, consid-

ering the advancing CA at the side walls and at the upper and
bottom walls θa1 and θa2, respectively, the Young-Laplace
equation yields [15]

po − pint = �p2 = 2σ

(
cosθa1

w
+ cosθa2

h

)
(4)
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where w and h are the width and height of the microchannels,
respectively. In this case, the conditions for the meniscus to
advance are similar, where both θa1 and θa2 must be greater
than θA, and the pressure difference at the bulging interface
based on the Young-Laplace equation becomes

po − pint = �p2 = 2σ

(
cosθ

w
+ cosθA

h

)
(5)

And the interfacial pressure on the verge of capillary
bursting is then:

po − pint = �p2 = 2σ

(
cosθ ′

new

w′ + cosθA
h

)
(6)

where w′ denotes the width of the expansion section. In the
next section, we present the design and fabrication of a sim-
plified version of the microfluidic reconfigurable reflectarray,
including capillary-burst microvalves.

IV. CAPILLARY BURST VALVES AND RF
PROOFS-OF-CONCEPT TOWARDS MICROFLUIDIC
RECONFIGURABLE REFLECTARRAY ANTENNAS
To demonstrate the potential of the proposed technology,
two proofs of concept were independently implemented and
successfully tested in the laboratory.

A. CAPILLARITY BURST VALVES PROOF-OF-CONCEPT
The design of the mechanical proof-of-concept for control-
ling the flow of liquid metal within the microchannels of
a reflectarray element is illustrated in Fig. 8a. The fabri-
cation of the masters (i.e., molds) with microfluidic-based
elements and discrete structures was achieved using a litho-
graphic technique at the Nanofabrication Kingston facility
(NFK, Innovation Park, Kingston, Ontario). This technique is
widely used in microfluidic applications and enables the cre-
ation of microfluidic chips by replica molding. The general
steps of the fabrication procedure are described below.
A computer-aided design (CAD) mask model with the

microfluidic pattern was generated using the SolidWorks
software (SolidWorks Corp., Dassault Systèmes, USA). The
layer thickness for all internal microfluidic components was
30 µm. A master was fabricated by spin-coating an SU-8
50 photoresist (MicroChem Corp., Newton, MA, USA) onto
a clean 4-inch single-side-polished silicon wafer. The coated
wafer was then pre-baked at 65 ◦C and 95 ◦C for 2 and
8 min, respectively. The mask with a microfluidic design
was then placed over the coated wafer and exposed to UV
light for 90 s. Next, the exposed wafer was hard-baked at
65 ◦C for 1 min and 95 ◦C for 10 min. The master was subse-
quently developed using SU-8 developer (MicroChem Corp.,
Newton, MA, USA). The resulting master of the microfluidic
design with capillary burst microvalves is shown in Fig. 8b.
A 13:1 mixture of Sylgard 184 elastomer and curing agent

(Dow Corning, Midland, MI) was mixed, degassed in vac-
uum, and poured onto the master. After baking at 85 ◦C for
20 min, the replica peeled off from the mold. Although
the lithographic method used here is reliable and well

FIGURE 9. Testing of the capillary burst microvalves. The image sequence shows
the chip before being filled with Galinstan (upper left); the subsequent filling of the
segment and microchannel (upper right) upon the application of an external pressure;
the pinning of the liquid-metal meniscus at the abrupt expansion (bottom right); and
the filling of the entire dipole by increasing the applied pressure.

established, 3D printing technologies could be an alternative
to fabricate molds for microfluidic chips.
The microfluidic burst valve chip was tested by introduc-

ing Galinstan into the chip by punching two holes through
PDMS, acting as the inlet and outlet, and connecting the inlet
to a syringe using PEEK tubing of 1/32” ID. The chip was
flushed with 0.3mol/L sodium hydroxide (NaOH) solution,
and Galinstan was then introduced into the microstructure
with the aid of a syringe. Fig. 9 shows the image sequence
of the introduction and advancement of liquid metal. Upon
applying of external pressure, it fills the first segment of the
chip and then flows into the interconnecting microchannel.
The meniscus stopped and was pinned at an abrupt expansion
(bottom right). The applied pressure was increased to pro-
duce a bulging of the interface, and the capillary valve finally
burst, filling the entire dipole at ∼130 ms (1 frame at 7.5 fps).
This proof-of-concept proves that the proposed microflu-
idic reflectarray element incorporating capillary burst valves
effectively control the liquid metal advancement.

B. RADIOFREQUENCY PROOF-OF-CONCEPT
Additional microfluidic designs of discrete elements that
correspond, in length and volume, to different numbers
of segments filled with Galinstan were also fabricated for
use as a radiofrequency proof-of-concept and to verify the
feasibility of the proposed technology as a reflectarray ele-
ment. Fig. 10(a) and (b) show the microfluidic chips before
and after filling with Galinstan, respectively. The samples
were fabricated using dipoles of different lengths: 3.61 mm,
4.50 mm, 5.20 mm. mm, respectively, and their widths and
thickness are 0.68 mm and 0.10 mm, respectively. The PDMS
bottom layer thickness, in which the Galinstan cavity was
embedded, was 1.8 mm, while the top layer thickness was
0.3 mm. The capilars used to fill the metal liquid have a
diameter of 0.68 mm and remain also filed. These capilars
are responsible for phase inversion in the response, and the
quantity of Galinstan inside also impacts on the phase value.
The well-known waveguide simulator technique [25], in

which a discrete number of elements (in this case, two
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FIGURE 10. Discrete microfluidic dipole elements used to obtain the reflected wave
as a function of the dipole length. (a) fabricated microfluidic before cutting and filling.
(b) discrete elements with Galinstan. (f) Measured (M) and simulated (S) phase of the
reflection coefficient using a WR51 waveguide for empty cell and different lengths of
dipole: 3.61 mm, 4.50 mm and 5.20 mm (d) Measured (M) and simulated (S) amplitude
for the reflection coefficient for the same samples.

identical dipoles) are introduced in a short-circuited waveg-
uide, which is connected to one port of the VNA, to measure
the reflection coefficient. This experimental validation was
performed using the WR51 waveguide (15 – 22 GHz), whose
dimensions allow simple handling of the samples in the
waveguide. However, the proposed technology can be used
at higher frequencies as long as the fabrication tools are
available. Fig. 10(c) shows the measured (M) and simu-
lated (S) phases for the reflected wave as a function of
the frequency for different dipole lengths, demonstrating
the feasibility of using the proposed technology in future

reconfigurable reflectarray antennas. The experimental data
for the phase were in good agreement with the simulations,
except for the larger dipole, where an almost constant dif-
ference was observed. This difference can be attributed to
the quantity of Galinstan inside the capilars, which seems
to have less fluid than in the other samples. Both the mea-
sured and simulated average losses are in an average range
of 0.5 dB, from 15 GHz to 19 GHz, with a maximum of
1 dB, as can be seen in Fig. 10(d). The largest discrepancy
can again be observed for the 5.20 mm sample. These losses
are incremented at higher frequencies because of unexpected
resonance in the waveguide, which can be explained by an
air gap between the back PDMS and the ground plane. As
expected, the phase response shows linear behavior, which
is a desirable feature in this type of element, and it was
observed that the empty elements have similar responses
between them independent of the length of the air groove.

V. CONCLUSION
Microfluidics-based technology is an interesting alternative
for implementing multi-reconfiguration in electromagnetic
systems. This paper proposes an optimized design of a new
microfluidic-based chip, along with the use of a non-toxic
liquid metal alloy, as an efficient mechanism for dynam-
ically controlling the frequency or phase of reflectarray
elements. Two potential elements were proposed. The aper-
ture coupled element allows for an efficient reconfiguration
of the operation frequency, whereas the dipole-based ele-
ment allows reconfiguration of the phase of the reflected
wave. Both elements can be further optimized to implement
multi-reconfiguration, which means dynamically changing at
the same, at least two of the main features of the element:
frequency, polarization, and phase. The capillary action of
an abrupt microfluidic expansion is used as a capillary burst
valve to control the flow of the liquid metal in the microflu-
idic chip. A proof-of-concept of the required microfluidic
technology has been introduced from both mechanical and
radiofrequency points of view, demonstrating promising
results. Improving the accuracy of the cavity thickness and
width, which directly impacts on the phase range or the
actuation method in a full antenna, is an open subject for
further research. The proposed method opens a new avenue
for reconfigurable reflectarray elements that can be further
reduced in scale, customized, and parallelized to satisfy
the requirements of fast-evolving applied electromagnetics,
particularly antennas and sensors.
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