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ABSTRACT We show theoretically that the characteristic modes of dielectric resonator antennas (DRAs)
must be capacitive in the low frequency limit and that as a consequence of this constraint and the
Poincaré Separation Theorem, the modes of any DRA consisting of partial elements of an encompassing
super-structure with the same spatial material properties cannot resonate at a lower frequency than the
encompassing structure. Thus, design techniques relying on complex sub-structures to miniaturize the
antenna, including topology optimization and meandered windings, cannot apply to DRAs. Due to the
capacitive nature of the DRA modes, it is also shown that the Q factor of any DRA sub-structure will
be bounded from below by that of the super-structure at frequencies below the first self-resonance of the
super-structure. We demonstrate these bounding relations with numerical examples.

INDEX TERMS Dielectric resonator antennas, characteristic modes, substructure antenna, fundamental
limit, resonant frequency, Q factor.

I. INTRODUCTION

DIELECTRIC resonator antennas (DRAs) have drawn
significant attention from researchers and engineers

since their initial investigation by Long [1]. One of the most
appealing features of DRAs is their high radiation efficiency
due to lack of conductive loss. As demonstrated in [2], DRAs
remain highly efficient even at millimeter wave (mmWave)
frequency range, whereas conductive patch antennas expe-
rience considerable degradation in radiation efficiency. This
makes DRAs a promising antenna solution for mmWave
applications and beyond. Besides their high radiation effi-
ciency, DRAs also feature compact size due to their high
dielectric constant, and offer more design freedom owing to
their various material options and 3-dimensional geometries.
Though many DRA designs have been reported in lit-

erature covering various applications, such as broadband
designs [3], [4], multi-port applications [5], [6], beamforming
arrays [7], [8], and millimeter wave applications [9], [10],
DRAs with complex structures are less investigated than
their metallic counterparts. While metallic antennas often
take complex geometries based on heuristic modification of
canonical antennas or pixel-based optimization [11]–[15],

the majority of reported DRA designs are based on
canonical shapes, such as rectangular, cylindrical and spher-
ical resonators [6], [16], [17]. However, there may also
be performance benefits in expanding the design space
through more complex DRA geometries. For example, com-
plex geometries are often employed to miniaturize metallic
antennas by adding inductive energy with meandering lines,
helix or spiral structures [18]–[20], or to broaden the band-
width (reduce the Q factor) by combining multiple modes
of different reactive energies [21]. In light of these demon-
strated benefits for other antennas, and the development of
additive manufacturing methods that allow 3D prototyping of
complex dielectric structures, dielectric antennas of complex
shapes are an important and emerging subject. For example,
in [22], [23], DRAs of complex shape are synthesized for
broad bandwidth in MIMO applications. In [24], a pixelated
DRA for wideband and circular polarization applications is
designed with dielectric posts of varying heights. In [25], a
wideband multi-ring DRA design is reported using differ-
ent unit cells for stepped material properties and fabricated
through 3D printing. While new functionalities have been
achieved with complex DRA shapes, it still remains unclear
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whether DRAs with complex geometry offer performance
benefits for a given constrained physical size and whether
there are limitations on their performance. A more funda-
mental analysis of DRA limitations would provide valuable
guidance for future DRA design and synthesis.
The objective of this work is to understand whether

DRAs are limited in a fundamentally different way from
metallic antennas using both theory and numerical simula-
tion. Recent observational studies have reported that shape
optimization approaches applied to DRAs within a bounded
volume appear to only increase the electrical size of the
antenna [22], [26], in direct contrast with miniaturization
techniques used for metallic antennas. Thus, we study the
physical limits of DRAs and reveal the unique constraints
on DRAs. Specifically, in Section II, we mathematically
show that DRAs support only capacitive characteristic modes
in the low frequency limit, a distinctive behavior com-
pared to metallic antennas. In Section III, leveraging the
capacitive nature of DRAs’ characteristic modes and the
Poincaré Separation Theorem, it is further established that a
DRA cannot be made resonant at a lower frequency by
removing selected parts from an encompassing dielectric
super-structure, excluding the benefit of antenna miniatur-
ization through complex shape design, e.g., meandering,
helix or similar methods that are widely adopted for small
metallic antennas. The capacitive nature of DRAs’ char-
acteristic modes also excludes the possibility of Q factor
minimization by mode combining below the fundamental
resonance of the superstructure, resulting into an additional
bound on modal Q factors. Section IV validates the bound-
ing relations on characteristic eigenvalues, modal resonance
frequencies and Q factors through numerical examples, and
Section V discusses the implications of these findings on
DRA miniaturization.

II. CHARACTERISTIC MODES OF DRAS
The electric field integral equation (EFIE) in a dielectric
object using the volume equivalence principle is:

J(r)
jωε0(εr(r) − 1)

+ jωA(J) + ∇�(J) = Ei(r) (1)

where the polarization current J(r) is related to the total
electrical field as J(r) = jωε0(εr(r) − 1)E(r); A(J) and
∇�(J) are the magnetic vector potential and the electric
scalar potential, Ei(r) is the incident field, and εr(r) is the
relative permittivity distribution of the dielectric object. εr(r)
is a constant for homogeneous materials and spatially varying
for inhomogeneous cases.
With proper basis expansion, the above equation can

be converted into a matrix equation using the method of
moments (MoM) [27], [28]:

ZI = (R + jX)I = Vi (2)

where X and R are the imaginary and real parts of the
antenna’s MoM impedance matrix Z, I is the basis coefficient
vector, and Vi is the excitation vector.

The characteristic modal analysis (CMA) uses
these matrices to formulate the generalized eigenvalue
equation [29], [30]:

XIn = λnRIn, (3)

in which the characteristic currents In produce far field
orthogonal patterns and the characteristic eigenvalues λn are
related to the net stored magnetic and electric energy of
the antenna [29]. The modes with negative eigenvalues are
capacitive and those with positive eigenvalues are induc-
tive. The eigenvalues vary with frequency, and when their
magnitudes become very small (approaching resonance),
they dominate the radiation response of the antenna. Thus,
for antennas that are near their fundamental resonance, a
small number of modes are often sufficient to fully describe
the antenna’s response. In most CMA studies, the anten-
nas under investigation consist of conductive structures and
both capacitive and inductive modes are observed below the
fundamental resonance.
However, the characteristic modes of DRAs differ in

a fundamental way from the metallic antennas. It has
recently been observed that a DRA displays only capac-
itive characteristic modes [31]–[33], but no mathemati-
cal proof of this observation has been reported. In this
section, we will establish a mathematical proof of the
capacitive nature of the characteristic modes of DRAs,
allowing for new analysis of the physical limits of DRAs
in Section III.

A. CAPACITIVE NATURE OF THE DRA MODES
The stored electric energy (Wvac

e ), the stored magnetic energy
(Wvac

e ) and the radiated power of an antenna in free space
can be written in terms of its current and charge density
(J(r), ∇ · J(r)) respectively as [34]–[36]:

Wvac
e = 1

16πω2ε0

( ∫
�1

∫
�2

∇1 · J1(r1)∇2

· J∗
2(r2)

cos(kr21)

r21
d�1d�2

− k

2

∫
�1

∫
�2

[
k2J1(r1) · J∗

2(r2) − ∇1 · J1(r1)∇2

· J∗
2(r2)

]
sin(kr21)d�1d�2

)

= 1

4ω
IHXvac

e I (4)

Wvac
m = 1

16πω2ε0

(
k2

∫
�1

∫
�2

(J1(r1)

· J∗
2(r2))

cos(kr21)

r21
d�1d�2

− k

2

∫
�1

∫
�2

[
k2J1(r1) · J∗
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= 1

4ω
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m I (5)
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Prad = 1

8πωε0

∫
�1

∫
�2

[
k2(J1(r1) · J∗

2(r2))

−(∇1 · J1(r1))
(∇2 · J∗

2(r2)
)]

× sin(kr21)

r21
d�1d�2

= 1

2
IHRI (6)

where� is the DRA domain, k = ω/c is the phase constant, with
ω being the angular frequency and c being the speed of light in
free space; r21 = |r2 − r1| is the distance between sources, and
Xvac
e and Xvac

m are the matrix operators for the stored electric and
magnetic energy in free space.

In a volume equivalent problem featuring only dielectric bod-
ies, the antenna sources in (4)-(6) are the equivalent polarization
currents and charges in free space. Moreover, another term
related to the electric energy stored in the dielectric materials
must be added as [35]:

Wmat
e = 1

4ω2ε0

∫
�

J(r) · J∗(r)
εr(r) − 1

d� = 1

4ω
IHXmat

e I (7)

The power, energy and the MoM matrix of a DRA antenna
system are related as [34]:

1

2
IHZI = 1

2
IHRI + j

1

2
IHXI

= 1

2
IHRI + j

1

2
IH

(
Xvac
m − Xvac

e − Xmat
e

)
I

= Prad + j2ω
(
Wvac
m −Wvac

e −Wmat
e

)
(8)

To prove that the eigenvalues of a DRA must be negative in
the low frequency limit, we examine the limiting behavior of the
energy terms in (4)-(7). First, we take the first order limit that
cos(kr) ≈ 1 and sin(kr) ≈ kr as kr → 0, a common approxi-
mation for electrically small antennas [37], [38], and follow the
general current expansion in [38] that J = J(0) + kJ(1) + o(k)
as k → 0, where ∇ · J(0) = 0 and ∇ · J(1) = −jcρ, with
ρ being the charge density. However, because the polariza-
tion current in dielectric objects is related to the electric field
as J = jωε0(εr − 1)E (in contrast with the conduction cur-
rent J = σE), there is no frequency independent current in
lossless DRAs, namely J(0) = 0. Now with the expansion
J = kJ(1) + o(k) for polarization currents, it can be shown
that as k → 0, the three energy terms in (4),(5) and (7) are
asymptotically related to k as [38]–[40]:

Wvac
m ≈ k4

16πω2ε0

∫
�1

∫
�2

[
J(1)

1 (r1) · J(1)∗
2 (r2)

r21

+ c2

2
ρ1(r1)ρ

∗
2 (r2)r21

]
d�1d�2

≈ C1k
2 (9)

Wvac
e ≈ c2k2

16πω2ε0

∫
�1

∫
�2

ρ1(r1)ρ
∗
2 (r2)

r21
d�1d�2

≈ C2k
0 (10)

Wmat
e ≈ k2

4ω2ε0

∫
�

J(1)(r) · J(1)∗(r)
εr(r) − 1

d�

≈ C3k
0 (11)

FIGURE 1. A 3D region Ω and an arbitrary 3D subregion Ω̄ ⊆ Ω. By (14), functions
with support confined to the subregion Ω̄ can be expressed in either basis (Wi or W̄i ).

Due to the non-negative nature of these energy terms, C1,C2,
and C3 are non-negative constants related to the antenna geom-
etry and source distribution.1 Recalling the relation IHXI =
4ω(Wvac

m −Wvac
e −Wmat

e ), it follows that

IHXI < 0 as k → 0. (12)

Because the above relation is valid for all possible current
distributions on the antenna, (12) implies that the X matrix is
negative definite as k → 0. Recalling that the R matrix is posi-
tive definite2 in general for antennas (IHRI = Prad > 0), and
the fact that the characteristic eigenvalue is equivalent to the
Rayleigh quotient as [43], [44]:

λn = IHn XIn
IHn RIn

(13)

the relation in (12) means that all the characteristic eigenval-
ues of DRAs are negative at low frequencies, making them
exclusively capacitive modes.

When metallic structures supporting frequency independent,
loop-type currents (J(0) �= 0) are involved, the magnetic energy
term (Wvac

m ) due to J(0) will be proportional to k0, no longer guar-
anteeing the negative definiteness of the X matrix and allowing
the possibility of inductive modes.

III. PHYSICAL LIMITS ON THE RESONANT
FREQUENCIES AND Q FACTOR OF DIELECTRIC
RESONATOR ANTENNAS
The capacitive nature of DRAs’ characteristic modes have
some unique implication on the physical parameters (resonance
frequency, Q factor, etc.) of DRAs as revealed through the anal-
ysis of DRA substructures. Substructure antennas are antenna
structures that are obtained by combining parts of an encompass-
ing super-structure as illustrated in Fig. 1. This is often the case
when designing antennas in a confined region, e.g., user equip-
ment with limited space. The bounds of metallic substructure

1. Though these formulations can produce negative energy for cer-
tain electrically large antennas [38], [41], the problem is not present for
electrically small antennas, which is the case when k → 0.

2. Here we are treating R matrix as positive definite.The case when R
matrix is positive semidefinite can be treated equally well by introducing
a small amount of loss as in [42].
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antennas have been studied in [42], where it is mathematically
shown that the Q factors of a substructure metallic antenna are
bounded by those of its encompassing super-structure. Here,
with the conclusions from the previous section, we investigate
the bounds of dielectric substructure antennas.

The definition of substructure antennas for DRAs is similar
to their metallic counterparts in [42]. Consider a 3D dielectric
super-structure � with the basis set {Wi} on which any arbitrary
dielectric polarization current can be expanded as J = ∑

IiWi,
as illustrated in Figure 1. Similarly, we consider a substructure
�̄ ⊆ � with its basis set as {W̄i}, and any arbitrary current on it
can be expanded as J̄ = ∑

ĪiW̄i. It follows that

span
{
W̄i

} ⊆ span{Wi}. (14)

We here consider a finite dimension problem, where
dim{Wi} = K, and dim{W̄i} = K̄.

Useful mathematical relations can be derived between the
impedance matrices, energy matrices, and eigenvalues of the
super-structure and substructure DRAs [42]. For completeness,
these relationships are given in detail in Appendix B.

A. BOUND ON CHARACTERISTIC EIGENVALUES AND
RESONANT FREQUENCIES OF SUBSTRUCTURE DRAS
As shown in Appendix B, the characteristic eigenvalues of
the super-structure (λ) and its arbitrary substructure (λ̄) are
related as:

λk ≥ λ̄k ≥ λk+K−K̄, 1 ≥ k ≥ K̄. (15)

for all frequencies, where K is the rank of the super-structure
Z matrix, and K̄ is the rank of the substructure matrices. The key
interpretation of the bounding relation in (15) is that each kth

characteristic eigenvalue of any substructure DRA is bounded
from above by the kth characteristic eigenvalues of the super-
structure. Note that here the modes are ordered purely based on
the algebraic value of the eigenvalues. This bounding relation
is valid for both metallic and dielectric antennas, but due to the
capacitive nature of DRAmodes, this bounding relation provides
new insight on the performance limits of DRAs, as elaborated
below.

The resonant frequency of each characteristic mode is defined
as the frequency at which its eigenvalue reaches zero. Since we
have shown in Section II that small DRAs have only capacitive
modes, the implication of the bounding relation in (15) is that
all the substructure DRAs will have eigenvalues that are lower
(more negative) than the super-structure. Specifically, if we look
at the eigenvalue with the lowest resonant frequency, the bound
in (15) implies that the first eigenvalue of all substructure DRAs
that fit within the super-structure must cross zero at a frequency
that is equal to or higher than that of the super-structure. This
is true for not just the first, but the higher order characteristic
modes as well. Namely,

fk ≤ f̄k ≤ fk+K−K̄, 1 ≥ k ≥ K̄ (16)

where fk and f̄k are the resonant frequencies of the k-th character-
istic mode for the complete and the substructure DRAs respec-
tively. In other words, if arranging the characteristic modes

based on the algebraic value of the eigenvalues, the characteristic
modal resonance frequencies of all the substructure antennas are
bounded below by those of the super-structure. Consequently,
DRAs cannot be made resonant at a frequency lower than the
original resonant frequency of the super-structure by optimizing
the substructure antenna geometry. This result provides valuable
guidance for future DRA design, optimization and synthesis.

B. BOUND ON Q FACTOR OF SUBSTRUCTURE DRAS
In metallic antennas supporting both inductive and capacitive
modes at low frequencies, it is possible to combine the induc-
tive and capacitive modes to further lower the antenna Q fac-
tor [21], [45]. However, DRA modes cannot be inductive below
their fundamental resonance and are therefore destined to store
more electric energy than magnetic energy below the first modal
resonance (f1). Thus, the tuned Q factor below the first modal
resonance for DRAs can be written as [46]:

Q = 2ω max{Wvac
m ,Wvac

e +Wmat
e }

Prad

= 2ω
(
Wvac
e +Wmat

e

)
Prad

= IH
(
Xvac
e + Xmat

e

)
I

IHRI
(17)

The minimization of the above Rayleigh quotient can be refor-
mulated as the following eigenvalue equation,(

Xvac
e + Xmat

e

)
In = QnRIn (18)

where Xvac
e and Xmat

e are the energy operators defined in (4)
and (7).

We can rewrite this equation in a form similar to (28)
by invoking the basis transformation between the substructure
and super-structure DRAs. Arranging the eigenvalues (in this
case, Qn) in ascending order, and invoking Poincaré Separation
Theorem [47] (see Appendix A), we can again show the follow-
ing bounding relation:

Qk ≤ Q̄k ≤ Qk+K−K̄, 1 ≥ k ≥ K̄, (19)

for f ≤ f1. Namely, before the first modal resonant frequency
of the super-structure, the Q factor of all substructure DRAs are
bounded below by that of the complete DRA structure not only
for the fundamental mode but also for the higher order modes.

C. CONSTRAINTS OF THE THEORETICAL BOUNDS
Finally, it is important to emphasize the applicability of these
bounds. First, the formulation assumes a super-structure com-
posed of dielectric material of arbitrary shape that could be either
homogeneous or inhomogeneous within the super-structure. No
metallic or magnetic inclusions are allowed within the super-
structure. During the sub-structure development process, each
unit of volume may consist of either air or dielectric, with the
requirement that any dielectric inherit its properties from the
associated volume in the super-structure. Thus, new materials
cannot be introduced in the sub-structure, and we are constrained
to the initial set of materials and their background distribution
within the super-structure.
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FIGURE 2. The characteristic modal currents (polarization currents) of the studied
rectangular DRA with εr = 9.8 at 2.5 GHz: (a) mode 1 (TMy

111); (b) mode 2 (TMx
111);

(c) mode 3 (TMz
111) and (d) mode 4 (TEz

111).

Moreover, the bound given in (15) is valid for DRAs at any
frequency, while the bound in (16) is valid at any modal res-
onance of the sub-structure, including for higher order modes.
The Q factor bound in (19) is the most restrictive and applies
only to frequencies below the fundamental resonance of the
super-structure.

IV. NUMERICAL EXAMPLES
In this section, we illustrate the theoretical bound established in
Section III through several numerical examples.

A. NUMERICAL OPTIMIZATION - BOUNDS ON
EIGENVALUES AND RESONANT FREQUENCIES
We select a rectangular DRA as our example problem to demon-
strate the eigenvalue and Q factor bounds. The DRA has a
dimension of 40 × 25 × 16 mm3 and is placed in free space.
Considering the variety of materials in DRA designs, two dif-
ferent materials are investigated here: alumina with permittivity
of 9.8 and zirconia with permittivity of 23 [48]. Loss is ignored
for the characteristic modal analysis (CMA). An in-house vol-
ume EFIE method of moments code [49] based on the SWG
basis [27] and characteristic mode solver in [50] are used for
the CMA. This code has been previously validated against both
analytical calculations and measurements, as well as commercial
CMA codes, such as FEKO. In this example, the mesh density
is somewhat coarse to facilitate the large number of calculations
required for optimization, but these results align very well with
calculations with a much denser mesh in FEKO.

The polarization current distributions of the first four charac-
teristic modes of the rectangular DRA are given in Figure 2. The
first three modes are roughly equivalent to electric dipoles in the
y, x and z directions, and the fourth mode is similar to a mag-
netic dipole in the z direction. We attach modal nomenclature
following [51] in Figure 2.

The theoretical bounds in (15) and (16) predict that all
substructure DRAs should have smaller eigenvalues than the
super-structure, and resonate at a frequency no lower than
the first resonance of the super-structure. The first resonance
of the super-structure is 2.94 GHz for the alumina DRA and
1.96 GHz for the zirconia DRA. To test the derived bounds,
we conduct an optimization that attempts to maximize the
eigenvalues to determine whether they can exceed those of the
super-structure.

The optimization is conducted at 2.5 GHz for the alumina
DRA, and at 1.2 GHz for the zirconia DRA. These frequencies
are below the fundamental resonances, and the characteristic
eigenvalues are all negative. The optimization uses a binary
genetic algorithm (GA) in which each binary gene in this case
represents the presence or absence of a dielectric tetrahedron.
In the GA procedure, the optimization initializes with a set of
randomly generated structures (50% chance of each tetrahedra
being present or absent) that then evolves through tournament,
crossover, and mutation steps. The structures’ fitness is eval-
uated with a cost function and the candidates with the lowest
costs in each generation are combined and mutated to gener-
ate the next generation of structures. These new structures are
fed back into the search cycle until the optimization proce-
dure converges. In this study, 80 generations are used and each
generation consists of 40 population. The mutation rate in this
case is 12%. Interested readers can refer to [11], [15], [52], [53]
for further details on the GA optimization used here. Note
that two geometric symmetry planes are assumed in the DRA
calculation.

The cost function, which is designed to maximize the k-th
eigenvalue at the optimization frequency, is defined as,

Cλ = −λ̄k (20)

where λ̄k is the k-th characteristic eigenvalue of the DRA struc-
ture under evolutionary search. Due to the capacitive nature of
the DRAs, this cost function is equivalent to maximizing the
individual characteristic eigenvalues of the substructure DRAs,
and thus, moving them nearer to resonance at the optimization
frequency.

Optimization is conducted independently for the first four
characteristic modes of the studied rectangular DRAs in an
attempt to move any of them above the super-structure’s baseline
value. Independent optimizations are used to explore possibili-
ties in which one mode’s resonant frequency could be lowered
at the (neglected) cost of raising another. Figure 3(a) shows the
convergence plot of the first four eigenvalues of the alumina
DRA and Figure 3(b) shows that of the zirconia DRA. As pre-
dicted by the theoretical result in Equation (15), all the four
eigenvalues of the substructures are bounded above by those of
the super-structure. While each optimization is initialized ran-
domly, and thus starts with a relatively low initial eigenvalue,
the optimization quickly pushes the best eigenvalues to the upper
bounds. The final optimized geometry in all cases converges to
the super-structure, confirming the bounding relation in (15). As
pointed out in (16), the eigenvalue bound implies a bound on the
characteristic resonance frequencies.
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FIGURE 3. (a) The first four characteristic eigenvalues of the optimized
substructures (solid lines) are bounded above by those of the super-structure (dashed
lines) for the alumina DRA (εr = 9.8) at f = 2.5 GHz, (b) the first four characteristic
eigenvalues of the optimized substructures are bounded above by that of the
super-structure for the zirconia DRA (εr = 23) at f = 1.2 GHz. Each individual mode is
optimized independently and only the most-fit result is shown for each generation.

B. NUMERICAL OPTIMIZATION - Q FACTOR BOUND
To validate the Q factor bound established in (19), we study
the same DRAs studied in Section IV-A. In this case, the cost
function is defined as the modal Q factor, namely:

CQ = Q̄k, (21)

where Q̄k is the k-th lowest modal Q factor of the DRA structure
under evolutionary search. The calculation of the modal Q fac-
tors of the DRA is conducted based on the energy operators
discussed in Section II and the validation of the method against
results in literature can be found in [49]. To be consistent, the
optimization frequencies remain 2.5 GHz for the alumina DRA
and 1.2 GHz for the zirconia DRA. Based on the result in (19),
the lowest k-th modal Q factor of the complete DRA structure
should bound the lowest k-th modal Q factor of all its substruc-
ture DRAs. Thus, additional geometric complexity cannot lower
the Q factor of a DRA mode.

The minimization of the first four modal Q factors are con-
ducted independently using the same genetic algorithm. The
optimized result of the alumina DRA is shown Figure 4 (a) and

FIGURE 4. (a) The first four modal Q factors of the optimized substructures (solid
lines) are bounded below by that of the super-structure (dashed lines) for the alumina
DRA (εr = 9.8) at f = 2.5 GHz, (b) the first four modal Q factors of the optimized
substructures are bounded below by that of the super-structure for the zirconia DRA
(εr = 23) at f = 1.2 GHz. Each individual mode is optimized independently and only
the most-fit result is shown for each generation.

Figure 4 (b) shows that of the zirconia DRA. In both cases, all
the four modal Q factors of the substructure antenna are bounded
below by that of the super-structure, confirming the bounding
relation in Equation (19).

Note that here we used the characteristic modal currents for
the Q factor evaluation. Even though generally the eigenvectors
in (18) are not necessarily the same as the characteristic eigen-
vectors, the CM eigenvector set is a close orthogonal basis set
with negligible cross energy terms, and has been employed for
similar Q factor minimization problem [21].

C. PARTICULAR EXAMPLES
We now introduce two case studies to better illustrate the bound-
ing phenomena and the fundamentally different ways in which
dielectric and metallic antennas behave with respect to their res-
onant frequencies and miniaturization. Specifically, we study
two meandered DRA structures, which would resonate at a
lower frequency if they were metallic and represent a common
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FIGURE 5. (a) Sample A - super-structure, a rectangular DRA (b) Sample A -
substructure, a meandered DRA that is bounded by the super-structure,
(c) Comparison of the characteristic eigenvalues of the substructure (solid lines) and
that of the super-structure (dashed lines), (d) Comparison of the characteristic modal
Q factors of the substructure (solid lines) and that of the super-structure (dashed
lines).

miniaturization technique for metallic antennas. These exam-
ples illustrate the lack of resonant frequency reduction when
this technique is used with DRAs, which is expected given the
bounds described earlier in this work.

In Sample A, we use a planar meandering technique in an
attempt to lower the resonant frequency of a DRA substructure.
The meandered DRA is created within a thin, rectangular DRA
block (the super-structure), as shown in Figures 5 (a) and (b).
The rectangular DRA has a dimension of 50 × 30 × 4 mm3

and the meandered DRA fits within the super-structure. The strip
width is 5 mm and the gap between meandered lines is 10 mm.
In Sample B, a helical DRA is created within a cylindrical ring

FIGURE 6. (a) Sample B - super-structure, a ring DRA (b) Sample B - substructure, a
helix DRA that is bounded by the super-structure, (c) Comparison of the characteristic
eigenvalues of the substructure (solid lines) and that of the super-structure (dashed
lines), (d) Comparison of the characteristic modal Q factors of the substructure (solid
lines) and that of the super-structure (dashed lines).

DRA (the super-structure), as shown in Figure 6 (a) and (b). The
ring DRA has an inner radius of 25 mm and an outer radius of 30
mm. The height is 50 mm. The vertical thickness of the winding
strip is 5 mm, but trimmed at the two ends to fit in the bounding
ring structure. The step size of the helix winding in axis direction
is 12.5 mm. Both DRAs have the permittivity of 23 (zirconia).

We calculate the eigenvalues and the resonant frequencies of
both samples and their super-structures and then compare these
values against the bounding relation in (15) and (16). Figure 5(c)
compares the eigenvalue spectrum of Sample A with that of
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TABLE 1. Comparison of the characteristic modal resonant frequencies in samples
A, B with those of their super-structures.

the full rectangular block, and Figure 6(c) compares the eigen-
value spectrum of Sample B with that of the full ring DRA. In
both Figure 5(c) and Figure 6(c), the eigenvalues of the super-
structures are shown as dashed lines, while the eigenvalues of
the substructures are shown as solid lines. Note that in Sample
B - super-structure, modes 2 and 3 are degenerate and modes
5 and 6 are degenerate. From both examples, we can see that
the substructure eigenvalues are bounded above by that of the
super-structure in the way defined in (15). Note that the mode
numbering in the figures is not necessarily consistent across all
the frequencies from the algebraic ordering perspective.

As suggested in (16), the eigenvalue bounding relation means
that the resonant frequencies of both substructure antennas must
be higher than those of the super-structure. Table 1 compares
the resonant frequencies of both samples against their super-
structures for the first four characteristic modes. It is clearly seen
that the resonant frequencies of these “electrically longer” struc-
tures in both Sample A and B actually resonate at a frequency
that is higher than that of the super-structures.

As a demonstration of the Q factor bound in (19), the modal
Q factors of the super- and sub-structures of Samples A and
B are calculated and compared respectively in Figure 5 (d)
and Figure 6 (d). Below the fundamental resonance frequencies
of the super-structures (2.7 GHz for Sample A and 1.39 GHz
for Sample B), all the modal Q factors of the substructures
(meander DRA, helix DRA) are bounded below by that of the
super-structures (rectangular DRA, ring DRA). Again, we used
characteristic modal currents for the Q factor calculation as is
done in Section IV-B.

V. DISCUSSION
A. DRA MINIATURIZATION
Researchers familiar with small conductive antenna design may
initially expect the meandering and helical structures in the
previous section to increase the electrical length of the structure
and reduce the resonant frequencies. However, this is clearly not
the case as shown in Table 1. The theoretical results in Section III
and the numerical results presented in Section IV both agree
that a DRA substructure cannot resonate at a lower frequency
than its super-structure, leaving antenna designers less freedom
to tune the resonance when trying to design compact DRAs.
Thus, different considerations must be made for DRA miniatur-
ization than for metallic antennas. For example, it is common
practice in metallic antenna design to optimize for a lower reso-
nant frequency than available from the super-structure [14], [52].

Yet, based on the results of this work, the lack of modes with
an inductive nature within the super-structure prevent the reduc-
tion of the resonant frequency of a DRA by shape optimization.
Thus, this fundamental result provides valuable guiding princi-
ples for DRA optimization and synthesis [22], [23]. Instead, to
reduce the resonance frequencies of a DRA, one must introduce
inductive characteristic modes into the antenna. This technique
is often accomplished with resonant or inductive metallic struc-
tures and has been studied by several researchers. For example,
in [54] artificial materials based on split ring resonators are used
to miniaturize a DRA. In [55], [56], lower resonant frequencies
are created by including metallic feeding and loading structures.

B. MULTI-MODE DRAS
Multi-mode DRAs can be used for MIMO and diversity appli-
cations. The finding in (16) has some important implication
for MIMO DRA design and synthesis. For example, rela-
tion (16) shows that a DRA’s modal resonant frequencies can
only increase from shape manipulation confined within the
superstructure. Therefore, to design or synthesize an N-port
self-resonant MIMO DRA within a given superstructure, the
desired operating frequency must be above the N-th modal
resonance frequency of the superstructure, assuming modal res-
onance frequencies are ranked in ascending order. Once again,
we observe that such constraints do not exist for metallic anten-
nas as demonstrated in recent small MIMO antenna synthesis
work [52].

VI. CONCLUSION
In this paper, we prove that all characteristic modes of DRAs
must be capacitive in the low frequency limit. As a conse-
quence of this constraint and the eigenvalue interlacing principle,
we show that DRA modes cannot be made to resonate at a
lower frequency than the resonant frequency of that mode in
the encompassing super-structure. This implies that optimization
of the DRA geometry within a super-structure cannot make the
antenna electrically smaller at resonance, which provides use-
ful insight for DRA design and synthesis efforts. Moreover, we
show that because no inductive modes are available for modal
combining to lower the antenna Q factor, the modal Q factors of
all substructure DRAs are bounded by the Q factors of the DRA
super-structure at frequencies below the first modal resonance
frequency of the super-structure.

APPENDIX A
POINCARÉ SEPARATION THEOREM
Let MK be the space of all square matrices of dimension K, and
C ∈ MK be Hermitian. Suppose that 1 ≤ K̄ ≤ K, and letU1, · · · ,
UK̄ be orthogonal, namely UHU = IK̄ . Let the eigenvalues of C
andUHCU be arranged in algebraic descending order. Then [47],

λi(C) ≥ λi
(
UHCU

) ≥ λi+K−K̄(C), i = 1, . . . , K̄ (22)

and when arranging the eigenvalues ofC andUHCU in algebraic
ascending order, then

λi(C) ≤ λi
(
UHCU

) ≤ λi+K−K̄(C), i = 1, . . . , K̄. (23)
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APPENDIX B
EIGENVALUE BOUND OF SUBSTRUCTURE ANTENNAS
This section provides the mathematical relation between a super-
structure and its sub-structures, and the bounding relation of
their characteristic eigenvalues. As shown in [42], [57] using
basis transformation, the super-structure and its substructure has
following relations:

Z̄ = MHZM (24)

Therefore,

X̄ = MHXM (25)

R̄ = MHRM (26)

where M is the basis transformation matrix that relates the cur-
rent coefficient as I = MĪ, and Z and Z̄ are the MoM Zmatrix of
the super-structure and the substructure as illustrated in Figure 1.
The transformation relation is valid for energy operators, Xvac

e ,
Xvac
m , and Xmat

e as well [42].
The characteristic modal eigenvalue equation for the super-

structure can be written as (3). For a substructure antenna, the
corresponding CMA equation will be

X̄Īn = λ̄nR̄Īn, (27)

Following similar steps to [42], we can rewrite the above
generalized eigenvalue equation as a new eigenvalue equation
below:

R̄− 1
2 X̄R̄− 1

2

(
R̄

1
2 Ī

)
= λ̄

(
R̄

1
2 Ī

)
(28)

Defining the new matrix for the substructure eigenvalue
problem as

C̄ = R̄− 1
2 X̄R̄− 1

2 (29)

and the counterpart for the super-structure as C = R− 1
2 XR− 1

2 ,
it can be shown that [42], [57]:

C̄ = UHCU (30)

where U = R
1
2 M(MHRM)− 1

2 is a unitary matrix with UHU =
IK̄ , the identity matrix of rank K̄.

Arranging the eigenvalues of C and C̄ in descending order,
and invoking the Poincaré Separation Theorem [47] (see
Appendix A), it can be shown that the eigenvalues of C bound
those of C̄ as,

λk ≥ λ̄k ≥ λk+K−K̄, 1 ≥ k ≥ K̄ (31)

for all frequencies, where K is the rank of the super-structure Z
matrix, and K̄ is the rank of the substructure matrices.
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