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ABSTRACT The development of the next generation of wireless systems is bringing renewed attention
to the physical layer of the communication link. Indeed, the new low-latency requirements cannot be
satisfied relying only upon the extreme virtualization of the hardware functions. Moreover, conventional
wireless systems with fixed characteristics and functionalities are not appropriate to modern electromagnetic
environments, which undergo continuous and fast variations. Embedded smartness is a required feature for
widening the range of the possible electromagnetic responses to support advanced and novel functionalities.
In this paper, we show how the combination of 2D metastructures with conventional antennas and reflectors
enables an unprecedented electromagnetic behavior, which is at the basis of new properties, capabilities,
and applications. In particular, we propose an emerging design approach based on the shifting of the
reconfigurability, adaptivity, sensing, and power management of a wireless system at the physical level,
thanks to the use of properly designed 2D metastructures to be coupled with standard antennas and
reflectors.

INDEX TERMS Smart antennas, smart electromagnetic environment, metasurfaces, reconfigurability.

I. INTRODUCTION

WIRELESS systems are evolving faster and faster in
the last years to satisfy the ever-growing demand

for high data rates, low latency, extremely low power con-
sumption, and autonomy. In this framework, the required
enhancement was not limited to the capability of the system
to transfer wirelessly the information between two or more
users with the best performances, but also to provide new
functionalities related to sensing, powering, and identifi-
cation, taking into account also the rapid variation of the
surrounding environment [1]. Currently, adaptive, multiple,
MIMO antennas [2], and anomalous reflectors [3] have been
proposed for providing high data-rate in the congested envi-
ronments of mobile communications and increased coverage
of the wireless signal, respectively. In these systems, the

“smartness” is enabled by the use of advanced signal pro-
cessing techniques aimed at tracking the mobile users and
focusing the signal on them, whilst their physical layer is
still realized through conventional antennas and reflectar-
rays with fixed functionalities [4]. The possibility to enable
more than one functionality at the hardware level is, thus,
an essential element for further improving the performance
of the next-generation wireless systems.
Until recently, reconfigurability in electromagnetic

systems has played a crucial role in expanding the func-
tionalities of energy radiating, capturing, and storing struc-
tures. For example, as for the antenna systems, several
interesting designs have been proposed in the literature for
achieving frequency reconfigurability [5]–[7], polarization
control [8], [9], or radiation pattern shaping [10], [11] using
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electrical or mechanical switching mechanism [12], [13],
PIN diodes [14], [15], varactor diodes [16], [17], or micro-
electromechanical systems [18], [19]. In these systems, the
reconfigurability has been achieved mostly by connecting
and disconnecting metallic or dielectric parts of the radiat-
ing or reflecting antenna element, modifying its layout to
change its performance.
In this work, instead, we discuss about the shifting

paradigm of “intelligence-by-material” where the reconfig-
urability, adaptivity, sensing, and power management are
shifted at the hardware-level thanks to the use of prop-
erly designed 2D metastructures to be coupled with standard
antennas and reflectors. In particular, by reviewing some of
our latest results about this topic, we show that unprece-
dented wireless functionalities can be enabled by loading
the radiating device or conventional metallic reflector with
ultra-thin metasurfaces or electrically small metamaterial
inclusions.
The manuscript is organized as follows. In Section II, we

show how the use of non-linear metasurfaces allows making
the response of an antenna dependent on the amount of the
electromagnetic power interacting with it. In Section III, we
report a new class of metasurface loaded antennas whose
scattering and/or radiating characteristics are made depen-
dent on the waveform of the received/transmitted signals
making the radiators selective on both frequency- and time-
properties of the electromagnetic radiation interacting with
them. Then, in Section IV, we present an advanced approach
based on engineered vortex modes to manipulate electromag-
netic radiation, enabling fast radiation pattern synthesis and
reconfigurability in antenna systems. In Section V, we pro-
pose the design of non-reciprocal radiating systems enabled
by spatio-temporal modulated meta-particles and metasur-
faces, highlighting the tremendous impact they can have in
smart electromagnetic environments. Finally, in Section VI,
we show that by using time modulation a cavity made by
a standard metallic reflector and a metasurface can be used
to store wireless power, creating a free-space battery to be
employed in zero-power wireless systems.

II. NON-LINEAR METASURFACES FOR
POWER-DEPENDENT ANTENNAS
A. MODELING AND WORKING PRINCIPLE
As a first example of metasurfaces featuring advanced
functionalities [20], we focus our attention on non-linear
structures and, in particular, on the possibility to make the
behavior of a metasurface sensitive with respect to the level
of the impinging power [21]–[26].
This effect can be achieved by periodically loading the

metasurface with non-linear elements. To better explain this
point, we have considered a very simple–yet widely used–
metasurface geometry, consisting in an array of vertical strips
with width equal to w1 and periodicity a. When excited by a
normally-impinging plane wave, whose electric field is per-
pendicular to the strips, the un-loaded metasurface behaves as
an equivalent capacitor [27]–[29]. Its homogenized surface

FIGURE 1. Strip-based metasurface loaded with non-linear elements whose
response depends on the level of the impinging power.

impedance can be approximated as:

ZTEs = −j πη0

2k0a
ln−1

[
csc

(πw1

2a

)]
, (1)

A possibility to make the response of this metasurface
power-dependent is based on the use of a periodic elec-
tronic load, as shown in Fig. 1. In this case, each pair of
consecutive strips are connected by an anti-parallel diode
pair, whose response depends on the level of the impinging
electromagnetic power.
The effect of the anti-parallel diode pair in the homoge-

nized response of the metasurface can be easily accounted
for by using the two equivalent circuit models shown in the
insets of Fig. 1. In particular, in the low power (LP) sce-
nario, the diode can be effectively described by a RC parallel
circuit, where the value of the capacitance CLP and RLP are,
respectively, low and high. In the high power (HP) case,
instead, the equivalent circuit is represented by a simple low
resistance RHP. The two load impedances introduced by the
diode pair in the LP and HP case are, thus:

ZLP =
(

1

RLP
+ 1

jωCLP

)−1

, ZHP = RHP (2)

Consequently, the surface impedances of the loaded meta-
surface in the two scenarios can be written as the parallel
combination of the unloaded surface impedance (1) and the
load impedance (2), i.e.,

ZTEs,LP =
(

1

ZTEs
+ 1

ZLP

)−1

ZTEs,HP =
(

1

ZTEs
+ 1

ZHP

)−1

, (3)

respectively. The effectiveness of this simple model–
even considering commercial electronic elements–has been
checked through a proper full-wave co-simulation routine
in [24], while appropriate metasurface geometries for obtain-
ing similar effects for inductive metasurfaces have been
described in [26].
For the sake of simplicity, let us now assume the use

of ideal diodes without parasitics. In this case, each diode
pair can be considered as an open-circuit when the voltage
between the metallic parts of the metasurface is not enough
to turn the diodes on (i.e., ZLP → ∞); on the contrary, it
behaves as a short-circuit when the power impinging onto the
metasurface overcomes a specific threshold (i.e., ZHP → 0).
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FIGURE 2. (a) Half-wavelength dipole antenna surrounded by an inductive
metasurface designed to cancel its overall scattering at its resonance frequency. The
metasurface is periodically loaded with non-linear elements that make its response
power-dependent. (b) Reflection coefficient at the antenna input port for different
levels of the input power. (c) Total scattered power by the antenna for different levels
of the input power. In (b) and (c), the case of the dipole when the metasurface is not
applied (“uncoated”) is also reported for comparison.

Therefore, in the ideal case, the response of the metasur-
face reduces to:

ZTEs,LP ≈ ZTEs ZTEs,HP ≈ 0, (4)

Eq. (4) reveals that the loaded metasurface shown in
Fig. 1 behaves as a conventional capacitive strip metasurface
for LP signals, whereas it switches to a PEC-like behavior
for strong signals. Remarkably, the power threshold in which
this transition occurs can be tuned by properly selecting the
diode pair used to load the metasurface.
In the next Sections, we will discuss how these power-

dependent response of the metasurface can be exploited for
designing antenna systems with unconventional features.

B. POWER-DEPENDENT ANTENNAS
As a first application of non-linear metasurfaces, we discuss
the design of a non-linear antenna being almost invisible
to LP signals, whilst keeping its capability to efficiently
transmit HP electromagnetic fields.
To reduce the overall scattering of a linear antenna, we rely

on the concept of electromagnetic cloaking [30]–[34], which
has been widely investigated in the context of low-signature
antennas [35]–[38] and antenna co-siting [39]–[49]. The
antenna system considered in this work is shown in Fig. 2 and
consists of an half-wavelength dipole surrounded by a strip-
based metasurface loaded with non-linear circuit elements.
The unloaded metasurface has been designed to hit the invis-
ibility condition of the antenna [36] at its own resonance

frequency. This can be achieved using inductive metasur-
faces based on vertical strips and slightly correcting the
original geometry to engineer the flow of the currents. More
details can be found in [26].
The periodic loading of the metasurface with an anti-

parallel diode pair makes its response power-dependent, as
can be appreciated form the results shown in Fig. 2 achieved
through a commercial full-wave simulator [50]. In partic-
ular, for LP signals, the metasurface exhibits its original
unloaded response and behaves as a cloaking metasurface.
As a consequence, the antenna scattering cross section is
dramatically reduced compared to the one of the bare dipole
(Fig. 2(c)). However, the reduction of the scattering cross
section is also accompanied by an important mismatching
of the antenna with its source (Fig. 2(b)), as dictated by the
optical theorem [26].
On the contrary, when the power level of the signal

impinging onto the antenna system is such that the volt-
age across the strips overcomes the diode threshold, the
metasurface becomes a simple conductive shell surround-
ing the dipole, with minimal effects on its performances.
Indeed, as shown in Fig. 2, the original impedance matching
of the dipole, as well as its original scattering cross sec-
tion, are completely restored in the HP scenario. The power
threshold at which this transition appears strictly depends
on the choice of the non-linear element used to load the
metasurface (e.g., for this example, we have considered a
Hitachi HVM14S diode and the transition can be observed
between 0 and 10 dBm). More details on the co-simulation
scheme exploited for performance evaluation can be found
in [24], [26].
The proposed system, thus, behaves as a non-linear

antenna whose electromagnetic signature and impedance
matching depends on the level of the impinging power.
Indeed, the antenna is truly invisible to LP signals, such
as the ones emitted by a detector placed remotely. Still, the
antenna can be used as an efficient radiative system using
signals whose power is such to activate the diodes loading
the metasurface. It is worth noticing that this behavior cannot
be achieved using conventional linear metasurfaces: indeed,
as discussed above, an antenna whose scattering has been
drastically reduced with an invisibility device is intrinsically
mismatched with its source and, as such, cannot be used as
an efficient transmitting device. The use of non-linear meta-
surfaces, sensitive to the level of the impinging power, allows
discriminating the antenna response depending on the spe-
cific applications. Further improvements of the performance
of these devices in terms of scattering suppression, maximum
size of the concealed object and operation bandwidth may
be achieved by relying on high-order metasurfaces [51], [52]
or multilayer cloaks [53], [54].

C. POWER-DEPENDENT ANTENNA ARRAYS
In this Section, we discuss another interesting application of
non-linear metasurfaces for antenna arrays. We consider two
different cases: in the first one, the non-linear metasurfaces
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FIGURE 3. Directivity on the horizontal plane of the parasitic array shown in the
inset. The radiative system consists of a three-element Yagi-Uda antenna in which the
two parasitic elements are surrounded by a capacitive metasurface to make them
invisible at the resonance frequency of the driven dipole. The metasurface is
periodically loaded with non-linear elements able to switch the metasurface cloaking
behavior off for HP signals.

are applied to parasitic arrays to achieve a power-dependent
electromagnetic visibility of the passive elements; in the
second one, instead, the non-linear metasurfaces are applied
to the peripherical elements of a phased array.
The first scenario is depicted in the inset of Fig. 3: the

parasitic array we have considered is a three-element Yagi-
Uda antenna. The two parasitic elements of the radiator
(i.e., the director and the reflector) are covered by capacitive
metasurfaces, designed to dramatically reduce their overall
scattering signature at the operative frequency of the antenna
itself [48], [49]. As it can be appreciated in Fig. 3(a), the
capacitive metasurfaces are periodically loaded with anti-
parallel diode pairs that make their response depending on
the antenna input power. In particular, the parasitic elements
of the antenna are invisible to the driven dipole in the LP sce-
nario. As such, the behavior of the overall antenna system
is expected to coincide with the one of the isolated half-
wavelength dipole. In the HP case, instead, the capacitive
metasurfaces resemble simple conductive shells and the orig-
inal effect of the parasitic elements on the antenna system is
restored. Therefore, the antenna system is expected to work
as a conventional three-element Yagi-Uda array.
The directivity of this antenna system on the horizontal

plane for different levels of the impinging power is reported
in Fig. 3. These results have been obtained using a full-
wave co-simulation routine, which includes the measured
response of the non-linear element used to load the meta-
surface (Hitachi HVM14S). As it can be appreciated, the
radiation diagram of the antenna is progressively transformed
as the antenna input power is increased. In particular, in the
LP case the radiation diagram of the array coincides with
the one of a conventional half-wavelength dipole. Conversely,
in the HP case the radiation diagram resembles the one of
the unload three-element Yagi-Uda antenna. The antenna
impedance matching keeps always below −10 dB at the
working frequency (not shown here).

FIGURE 4. Radiation diagram of a conceptually-new phased array composed by
half-wavelength dipoles for (a) HP signals and (b) LP signals. The peripherical
elements of the array are surrounded by non-linear inductive metasurfaces able
turning their electromagnetic visibility on/off depending on the level of the impinging
power. In the HP scenario, the array behaves as a regular phased array, whereas in the
LP scenario the radiation diagram of the array coincides with the one of its central
element as if it were isolated.

The described non-linear Yagi-Uda array can be used to
design a passive repeater able receiving HP signals from a
given direction and broadcasting (omnidirectionally) LP ver-
sion of them. Similarly, this system can be used for designing
peripherical base stations able receiving LP signals from the
distributed users, while establishing a directive radio-link
with other base-stations using HP signals.
The second scenario we consider here is shown in Fig. 4.

In this case, we have a 3×3 phased array of half-wavelength
dipoles. The idea is to exploit this system as an omni-
directional receiving antenna for LP signals, while keeping
the steering capability of the array for HP ones. For achiev-
ing this goal, all the elements of the array but not the central
one are covered by non-linear cloaking metasurfaces. In the
LP case, the metasurfaces behave as cloaking devices and
make all the peripherical elements of the array invisible to
the central radiator. As such, the response of the system
is the one of a conventional half-wavelength dipole (see
Fig. 4(b)). Conversely, in the HP case, the cloaking metasur-
faces become ineffective and the system keeps working as a
conventional phased array able to steer the beam in a desired
direction depending on the excitation phases (Fig. 4(a)).
The described system represents an innovative power-

dependent antenna array whose diagram is omni-directional
for LP signals and directive for HP ones. It may find applica-
tions, for instance, in radar system, to illuminate selectively
a given angular region using HP signals, while being able
to receive LP return signals from all the directions [55].

III. WAVEFORM-DEPENDENT DEVICES FOR
FREQUENCY- AND TIME-DOMAIN SELECTIVE
ANTENNAS
In the last decades, the ever-growing demand for different
wireless services has increased electromagnetic noise and
clutter. Due to spectrum congestion, the wireless devices
receive not only useful signals but also unnecessary elec-
tromagnetic noise, with the high risk of a significant
deterioration of the quality of the communication environ-
ment. Thus, the possibility to increase the degree of freedom
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FIGURE 5. Schematic of the waveform-selective circuit composed by a diode bridge
rectifier and (a) parallel RC circuit, (b) series RL circuit, (c) parallel RC circuit
connected in parallel with a series RL circuit, or (d) parallel RC circuit connected in
series with a series RL circuit.

for discriminating the useful signal from the environmental
noise is a highly desirable feature.
In the previous Section, we have shown the possibility

of designing power-dependent devices, whose functionalities
depend on the power level of the impinging wave. Here, we
further explore the possibility of designing antenna systems
whose behavior depends on specific characteristics of the
signal even at the same frequency. In particular, we present
radiating devices exhibiting different responses depending
on the waveform of the transmitted/received waves.

A. WAVEFORM-SELECTIVE CIRCUIT
Waveform-selectivity can be achieved by exploiting the
lumped elements circuit reported in Fig. 5, discussed for
the first time in [56]. Indeed, the peculiar response of the
circuit allows adding time-domain selective properties to the
device loaded by this circuit [57].
The lumped-element circuit uses a full diode bridge

rectifier and passive elements like resistors (R), capaci-
tors (C), and inductors (L). The diode bridge is loaded by a
shunt or series combination of RLC elements, as shown in
Figs. 5 (a)–(d). When a signal is at the input port, thanks to
the presence of the diode bridge, it is rectified and most of the
energy is converted to zero frequency (i.e., DC) and applied
to the RLC element. Thanks to the different time-domain
responses of the RLC elements, the circuit behaves differ-
ently in presence of a short-pulsed waveform signal (PW)
or a long pulse or a continuous waveform (CW).
In presence of a RC parallel circuit (Fig. 5(a)), in fact,

a strong current initially flows in the circuit, as shown in
Fig. 6(a), and the circuit itself behaves as a low-impedance
component (i.e., Zin → 0). However, since the capacitor
charges over time, after a while the circuit behaves as a
high-impedance element, finally blocking the current flow
and acting as an open-circuit (i.e., Zin → ∞), as shown in
Fig. 6 (b). Therefore, in presence of a short pulse, the signal
can flow along the circuit, whilst for a long pulse, the signal
is blocked. Short and long are referred to the time constant
of the circuit.
Remarkably, the dual behavior can be achieved using a

series RL element (Fig. 5 (b)), while by properly combining
RC and RL circuits (Figs. 5 (c)–(d)), bandpass or notched-
band time-domain characteristics could be designed [58].

FIGURE 6. Signal amplitude at the input and output ports of the waveform-selective
circuit in the case of a parallel RC loading circuit, for different temporal pulse
widths (TPW) of a signal at 3 GHz: (a) TPW = 10 ns, (b) TPW = 1000 ns. Commercial
circuit simulator results.

FIGURE 7. (a) Half-wavelength dipole antenna coated by a meandered inductive
metasurface loaded by a waveform-selective circuit. (b) Retrieved surface reactance of
the loaded metasurface for different values of the illuminating signal pulse width (�t),
normalized to the loading circuit time constant (�τ ). In the inset, the schematic of the
retrieval setup is reported.

This unprecedented functionality can be thus exploited
to extend the degree of freedom in antenna design, by
properly loading the radiating element with this waveform-
dependent circuit and making the antenna dependent not only
on the frequency of the incoming signal but also on its time-
domain properties. In the following, we present some of this
waveform-selective antenna system showing how they can
further extend the antenna capability.

B. WAVEFORM-SELECTIVE CLOAKS FOR ANTENNAS
The antenna cloaking functionalities discussed in the
previous Sections can be expanded by exploiting cloaking
metasurfaces loaded by waveform-selective circuits. We can
make the cloaking effect depending not only on the frequency
of operation but also on the pulse width of the signal. Thus,
it is possible to conceive an antenna system that is invisible
to a detecting pulsed radar, whilst the antenna visibility is
automatically restored in presence of a longer pulse or a
CW [59].
This functionality can be realized by exploiting the

cloaking metasurface reported in Fig. 7(a). Here, a half-
wavelength dipole antenna is coated by a cloaking meta-
surface implemented through meandered metallic strips,
where the throat of the meander is loaded with the
waveform-selective circuit. The unloaded metasurface has
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been designed to suppress the scattering signature of the
antenna at its own resonance frequency f0 = 3 GHz, when
exhibiting a surface reactance Xs = 29 �/sq.

By loading the cloaking metasurface with a waveform-
selective circuit characterized by a series RL, we can make
the surface reactance of the metasurface dependent on the
ratio between the pulse width of the imping signal (�t)
and the time constant of the circuit (�τ = L/R) (see
Fig. 7(b)). For a short pulse (�t << �τ ), the value of
the surface impedance of the metasurface is the one needed
to obtain the cloaking effect. Conversely, for longer pulse
width (�t >> �τ ), the surface reactance results in a lower
value, being the throat of the meander short-circuited. Further
details on the retrieval technique used to get the surface
reactance values can be found in [60].
This behavior drastically modifies the scattering response

of the antenna and its matching characteristics. In
Fig. 8(a) the scattering signature of the antenna is reported,
whilst in Fig. 8(b) the reflection coefficient at the antenna
input port is shown. It is worth noticing that these results
have been obtained using a numerical routine based on both
full-wave and circuit simulations that allows taking into
account the non-linear effects and the higher-order harmonics
generation introduced by the loading circuit [50], [61].
As can be appreciated, in presence of a short pulse (PW)

the toral scattering signature of the coated antenna is reduced
at f0. At the same time, the reflection coefficient at the
antenna input port is very high, disabling the antenna func-
tionalities. On the contrary, when a signal with a large pulse
width (CW) is received by the antenna, due to the vari-
ation of the surface reactance, the cloaking resonance is
shifted towards higher frequencies. The matching properties
of the antenna, thus, are restored, and it can receive/transmit
efficiently.
Therefore, by using waveform-selective cloaks, we can

introduce “intelligence” to the antenna system, making it
sensitive to both the frequency- and time-domain proper-
ties of signals in the environment and enabling autonomous
reconfigurability of its radiating/scattering characteristics.
Indeed, such an antenna could be placed in front of a
radar system scanning the environment through short pulses
without affecting its performance, thanks to the antenna
capability of hiding itself only when the radar is receiving
or transmitting. This waveform-selective cloaking solution
introduces unprecedented possibilities in the design of
radiating systems, broadening the range of functionalities
available for antenna designers in terms of antennas self-
reconfigurability depending on the frequency, polarization,
waveform characteristics of the surrounding environment.

C. WAVEFORM-SELECTIVE FILTERING MODULES FOR
ANTENNAS
Waveform-selective devices can be used not only to
improve cloaking functionalities in antenna systems, but
they can also be integrated into conventional filtering mod-
ules for introducing frequency- and time-domain filtering

FIGURE 8. (a) Total scattered power by the coated antenna for an incoming pulsed
waveform signal (PW) or continuous signal (CW). For comparison, the scattering
response of the bare antenna is also reported. (b) Magnitude of the reflection
coefficient at the antenna input port for the same scenarios.

FIGURE 9. Reflection coefficient magnitude of the waveguide aperture antenna (in
the inset) with and without the capping frequency- and time-domain filtering iris.

functionalities, making the device less sensitive to noise and
interference.
In the inset of Fig. 9, the design of an aperture antenna

integrating such functionalities is depicted. An open-ended
rectangular waveguide is capped by a metallic plate with an
integrated annular slot. As known [62], [63], this filtering
module can be used to introduce a frequency-domain filtering
effect on the antenna. In fact, in Fig. 9 when comparing the
magnitude of the reflection coefficient at the antenna input
port with and without the iris, the filtering effect is imme-
diately clear: thanks to the resonance nature of the loading
particle, a band-pass behavior is introduced, and the signal
can be received just around the resonance frequency [64].
Indeed, by modifying the iris shape, the frequency response,
as well as the polarization state of the transmitted field can
be controlled [65]–[69].
Still, the iris is not able to distinguish between two

signals within the band-pass spectrum, even though their
time-domain responses are different. To introduce this func-
tionality, the iris can be loaded with a waveform-selective
circuit. Here, the annular slot is loaded in two points by the
lumped element circuit (red arrow in the inset of Fig. 9).
Since the circuit behaves as a high- or low-impedance load,
depending on the pulse width of the incoming signal, these
two points can be short- or open-circuited and the iris is
transformed from a conventional filtering annular slot to a
metallic plate. In the latter, in fact, a strong current flows
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FIGURE 10. (a) Transmittance of the overall system for a parallel RC-based
circuit (left) and a series RL-based circuit (right). Different values of the reactive
elements are considered.

along with the connecting points of the slot, short-circuiting
them and reflecting the signal. More details can be found
in [70].
The magnitude of the transmission coefficient of an equiv-

alent rectangular waveguide filled with the same filtering
module loaded by an RC waveform-selective circuit is
reported in Fig. 10(a). As can be appreciated, depending
on the pulse width of the input signal full- or zero- trans-
mission is enabled. Moreover, by judiciously controlling the
value of the loading capacitor the transmittance level for a
specific pulse width can be tuned.
Finally, in Fig. 10(b) the polar plot of the realized gain

of the designed aperture antenna on the E- and H-planes
is reported. The patterns have been evaluated at the cen-
tral frequency of operation of the radiating system. It can
be observed that, for very short pulse (10 ns), the antenna
has poor radiation performance thanks to the short cir-
cuiting of the filtering iris. On the contrary, for signals
characterized by longer pulse width (> 1000 ns), radia-
tion performance strongly improves due to the open-circuit
condition of the iris.
The proposed structure is just an example of a new class

of radiating systems that can be made extremely robust to
interference from the external environment thanks to the
integrated frequency- and time-domain filtering functionality,
being the antenna specifically designed for working with a
given waveform in a given bandwidth. Finally, it is worth
mentioning that, being these devices equipped with non-
linear diode, they are inherently power-dependent devices
and their time-dependent filtering functionalities could be
disabled, particularly if receiving too low powered signal.
Indeed, it has been demonstrated that more complex circuit
solutions relying on the use of operational amplifiers can
dramatically mitigate this issue [71].

IV. ANTENNA RECONFIGURABILITY ENABLED BY
COMPOSITE VORTEX PROPERTIES
As discussed in the previous Sections, the possibility of
structuring metasurfaces on a subwavelength scale allows

FIGURE 11. (a) Geometrical sketch of the proposed structure for generating
composite vortex patterns and (b) beam-steering capabilities of patch antennas
enabled by composite vortex properties.

manipulating the electromagnetic field with a larger number
of degrees of freedom and precision. Metamaterial /meta-
surface lenses [72] allow overcoming the diffraction limit
of conventional lenses, in which the resolution is limited to
half the wavelength of the light source. This limit, however,
applies to the focusing of light and, thus, on the minimum
distances between two distinguishable bright regions. On
the contrary, dark regions produced by phase singularity
points [72] (i.e., points where the phase of an electromag-
netic field is undefined) can be arbitrarily localized and
subwavelength spaced [74]. Phase singularity points can be
thus exploited for tailoring an electromagnetic field with
deep precision and wide flexibility [75].
In this regard, several antennas radiating electromagnetic

fields with phase singularity points have been proposed,
which are based on the possibility of generating vortex
modes [76]–[80]. In fact, a vortex beam is characterized by
the presence, in the centre of the beam itself, of an amplitude
null and a singularity point surrounded by a spiral-like phase
variation. However, for structuring the overall field accord-
ing to the possibility of controlling the number and position
of phase singularity points, different vortex modes should be
superimposed for creating a composite vortex pattern [81].
For this purpose, we have recently proposed a simple

structure consisting of concentric patches etched on a com-
mon grounded dielectric substrate [82]. In particular, as
shown in Fig. 11(a), the proposed structure consists of an
inner circular patch antenna surrounded by an annular metal-
lic ring. By properly selecting their radii, the two patches
can be designed for radiating different resonant modes [83].
Moreover, as demonstrated in [78], these modes effectively
act as vortex beams if a circular polarization operation is
properly implemented. In this way, an overall composite vor-
tex pattern can be radiated, where the position of the phase
singularity points can be simply controlled by acting on the
amplitude and phase of excitation of the two constituting
beams [82].
In particular, in the simple case of a vortex mode of

the first order superimposed to a vortex-free mode, the
overall pattern has a single phase singularity and, thus,
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FIGURE 12. Possible radiation patterns of the structure reported in Fig. 11, when
the two radiating elements are designed for radiating a vortex mode of the second
order superimposed to a vortex-free component. Here, α dictates the amplitude ratio
between the two modes, as described in [85].

a single amplitude null, whose position can be analyti-
cally determined [82], [84]. In this way, the overall structure
exhibits a directive pattern with a pointing direction that can
be finely controlled by acting on the phase shift δ between
the feeding ports of the two patches, as shown in Fig. 11(b).
These preliminary results, obtained through a proper set

of full-wave numerical simulations [50], suggested to fur-
ther investigate the possibility offered by composite vortex
properties in radiation pattern synthesis and reconfigurabil-
ity. Thus, a more general analysis was carried out in [85],
where the superposition between any two different vortex
modes radiated by a patch antenna was considered. This
analysis confirmed that phase singularity points of vortex
modes and, thus, their amplitude nulls, can be exploited as
a new design strategy for tailoring, almost at will, the radia-
tion pattern of patch antennas. In fact, by properly choosing
the order modes of the two radiating patches, the number
of phase singularity points can be selected. Once fixed the
number of this new degrees of freedoms, their positions can
be engineered for shaping and pointing the overall radiation
pattern.
For demonstrating the effectiveness of the proposed

approach, some radiation pattern shapes of practical interests
were reported. In particular, as shown in Fig. 12, a two-
element patch antenna can be reconfigured in real-time to
exhibit very different radiation patterns, such as conical,
dual-beam, saddle, sector or directive patterns, whose shapes
found practical applications in mobile or satellite commu-
nication systems. Please note that these different patterns
are typically obtained by designing a specific antenna struc-
ture for each one of them. Instead, the flexibility enabled
by composite vortex property allows reaching these different
patterns by using a single radiating structure. Moreover, an
electronic switching between the different patterns can be
implemented by simply varying the amplitude ratio (here
dictated by α) between the two constituting beams, thus
enabling the possibility to adapt in real-time the antenna
properties to the operative environment.
Finally, we remark here that, by also acting on the phase

shift between the two constituting beams, the radiation
patterns, reported in Fig. 12, can be also easily rotated.
Therefore, the proposed approach can be considered as a
promising strategy for implementing reconfigurable planar
devices with possible applications in next generation wireless
systems.

V. ANTENNA NON-RECIPROCITY ENABLED BY
SPATIO-TEMPORAL MODULATION
As it is well-known from antenna theory, the radiation pattern
of an antenna describes the radiation intensity radiated in
all directions [86]. Due to reciprocity, the radiation pattern
in transmission mode also describes the effectiveness with
which the antenna can capture electromagnetic energy from
the surrounding space. Indeed, typically, the transmission and
reception gains, GTX(f0, r0) and GRX(f0, r0), are identical for
a given operation frequency f0 and direction r0 [87], [88].
Therefore, the antennas are not able to intelligently select
the radiated/captured waves, to avoid, for example, that the
echo of a transmitted signal, or any interfering signal coming
from the same direction is perceived.
The conventional technologies for breaking reciprocity are

typically based on bulk magnets or non-linear devices that
are not compatible with required compactness of antenna
systems or linearity of the system response, respectively.
Therefore, more recently, the original concept of recon-
figurability of metamaterial and metasurfaces has been
extended to achieve fast dynamic modulation of the prop-
erties of a system in real-time. Starting from the first
attempts of tunability of the metasurfaces [86]–[92], recently,
it has been demonstrated that faster modulation can be also
applied [93]–[94], and several exotic space–time scattering
phenomena never observed before have been observed. In
the following, we present and discuss some unprecedented
antenna responses enabled by space-time metamaterials and
time-varying metasurfaces. Among them, the possibility to
break the reciprocity constraint of a passive system and
generate/control frequency harmonics in the scattered field
represents the most appealing functionality [95]–[99].
In the next sub-sections, we focus our attention

on the use of space-time modulated meta-particles and
metamaterials [100]–[103] for enabling different radiating
performances in TX and RX modes, resulting in an addi-
tional degree of freedom for antenna designers, leading to
independently tailoring the transmitting and receiving radi-
ation patterns for specific applications. As a side effect, the
antenna is capable of selecting autonomously the signal to
be received and transmitted according to the propagation
direction, frequency, and/or polarization state, showing an
embedded intelligence not presented before.

A. NON-RECIPROCAL FILTERING HORN ANTENNA
Reciprocity in antennas may represent a limit in the case
of radiators operating in a dual-link scenarios, such as in
satellite communications. If both uplink and downlink nar-
rowband channels are considered, it would be preferable
that only one polarization, for example the LHCP, is used
in the uplink frequency band, but the same is not received
by the antenna. Conversely, in the downlink frequency band,
the same polarization can only be received, but not transmit-
ted. This is not achievable through a conventional orthomode
transducer (OMT), because it would work only in the case
of uplink and downlink operating at the same frequency
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FIGURE 13. Schematic and performances of non-reciprocal horn antenna enabled
by spatio-temporal modulation. (a) Perspective view of the antenna.
(b) Representation of the voltage waves propagating on the annular aperture in
presence of the time variable capacitors.

and orthogonal polarizations. Such an antenna, exhibiting
self-filtering properties and dual-band operation is obviously
non-reciprocal and can relax the requirements of the diplexer
that is necessary to connect after the antenna to separate the
uplink and downlink bands.
Recently, we addressed this issue by proposing a standard

high-gain horn antenna loaded with a spatio-temporal mod-
ulated filtering particle inserted between the antenna and the
feeding waveguide [104]–[106], as shown in Fig. 13a.
When the resonant particle is not modulated, it behaves

as a pass-band filter, allowing the energy passing through it
only in a limited range of the spectrum. In case of a ring
aperture, the current distribution at the resonant frequency f0
is a standing wave that can be represented as a superposition
of two oppositely propagating waves with the same ampli-
tude, carrying the same energy. The two opposite waves
travel with the same wavenumber kRH = kLH = k1, lead-
ing to a reciprocal response for the particle. The symmetry
of oppositely traveling current waves can be broken by
introducing angular-momentum biasing, driven by a set of
time-modulated varactor mounted across the aperture (see
Fig. 13(b)). A spatio-temporal modulation of the effective
permittivity function as εr(t, ϕ) = εr0 + εm cos(2π fmt− pϕ)

is imposed by the varactors to the annular aperture, where
εr0 is the background permittivity, the permittivity modu-
lation amplitude, fm the modulation frequency, and p the
angular-momentum order.
Due to the presence of the time-varying periodic pertur-

bation of the effective permittivity function, the traveling
current waves with opposite handedness experience a local
Doppler effect and each of them perceives the ring to have
a different electrical length. As demonstrated in [104], the
spatio-temporal modulated annular ring exhibits four sepa-
rate resonant states, two for each circular polarization state,
i.e., LHCP and RHCP. In Fig. 14(a), we report the resonant
eigenstate of the modulated particle as a function of the
modulation frequency fm. It is worth noticing that when the
modulation frequency is zero, the effective permittivity func-
tion is only spatially modulated with a periodicity imposed
by the angular momentum order p. Being the spatial period
of the modulation twice than the periodicity of the travel-
ling wave on the ring aperture, the local electromagnetic
field generated by the currents flowing along the ring edges

perceive a local Bragg grating and no resonant eigenstate is
obtained at the original resonant frequency f0. However, the
annular inclusion can still support a resonant state that is at
a different frequencies, i.e., f±0 = f0(1 ± 0.5κm), where κm
is the resonant mode coupling factor evaluated as reported
in [95]. In this scenario, however, the particle is still recip-
rocal, being the LH/RHCP states resonating at the same
frequencies f±0 .
When the modulation frequency fm increases, the local

Doppler effect induced by the modulation is perceived by
the travelling waves on the apertures. The eigen solutions of
the resonant LH/RHCP states split and the particle exhibits
different resonant frequencies according to the polarization
stare of the illuminating wave. In particular, considering
Fig. 14(a), It is worth noticing that two main resonant states,
in the solid lines, and two secondary resonant states, in the
dashed lines, are excited. The main states exhibit a stronger
resonant response with respect to the secondary ones. For
sake of generality, the curves in Fig. 14a are not specified for
a specific spatio-temporal modulated annular ring, allowing
to catch the important role of the modulation regardless the
particles characteristics (please, see [104] for the analytical
expression of the curves reported in Fig. 14a). The two main
resonant states are symmetrically located with respect to the
original resonant frequency of the unmodulated particle and
approach it for higher modulation frequencies. Indeed, for
very fast modulation, the travelling waves are not able to
perceive the modulation and the annular aperture resonates
again at the original frequency. However, for modulation
frequencies lower than one order of magnitude with respect
to f0, the non-reciprocal response is clearly achieved as
shown in Fig. 14(b). The transmission coefficients in terms
of S21 and S12 scattering parameters as a function of the
frequency have been evaluated though a proper set of numer-
ical co-simulation between CST Microwave Studio [50] and
Advanced Design System [61]. The modulation frequency
is just 0.05 f0. The red and blue line represent the trans-
mission coefficient for the same polarization in transmission
and reception. It is clear that more than 10 dB of isolation
can be achieved when the operative frequency coincides with
the maximum transmission level for one direction. However,
for opposite handedness of the illuminating wave, the trans-
mission is maximum. This allows enabling an intelligent
selection of the wave to be transmitted and rejected not
only according to the frequency, but also according to the
polarization state.

B. NON-RECIPROCAL ANTENNAS ENABLED BY
CORE-SHELL COVERS
In the previous Section, we discussed the possibility to break
reciprocity of an horn antenna by using space-time modu-
lated meta-particles. Such an approach is clearly applicable
to only aperture antennas, since the radiated and cap-
tured field can interact directly with the modulated particle.
However, the concept of metamaterial-based non-reciprocity
can be extended to any antenna system if a proper space-time
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FIGURE 14. (a) Resonant frequencies of the modulated annular aperture as a
function the modulation frequency. (b) Magnitude of the transmission coefficient of
the modulated annular aperture when the spatio-temporal modulation is present.

FIGURE 15. A properly designed space-time varying cloak covering the antenna
keeps the transmission performance unaltered (a), but drastically reduces the
reception of the in-band interfering signals (b), shifting them out of the antenna
operational band and, thus, making their presence undetectable.

varying (STV) cover is designed around it, as proposed
in [107]–[110].
In Fig. 15, we report the operative principle of the spatio-

temporally modulated cover for antennas. The cover exhibits
a radially modulated permittivity profile, making its response
isotropic and, thus, independent of the type of antenna and
corresponding radiation diagram. The cover can be designed
to keep the outgoing radiation unaltered (Fig. 15(a)) but
changes drastically the received radiation (Fig. 15(b)) at the
operative frequency of the antenna, significantly modifying
its realized gain.
Let us consider the antenna system shown in

Fig. 16(a) consisting of a resonant dipole antenna operat-
ing at frequency f0 covered by a STV cloaking shell with

FIGURE 16. (a) Perspective 3D view of the space-time varying metamaterial shell
surrounding a resonant electric dipole. The permittivity of the shell is modulated to
appear in motion in inward direction. (b)-(c) Realized gain patterns exhibited by a
dipole antenna in presence of a STV metamaterial shell in (b) TX mode and (c) RX
mode.

thickness d = a2 − a1, where a1,2 are the inner and outer
radius of the shell, respectively. The shell is made of a radi-
ally modulated dielectric material, whose electric permittivity
changes in space and time in the range a1 ≤ r ≤ a2 according
to the modulation profile εr(r, t) = εr0 +δε cos [2π fmt±kmr],
where εr0 is the static electric permittivity of the dielectric,
δε is the modulation amplitude and (fm, km) are the tempo-
ral frequency and wave-number of the modulation profile,
respectively. The sign “±” defines the moving direction of
the permittivity wave within the shell: if positive, the per-
mittivity wave is moving inward direction and it is used for
changing the receiving radiation performances with respect
to the unmodulated case; on the contrary, if negative, the
radiating performances in transmitting mode are modified,
whereas the antenna is still able to receive as if the shell
were static. The non-reciprocity of the spatio-temporal cover,
therefore, is enabled by the different capability of the shell
to interact with the propagating wave, radiated or captured,
according to its propagation direction.
Indeed, let us consider a STV shell with inward moving

permittivity profile. If the antenna operates in transmit-
ting mode, the interaction with the permittivity wave is
contra-directed in any direction, i.e., the two waves move
in different directions. A phase matching between radi-
ated wave and permittivity wave is not possible, and the
frequency conversion of the radiated signal is identically
zero [111]. As shown in Fig. 16(b), the realized gain pat-
tern of the dipole antenna at the operating frequency f0 in
TX mode coincides with the unmodulated one. The patten
has been obtained properly combining the results obtained
though Finite Difference Time Domain simulations and CST
Microwave Studio [50].
On the contrary, when the antenna is operating in receiving

mode, the co-directed permittivity travelling wave interacts
with the incident field at frequency f0 and it is modulated,
distributing the energy of the received signal on a set of
harmonics located at the frequencies fn± = f0 ± nfm, as
demonstrated in [101]. This is clearly shown in Fig. 16(c),
where the realized gain pattern of the dipole antenna at
the operating frequency f0 in RX mode is reported. The
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maximum gain is significantly reduced, making the antenna
unable to capture the signal anymore.
A similar effect can be also obtained using a

properly engineered system based on time-varying
metasurfaces [112]–[115], instead of bulk metamaterials.
In [116], [117] we recently proposed an isolating non-
reciprocal system based on time-varying metasurfaces. They
are at the opposite side of a generic filtering structure, that
let the signal pass through or stop according to the propa-
gation direction of the illuminating signals. Indeed, the two
metasurfaces impart opposite frequency conversion (up- and
down-conversion) of the incident wave by exploiting the lin-
ear modulation of their phase properties [98], [112]. In this
case, the signal is shifted within the pass-band frequency
range of the filter or moved in the stop-band region accord-
ing to which of the two metasurfaces is illuminated first.
This approach would relax the requirement of a modulated
permittivity function, simplifying the implementation.

VI. 2D RECEIVING AND STORING FOR WIRELESS
POWER TRANSFERRING SYSTEMS
The increasing demand of wireless systems has always
provided numerous challenges connected to energy trans-
fer, that brought recently to a new generation of energy
storing and transfer devices, that is, Wireless Power
Transfer (WPT) systems. Energy transfer applications have
been exploited in far and near field systems, rang-
ing from microwave power transmission [119], [120] to
short-range WPT applications exploiting inductive coupling
and resonant coupling [121]–[123]. Among those, virtual
effects [123]–[125], and energy storing based on virtual
coupling [126]–[127] have recently attracted our community,
introducing electromagnetic light confinement in lossless
systems [128]: energy is neither reflected, transmitted nor
absorbed but stored within the system and is lately released
at will. This is achieved by approaching electromagnetic
scattering zeros of the system, that correspond to absorbing
modes. However, being the system lossless, energy will be
only accumulated. The absorbing mode is related to a time-
varying excitation, that allows energy accumulation and the
zero-scattering condition.
In this frame, we have recently proposed metasurface

based systems able to store electromagnetic energy in res-
onant cavities [129]–[131]. This is achieved by leveraging
a semi-bounded cavity consisting of a metasurface and a
perfect conducting mirror. The scattering complex plane is
explored and the frequency zeros that grant virtual per-
fect absorption are found as a function of the metasurface
reactance and the cavity dimensions. A generalization of
the perfect virtual absorption phenomenon in a metasurface
cavity for any incidence angle and polarization of the imping-
ing wave has been modelled and numerically demonstrated.
A metasurface extended design with reactance expressions
for any incidence angle and polarization of the impinging
wave has also been settled.

FIGURE 17. Two-dimensional metasurface cavity backed by a reflector, illuminated
by a TE plane wave impinging with incidence angle θ . The metasurface consists of a
dense array of metallic strips aligned along the x-direction. Energy is stored before
the kick-off instant t0 and is released after it.

FIGURE 18. Snap-shot in time of the electric field during illumination, storing, and
releasing of energy (upper, middle, and bottom figure, respectively) of a metasurface
bounded cavity for a normal incidence illumination.

The metasurface bounded cavity is composed, as depicted
in Fig. 17, by a dense array of strips, which show an overall
reactance of Xs = 580�, spaced from the reflector by the
distance d = 0.9λ at f0 = 5GHzin free space that is η = η0.

The reactance exhibited by the array has been defined
by geometrical strip width and their periodicity through
eq. (1). Exploiting the equivalent transmission line model
of the system, the reflection coefficient at the metasurface
interface can be expressed, and seeking for its zeros leads
to the zero scattering complex frequencies:

ω0 = ωr + iωi = c

d cos θ

[
πn− 1

2
log

(
1 − 2i

Xs
η0

)]
(5)

where n is the index of the cavity mode responsible for stor-
ing the incident electromagnetic energy. The zeros in eq. (5)
are complex quantities and can be found on the scattering
complex frequency plane, where they lay in the lower half
plane and are periodic along the real frequency axis, accord-
ing to the cavity order n, so they have the same imaginary
frequency ωi. Exciting the metasurface cavity with one of
these zeros brings to the virtual perfect absorption, as showed
by full-wave simulated time-snapshots of the electric field
in Fig. 18, obtained by using CST Microwave Studio [50].
Here, it is proved that the signal is completely accumulated
inside the metasurface cavity, as far as the designed com-
plex frequency excitation holds, that is, up to the kick-off
instant t0. When this condition is not fulfilled anymore, the
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TABLE 1. Metastructures for antennas and wireless propagation systems.

signal is released back as a superposition of cavity modes.
During the zero scattering excitation, the signal is completely
accumulated inside the free-space cavity and no reflections
occur as far as the proper temporally shaped signal excites
the structure.
We have then demonstrated that virtual perfect absorp-

tion can occur under peculiar conditions that are related
to values of the metasurface surface reactance and the
cavity input reactance [132], [133]. First of all, the two
reactances have to show an opposite electric behaviour,
that is, sgn[Xcavity] = −sgn[Xmetasurface], so they must cir-
cuitally behave as an inductance and a capacity or viceversa.
Last, to get complex scattering zeros, the related induc-
tance and capacitance emulating the reactance behaviour
at the operative frequency f0 must fullfill the condition:
L
/
C < 4η2

0. Otherwise, scattering zeros will be purely imag-
inary; this condition cannot lead to free-space propagation,
since the signal is static and exponentially growing [132].
This approach, instead, can be used to guided propagation,
paving the way to energy storing in circuital purely reactive
loads [134]–[136].
The intriguing technique of time-varying excitation has

been also used to get virtual perfect absorption for enhancing
energy transfer, by locally controlling energy accumula-
tion and enabling metasurfaces as key parameter to make
steps forward in the research on wireless power transfer
systems [123], [137].

VII. CONCLUSION
In this paper, we have reviewed some recent applications of
metasurfaces in antenna and reflector systems. In particular,
we focused on non-linear, waveform-selective, topologically-
inspired, time-varying, reconfigurable and energy storing
structures, which have been exploited to add reconfigurabil-
ity to standard designs, as well as, conceive new radiating
systems with awareness capabilities on the operational
environment. A resume Table illustrating the fundamental

properties, target applications, and reporting relevant ref-
erences for each of the discussed metastructure devices is
reported in Table 1.
With the reported practical examples of innovative antenna

systems, we have shown that metasurfaces and, more in
general, 2D reconfigurable structures, can be of paramount
importance to overcome existing limitations on the phys-
ical layer of a communication link and, thus, can be very
attractive for implementing next-generation wireless systems.
Indeed, some challenges are still open before a full establish-
ment of the proposed technologies, and the main research
efforts in the near future will be focused to overcome
the performance limitations arising from the presence of
electronic elements in the metastructure design.
Compared to passive metastructures, whose technologi-

cal maturity has been widely demonstrated and led to the
commercialization of several devices, active metastructures
exhibit more severe frequency limitations caused by the load-
ing electronic devices. This issue is strongly related to the
class of electronic devices used. For instance, applications
relying on the use of PIN diodes are expected to be applied
in a broader range of frequency due to their availability
up to very high microwave frequencies. Indeed, more com-
plex circuit systems or frequency modulators can be more
easily affected by limitations coming from the available cur-
rent technology, although the recent effort of the community
towards the design of spatio-temporal modulated structures
is quickly boosting the technology in the field.
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