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ABSTRACT Analytic expressions for the sinusoidal steady-state electromagnetic field associated with
an ideal Veselago lens illuminated by either a line-source (2D case) or an electric dipole point-source
(3D case) are obtained based on power flow considerations and the imposition of appropriate boundary
conditions. The fields are written in terms of the standard free-space Green’s function except that both
incoming and outgoing waves are utilized. Expressions for the Poynting vector are also provided. Some
components of the field suffer a complex-conjugate discontinuity across two power-transfer singularity
planes, one within the lens and one through the external focus point, so named because all the power
generated by the point-source transfers through a singular point on each plane. The internal power-transfer
singular point and the illuminating point-source are equidistant from the first lens boundary, whereas the
external singular point, i.e., the focus point, and the internal singular point are equidistant from the second
lens boundary. These singularities represent different physical properties than the traditional source or
sink singularities. The new interpretation based on the concise analytic field expressions clears up the
physically objectionable interpretation of these singularities as representing new sources of energy: no
new sources of energy exist in our representations.

INDEX TERMS Double-negative, green’s function, metamaterials, Veselago lens.

I. INTRODUCTION

THE POSSIBILITY of materials with simultaneously
negative permittivity (ε) and permeability (μ) and

different physical properties from materials with positive
ε and μ was cast in 1968 by Victor G. Veselago [1].
Although he stated that no such materials were known
to exist naturally at the time of his research, he pro-
vided the unique physical properties such materials would
have. He called these left-handed materials (LHM) based
on the fact that the wave vector k̄, the electric field vec-
tor Ē, and magnetic field vector H̄ for a plane-wave in
such materials construct a left-handed system. Veselago did
mention that at some particular frequencies some disper-
sive substances such as plasmas could take on negative
values for both parameters. Most interestingly, Veselago
noticed that a planar slab of LHM is capable of focusing
waves.
Now commonly referred to as the Veselago Lens (VL),

consider a slab of width d as is shown in Fig. (1). He

justified the focusing phenomenon mathematically by intro-
ducing a negative index of refraction n. Using a ray-based
model he showed that the diverging rays from a point-source
A located at distance l < d from the first interface of the VL
are reversely refracted on the first boundary of the lens and
converge onto a focus point B inside the VL the same dis-
tance l from the first interface. Subsequently, the diverging
rays from the internal focus point B are reversely refracted
at the second boundary of the VL and converge at the sec-
ond focus point C located on the other side of the lens
a distance 2d away from the point-source A, [1]. Using a
plane wave model and a spectral-domain decomposition of
a point-source Pendry [2] emphasized that a lens made of
a metamaterial having εr = μr = −1 will perfectly
focus waves emanating from a point-source. He proved that
the evanescent waves are amplified while being transmitted
inside the lens so that even fine details of an object will be
restored creating a perfect image of the object on the other
side. He also showed that the reflection coefficient becomes
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FIGURE 1. Focusing waves by negative refraction (as in [1]).

zero and that the transmission coefficient is equal to one for
all plane-wave components.
Pendry also prescribed a practical approach for creating an

almost super lens using a slab made of silver with a complex
permittivity and negative real part. Although double-negative
substances have not been found in nature, over the past two
decades Pendry’s paper has spurred on significant research
attempting to artificially engineer metamaterials exhibiting
such properties. Apparently, Smith, et al. were the first team
to successfully engineer metamaterials with a negative index
of refraction in 2000 and 2001, [3], [4]. The work was
summarized in [5], where the idea for creating materials
with a negative index of refraction was reaffirmed. Several
other experimental attempts have been made and a summary
can be found in [6], [7].
Pendry’s results evoked many critiques from different

groups of scientists, some implying that no such lens could
exist, [8], [9], and others claiming that a perfect lens
could be made of metamaterials only approximating the
ideal lens using lossy or frequency dispersive metamate-
rials which would reduce imaging resolution, [5], [10]–[13].
Many of these critiques are based on the analytic form
and interpretation of the expressions describing the elec-
tromagnetics of the ideal VL. Unfortunately, most previous
mathematical expressions of the ideal VL have been in terms
of spectral-domain representations. Therefore, interpretations
on the physical realizability of such a lens can be quite com-
plicated1. In this paper we provide explicit mathematical
characterizations in terms of well-established analytic func-
tions for the fields of the ideal VL illuminated by sinusoidal
steady-state point-source. We believe that the interpretation
of the physics and speculation on the physical realizability of
such a super lens is better performed using these representa-
tions. In addition, the numerical evaluation of the expressions

1. The infinite extent of the VL already makes it not physically realize-
able, but here we allude to the potential requirement for new sources to be
created by the VL, violating conservation of charge.

we present are straight-forward and can be evaluated in the
whole physical domain of the problem. First we summarize
some previous work where solutions for this problem have
been reported, at least ostensibly.
In 2002 [14], Kong provided a thorough analysis of

the electromagnetic fields due to a point-source within a
planar layered media wherein any particular layer could
have a positive or negative relative permittivity and per-
meability. He considers both 2D and 3D problems and
also provides expressions for the special cases of a slab
of double-negative material (i.e., the VL). See Section VI-C
of his paper for the 2D case of a line-source excitations
and Section VII-E for an electric dipole in front of the
VL. He leaves all his expressions in terms of spectral-
domain representations (see, e.g., equations 190-209 of his
paper) and because these integrals represent functions hav-
ing a singularity making them difficult to compute, there has
been much speculation on interpreting the electromagnetics
of the VL.
None the less, for the past two decades the use of double

negative materials has been investigated for a vast number of
applications including super-resolution for nano-scale object
imaging, [15]–[17], microwave imaging, [18]–[21], object
cloaking and insulating, [22], manufacturing electronic sen-
sors, [23], bio-medicine and biomedical imaging, [24], [25],
as well as recent applications such as optical computing [26]
and energy harvesting [27]. The concept has even been
extended to that of heat conduction, [28].
Our interest lies in the use of a VL for microwave imag-

ing (see, e.g., [18], [20], [21], [29]). The standard procedure
would be to use a physical (even if only approximate) VL
during the imaging process and then utilizing the focus-
ing nature of the lens to obtain well-conditioned inversion
matrices. Even in the theoretical work reported in [20],
[21], [29], a small amount of loss was introduced into the
Green’s function for the VL so as to allow the spectral-
domain representations to converge and thereby construct
suitable inverse-scattering matrices for the inverse problem.
Therefore, there is a clear need for the simplified expres-
sions derived herein which do not require that any loss be
introduced.
In this research, to the best of the authors’ knowledge,

an explicit form of the Green’s functions representing elec-
tromagnetic fields of both a line-source and a point-source
in front of a semi-infinite slab of double-negative material
(i.e., the ideal VL) located in the free-space without assum-
ing any loss real or numerical loss or frequency dispersion
are derived. The procedure is simply to arrive at solutions
that: a) satisfy Maxwell’s equations in all domains, b) sat-
isfy appropriate boundary conditions at all boundaries of
the problem, and c) explicitly enforce conservation of power.
These solutions do contain singularities: the conventional sin-
gularity at the point-source plus two additional singularities
within the VL and at the focus point, but these are analyzed
as “power-transfer singularities” which merely transfer power
from the one side of the “power-transfer singularity planes”
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FIGURE 2. Problem statement; a point-source in front of a VL with thickness
d = d2 − d1 in the free-space. The VL boundaries at z = z0 + d1 and z = z0 + d2 split
the space into the three regions I, II and III for z − z0 < d1, d1 ≤ z − z0 ≤ d2, and
z − z0 > d2, respectively. Corresponding to each region a Helmholtz equation along
with its associated BCs holds.

to the other (they are not the traditional source or sink sin-
gularities). Requirements for boundedness of the solution at
these transfer singularities can be accommodated by assum-
ing the sum of the two solutions on either sides of the
transfer plane, but, other than boundedness of the solution,
there is no physical principal to justify such a construction.

II. THE 2D AND 3D VL GREEN’S FUNCTION
In this section the 2D and 3D Green’s functions for the VL
are obtained based on expected power flow considerations as
well as appropriate boundary conditions (BCs) for the VL.
As illustrated in Fig. 2, for the VL we consider a slab of
double-negative material with εVL = ε0εr and μVL = μ0μr,
where μr = −1 and ε0 and μ0 are the permittivity and
permeability of the free-space. As in the figure the two VL
interfaces are located at z = z0+d1 and z = z0+d2 where d1
is the distance of the lens from a point-source located on the
left hand side of the VL at r̄0 = (x0, y0, z0), and d � d2 −d1
is the thickness of VL. The regions shown in the diagram
are defined as the set of all the spatial points r̄ = (x, y, z)
such that z − z0 < d1 in Region I, d1 ≤ z − z0 ≤ d2 in
Region II, and z− z0 > d2 in Region III.

A. GREEN’S FUNCTIONS: PDE SOLUTIONS IN THE
FIRST REGION
The electromagnetic problem for the VL configuration shown
in Fig. 2 can be formulated in terms of the Helmholtz
equation for the magnetic vector potential Ā:

∇2Ā+ k2Ā = −μ0μrJ̄, (1)

where k = ω
√

μ0μrε0εr is the wavenumber. Notice that the
relative permittivity and permeabilities are that of free-space
to the left and right of the lens and double negatives inside

the lens. Once the magnetic vector potential is found, the
electric and magnetic fields are obtained as [30]

Ē = −jωĀ+ 1

jωε0εrμ0μr
∇(∇ · Ā), (2a)

H̄ = 1

μ0μr
∇ × Ā. (2b)

The vectorial nature of the fields depends on the type and
orientation of the source located in Region I.
It is essential to note that the wavenumber in all three

regions shown in the Fig. 2 is the same. The wavenum-
ber k = k0 = ω

√
μ0ε0 in all three regions including the

double-negative Region II (the two negative cancel out). The
only difference in the partial differential equation (PDE) that
needs to be satisfied in each region is the presence or absence
of a source.
The 2D point-source problem, corresponding to a 3D line-

source, produces fields that are transverse magnetic to the x-
axis containing only the Ex,Hy,Hz field components. These
can be obtained by solving for the Ax component of the
magnetic vector potential satisfying the scalar Helmholtz
equation:

(
∇2 + k2

0

)
Ax(r̄|r̄0) =

{−μ0μrJx(r̄) Region I
0 Regions II, III,

(3)

where Jx(r̄) = Iδ(r̄ − r̄0) and r̄ � (y, z) is the 2D position
vector.
This is the same PDE as for a 2D scalar Green’s function,

g0(r̄|r̄0) but with right-hand-side given as −μ0μrIδ(r̄− r̄0),
so the magnetic vector potential is just given by Ax =
μ0μrIg0(r̄|r̄0).
For the 3D vector problem

(∇2 + k2
0)Ā(r̄|r̄0) =

{−μ0μrJ̄(r̄) Region I
0̄ Regions II, III,

(4)

there are two cases depending on the polarization of the
point-source. The first case, which we denote as the ZED
polarization, assumes that an electric (dipole) point-source
is polarized in the z-direction and produces a transverse
magnetic, TMz, field to z-direction. The components of this
electromagnetic field can be obtained by solving the scalar
Helmholtz equation for the Az component of the magnetic
vector potential with source Jz(r̄) = Ilδ(r̄ − r̄0) where r̄ =
(x, y, z) is the 3D position vector. In this case, the PDE
is the same as for a scalar Green’s function, g0(r̄|r̄0) with
right-hand-side given as −μ0μrIlδ(r̄− r̄0). So the magnetic
vector potential is just given by Az = μ0μrIlg0(r̄|r̄0). The
remaining components of the magnetic vector potential will
be zero (by symmetry there is no mixing of components at
the boundaries).
The second polarization, denoted YED, is similarly

obtained by assuming an electric (dipole) point-source polar-
ized in the y-direction: Jy(r̄) = Ilδ(r̄), producing only
the y-component of the magnetic vector potential, Ay =
μ0μrIlg0(r̄|r̄0).
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The BCs on the scalar Green’s function will be different
for these two polarizations as will be explained in the next
section. The XED polarization can be easily obtained from
the YED polarization by a rotation of coordinates and will
not be considered herein.
To find the solutions of the 2D and 3D problems in the first

region, we require the well-established principle stating that
the VL does not reflect any energy from its boundary, [1],
[2]. That is, the VL is transparent to electromagnetic fields
produced in Region I. In fact this is one of the desirable
features of the VL which brought it to prominence. Given
these observations we note that for both 2D and 3D problems
the field solutions in Region I can be simply obtained from
the free-space Green’s function.
Recall that the 2D Green’s function for the Helmholtz

PDE has two solutions:
j

4
H(1)

0 (k0R), and
−j
4

H(2)
0 (k0R), (5)

where R � ‖r̄−r̄0‖ is the distance from the observation point
to the point-source and H(i)

0 denotes of zeroth-order Hankel
function of the ith kind, for i = 1, 2. Taking into account the
ejωt time convention, the H(1)

0 solution corresponds to energy
flow into the point-source whereas the H(2)

0 solution corre-
sponds to energy flow away from the point-source. Clearly
then, in Region I we require the H(2)

0 solution because we
want the power to flow away from the source of energy. In
3D the two solutions are:

ejk0R

4πR
, and

e−jk0R

4πR
, (6)

where, again, the first corresponds to incoming waves
whereas the second to outgoing waves. Thus, the appropriate
Green’s function is the latter.
Now that we have the form of the solution in Region

I the BCs and power-flow considerations will dictate the
solutions in the remaining regions. As will be seen, the
BCs will not be sufficient to determine the form of the
solution in the entire regions II and III. We will be required
to break Regions II and III into two sub-regions based on
the expected power flow of the solution in each region. This
will be elaborated in Section (II-C).

B. VL BOUNDARY CONDITIONS
The electromagnetic BCs at the surfaces of the VL are the
well-known continuity of the tangential electric and magnetic
fields, Thus, we have⎧⎪⎪⎨

⎪⎪⎩

n̂×
(
Ē
∣∣∣
z=z0+d+

n
− Ē

∣∣∣
z=z0+d−

n

)
= 0̄,

n̂×
(
H̄
∣∣∣
z=z0+d+

n
− H̄

∣∣∣
z=z0+d−

n

)
= 0̄,

(7)

where the subscript n = 1, 2, and n̂ is the unit normal to
the boundary. For uniqueness of solutions in an electromag-
netic boundary value problem (BVP) we are required to
impose only one of these conditions, the other will follow
automatically.

1) 2D VL PROBLEM

In the 2D problem, Ax, the magnetic vector potential
produces only the Ex component of the electric field
via (2a) as

Ē = −jωAxx̂ (8)

and from (2b), we find

H̄ = 1
μ0μr

∇ × Ā = 1

μ0μr

(
ŷ

∂Az
∂z

− ẑ
∂Az
∂y

)
. (9)

The continuity of the electric field across the boundaries
leads to the continuity Ax, while the second condition in (7),
gives rise that

1

μr

∂Ax
∂z

∣∣∣
z=z0+d−

n
= 1

μr

∂Ax
∂z

∣∣∣
z=z0+d+

n
, (10)

for n = 1, 2. Noting that over both boundaries, z = z0 + d1
and z = z0 + d2, the relative permeability changes its sign,
the BCs (7) for Ax become

⎧⎪⎨
⎪⎩
Ax

∣∣∣
z=z0+d−

n
= Ax

∣∣∣
z=z0+d+

n
,

∂Az
∂z

∣∣∣
z=z0+d−

n
= − ∂Az

∂z

∣∣∣
z=z0+d+

n

(11)

for n = 1, 2.
Recalling that Ax = μ0μrIg0(r̄|r̄0), the complete scalar

2D BVP can be written as
⎧
⎪⎨
⎪⎩

(∇2 + k2
0)g0(r̄|r̄0) = − δ(r̄ − r̄0), z− z0 ≤ d1,

(∇2 + k2
0)g0(r̄|r̄0) = 0, d1 ≤ z− z0 ≤ d2,

(∇2 + k2
0)g0(r̄|r̄0) = 0, z− z0 ≥ d2,

(12)

with the following BCs
⎧⎪⎨
⎪⎩
g0(r̄|r̄0)

∣∣∣
z=z0+d−

n
= −g0(r̄|r̄0)

∣∣∣
z=z0+d+

n
,

∂g0(r̄|r̄0)
∂z

∣∣∣
z=z0+d−

n
= ∂g0(r̄|r̄0)

∂z

∣∣∣
z=z0+d+

n
,

(13)

for n = 1, 2. It will be shown that the first condition is
sufficient to obtain a solution in all regions.

2) 3D VL PROBLEM

The same BCs, (7), apply to the 3D problem. How these
transfer to the scalar Green’s function needs to be checked
for both the ZED and YED polarizations. Recall that for
the ZED polarization the z-component of the magnetic vec-
tor potential, Az, satisfies (4). The fields are then obtained
using 2a and 2b, giving

Ē = −jω{
ẑAz

+ 1

k2
0

[
x̂

∂2Az
∂x∂z

+ ŷ
∂2Az
∂y∂z

+ ẑ
∂2Az
∂z2

]}
. (14)

and

H̄ = 1

μ0μr

(
x̂

∂Az
∂y

− ŷ
∂Az
∂x

)
. (15)
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This results in the following BCs for the magnetic vector
potential

⎧⎨
⎩

∂Az
∂x

∣∣∣
z=z0+d−

n
= − ∂Az

∂x

∣∣∣
z=z0+d+

n
,

∂Az
∂y

∣∣∣
z=z0+d−

n
= − ∂Az

∂y

∣∣∣
z=z0+d+

n
,

(16)

for n = 1, 2.
Recalling that Az = μ0μrIlg0(r̄|r̄0), we may conclude that

the 3D BVP (for the ZED polarization) for the 3D scalar
function g0(r̄|r̄0) should satisfy⎧⎨
⎩

(∇2 + k2
0)g0(r̄|r̄0) = − δ(r̄ − r̄0), z− z0 ≤ d1,

(∇2 + k2
0)g0(r̄|r̄0) = 0, d1 ≤ z− z0 ≤ d2,

(∇2 + k2
0)g0(r̄|r̄0) = 0, z− z0 ≥ d2,

(17)

with the following BCs
⎧⎨
⎩

∂g0(r̄|r̄0)
∂x

∣∣∣
z=z0+d−

n
= ∂g0(r̄|r̄0)

∂x

∣∣∣
z=z0+d+

n
,

∂g0(r̄|r̄0)
∂y

∣∣∣
z=z0+d−

n
= ∂g0(r̄|r̄0)

∂y

∣∣∣
z=z0+d+

n
,

(18)

for n = 1, 2.
Next, for a YED polarization the y-component of Ā

satisfies (4). Using 2a and 2b, the fields are obtained as

Ē = −jω{
ŷAy

+ 1

k2
0

[
x̂

∂2Ay
∂x∂y

+ ŷ
∂2Ay
∂y2

+ ẑ
∂2Ay
∂z∂y

]}
. (19)

and

H̄ = 1

μ0μr

(
−x̂ ∂Ay

∂z
+ ẑ

∂Ay
∂x

)
(20)

resulting in the BCs⎧⎪⎨
⎪⎩
Ay

∣∣∣
z=z0+d−

n
= Ay

∣∣∣
z=z0+d+

n
,

∂Ay
∂z

∣∣∣
z=z0+d−

n
= − ∂Ay

∂z

∣∣∣
z=z0+d+

n

(21)

for n = 1, 2. Recalling that Ay = μ0μrIlg0(r̄|r̄0), the fol-
lowing BCs should be considered for the YED polarization⎧⎪⎨

⎪⎩
g0(r̄|r̄0)

∣∣∣
z=z0+d−

n
= −g0(r̄|r̄0)

∣∣∣
z=z0+d+

n
,

∂g0(r̄|r̄0)
∂z

∣∣∣
z=z0+d−

n
= ∂g(r̄|r̄0)

∂z

∣∣∣
z=z0+d+

n
,

(22)

for n = 1, 2. The PDE of the BVP will be the same as in
the ZED case.

C. VL GREEN’S FUNCTION; POWER FLOW AND THE
SOLUTIONS IN THE SECOND AND THIRD REGIONS
In Section (II-A), we chose the proper 2D and 3D solutions
for Region I which satisfies the Helmholtz PDE in that
region. In this section, we choose solutions in Regions II
and III that satisfy the homogeneous Helmholtz equations
as well as the BCs given in the BVPs. The form of the
solutions dictated by the BCs results in singularities arising
within these regions which will be dealt with using power
flow considerations.

1) 2D VL PROBLEM

Recall that based on the expected direction of power flow
from the x-directed line-source in the 2D case, we have cho-
sen the solution in Region I as the second solution in (5).
Clearly, the BC at the first boundary, requires that the solu-
tion be of the same form but with the opposite sign to the
right of the boundary as to the left. Considering the 2D case
first, we define a point r̄1 � (y0, z0 +2d1) located inside the
VL and form the solution as

j

4
H(2)

0 (k0R1), d1 ≤ z ≤ 2d1 (23)

where R1 � ‖r̄ − r̄1‖ is the distance from any point
r̄ = (y, z) inside Region II. It will be checked subsequently
that the fields obtained from this solution satisfy the neces-
sary BC that the tangential electric and magnetic fields are
continuous.
We have restricted this solution to Region II-A defined as

d1 ≤ z ≤ 2d1 because although this solution obviously satis-
fies the BC, it creates a singular point at r̄1 = (y0, z0 + 2d1)

located inside the VL. This singularity has been the source
of much discussion in the literature [2], [9], [31]–[33]. We
can therefore say that we only have the appropriate solution
in Region II-A. Ignoring the singularity for the moment, we
note that this form of the solution represents power flow
away from the boundary toward the singularity (the double
negative material reverses the normal solution that repre-
sents outward power flow in a regular medium). The power
flow is conserved across the boundary and “accumulates”
at the singularity. As will be shown later, no power crosses
the regular part of the surface z = z0 + 2d1. Thus, to sat-
isfy conservation of power the solution to the right of this
surface, Region II-B, must be of the form

j

4
H(1)

0 (k0R1), 2d1 < z− z0 ≤ d2, (24)

The magnitude of the coefficient ensures that the power
is conserved across the singularity but we obviously could
have taken the negative of this solution obtained the same
conservation. There are two physical principles that can be
put into play to justify the coefficient chosen. Firstly, the
negative of this solution would result in a flipping of the
polarization and there is no expectation that the fields within
the VL would undergo such a flip. Secondly, the reader may
have noticed that the imaginary parts of the solutions (23)
and (24) on both sides of the surface z = z0+2d are complex
conjugates of each other (i.e., H(1)

0 = J0 + jY0 and H(2)
0 =

J0 − jY0), thus, to enforce boundedness of the solution at the
singularity one could assume that on the z = z0 + 2d1 the
solution is simply the sum of the two solutions, j/2J0(k0R1).
Turning our attention to Region III, firstly we define the

point r̄2 = (y0, z0 + 2d) and restrict the solution into the
sub-region III-A located between the surfaces z = z0 + d2
and z = z0 + 2d. Then applying the required BCs on both
sides of z = z0 +d2 obviously dictates us to choose the same
form of the solution with the opposite sign as in Region II-B
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FIGURE 3. Power flow of an x-directed line-source; the outgoing and incoming
power flows in the five different sub-regions show that the VL phenomena creates two
singularities with different physical properties than a source or a sink.

for the Region III-A as

−j
4

H(1)
0 (k0R2), d2 ≤ z− z0 < 2d, (25)

where R2 = ‖r̄ − r̄2‖ is the distance from any point r̄ =
(y, z) inside Region III. Note that the solution is capable of
producing incoming power flow and accumulating the power
into the second singularity. Using a similar interpretation we
used in Region II, to choose the appropriate solution for the
remaining half-space after the surface z = z0 + 2d, called
Region III-B, we note that while the solution should satisfy
the conservation of power, it should also produce an outgoing
power flow. Hence, this leads us to choose the solution

−j
4

H(2)
0 (k0R2), z− z0 > 2d (26)

in Region III-B. Similarly, to justify the sign we have cho-
sen for the solution (26), we should note to the two physical
principles, which we applied to find the sign of the solution
in region II-B; the expected polarization as well as bound-
edness of the solution. So, to achieve a bounded solution
along the surface z = z0 +2d, one may assume, j/2J0(k0R2)

obtained as the sum of the two solutions on both sides.
The required power flow as well as the direction of the

electromagnetic fields for an x-directed line-source in the
five different regions are depicted in Fig. (3).

2) 3D VL PROBLEM

The procedure for finding the Green’s functions for the dif-
ferent polarizations in 3D is similar to the procedure just
described in 2D. The form of the Green’s function in Region
I has already been chosen as the latter of (6). For the ZED
source the BCs have already been determined as in (18). The
BC at the first boundary of the VL requires us to choose
a solution of the same form and with the same sign on the
right side of the boundary as on the left. Thus, the solution

in sub-region II-A, between the surfaces z = z0 + d1 and
z = z0 + 2d1, is written as

e−jk0R1

4πR1
, d1 ≤ z− z0 < 2d1, (27)

where R1 = ‖r̄ − r̄1‖ is the distance from any point r̄ =
(x, y, z) inside Region II to the interior singular point r̄1 �
(x0, y0, z0 + 2d1) located inside the VL. As in the 2D case,
it will be observed that the power flow represented by this
solution is an incoming power flow away from the boundary
in sub-region II-A and accumulating at the interior singular
point. Again, following a similar logic applied in the 2D
problem, in order to satisfy conservation of power, in sub-
region II-B we must choose the solution as

ejk0R1

4πR1
, 2d1 < z− z0 ≤ d2. (28)

The polarity of the coefficient was again chosen to take
into account the two principles that there should be no
flipping of the polarization through the singularity and the
boundedness of the fields at the singularity. The bounded-
ness can be preserved by assuming that on the z = z0 + 2d1
plane we have the sum of the two solutions giving us the
finite solution cos(k0R1)/2πR1 on this plane.

Enforcing the second BC at z = z0 + d2 and following a
similar approach explained to find the solutions in Region
II, leads to the solution

ejk0R2

4πR2
, d2 < z− z0 ≤ 2d, (29)

in Region III-A, and

e−jk0R2

4πR2
, z− z0 ≥ 2d (30)

in Region III-B where R2 = ‖r̄− r̄2‖ is the distance from any
point r̄ = (x, y, z) inside Region III to the second singular
point r̄2 � (x0, y0, z0 + 2d) located outside the VL on the
opposite side of the VL from where point-source is located.
As before, the solutions in sub-regions III-A and III-B are
conjugates of each other and we may again assume the finite
solution cos(k0R2)/2πR2 on the plane z = z0 + 2d.

D. SUMMARY OF GREEN’S FUNCTIONS AND
INTERPRETATION
Summarizing the 2D solutions in the (y, z)-plane for a VL of
thickness d and electric point-source located at r̄0 a distance
d1 from its surface we have:

g0(r̄|r̄0, d1, d) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−j
4 H(2)

0 (k0R), z− z0 ≤ d1
j
4 H

(2)
0 (k0R1), d1 ≤ z− z0 < 2d1

j
4 H

(1)
0 (k0R1), 2d1 < z− z0 ≤ d2

−j
4 H(1)

0 (k0R2), d2 ≤ z− z0 < 2d
−j
4 H(2)

0 (k0R2), z− z0 > 2d,

(31)

where R1 = ‖r̄ − r̄1‖, R2 = ‖r̄ − r̄2‖, r̄1 = (y0, z0 + 2d1),
and r̄2 = (y0, z0 + 2d).
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The Green’s function for the 3D ZED polarization is:

g0(r̄|r̄0, d1, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e−jk0R
4πR , z− z0 ≤ d1
e−jk0R1

4πR1
, d1 ≤ z− z0 < 2d1

ejk0R1

4πR1
, 2d1 < z− z0 ≤ d2

ejk0R2

4πR2
, d2 ≤ z− z0 < 2d

e−jk0R2

4πR2
, z− z0 > 2d,

(32)

wherein R1 = ‖r̄− r̄1‖, R2 = ‖r̄− r̄2‖, r̄1 = (x0, y0, z0 +2d1)

and r̄2 = (x0, y0, z0 + 2d).
Similarly, the 3D YED Green’s function is

g0(r̄|r̄0, d1, d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e−jk0R
4πR , z− z0 ≤ d1

− e−jk0R1

4πR1
, d1 ≤ z− z0 < 2d1

− ejk0R1

4πR1
, 2d1 < z− z0 ≤ d2

ejk0R2

4πR2
, d2 ≤ z− z0 < 2d

e−jk0R2

4πR2
, z− z0 > 2d,

(33)

As can be clearly seen, these Green’s functions are not
continuous across the VL boundaries but they do produce
continuous tangential electric and magnetic fields across the
VL boundaries. In addition they result in singularities at two
points: r̄1 = 0 and r̄2 = 0 both in 2D and 3D. As has already
been described these singularities are not sources or sinks
of energy and therefore not the traditional singularities aris-
ing in physics but a new kind of singularity that we now
refer to as a power-transfer singularity because power enters
from one side and exits from the other. This is depicted in
Fig. (3). These singularities exist on power-transfer planes,
z = z0 + 2d1 and z = z0 + 2d across which there is no
power flow (except for at the transfer singularities). As
will be shown in the next two sections where expressions
for the electromagnetic fields and the Poynting vector are
given, some of the components of the electromagnetic field
are discontinuous across the transfer planes. We don’t con-
sider the discontinuities of the tangential components of the
field problematic as there is no power flow across these
planes. As will be seen, we also obtain a discontinuity in
the normal component of the electric flux density which does
have some implications for the physical realizability of the
ideal VL.
Finally, the issue of non-causal solutions is eliminated

because the power flow is away from the point-source and in
the physically correct direction on either side of the transfer
plane. We believe this completely resolves earlier concerns
regarding violation of physical rules based on viewing the
solutions as composed of backward-traveling waves [34].
Our solutions have been derived for the lossless VL without
the need for assuming an infinitesimal loss nor frequency
dispersion in the problem, [35].

III. ELECTROMAGNETIC FIELDS AND POYNTING
VECTOR
In this section we provide explicit expressions for the elec-
tromagnetic fields as well as for the Poynting vector in all

regions of the VL. To simplify notation we now assume the
point-source to be located at the origin, r̄0 = 0. Thus, for the
x-directed line-source with current Jx(r̄) = Iδ(r̄) producing a
magnetic vector potential, Ā = Axx̂ the fields can be obtained
by relations (8) and (9). So, noting that Ax = μ0μrIg0(r̄|r̄0),
using the 2D scalar Green’s function introduced in (31), it
is easy to find the fields as

Ē(r̄|d1, d) = −ω μ0I

4
x̂

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(2)
0 (k0r), z ≤ d1

H(2)
0 (k0r1), d1 ≤ z < 2d1

H(1)
0 (k0r1), 2d1 < z ≤ d2

H(1)
0 (k0r2), d2 ≤ z < 2d

H(2)
0 (k0r2), z > 2d,

(34)

and

H̄(r̄|d1, d) = jk0I

4

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(2)
0 (k0r)θ̂ , z ≤ d1

−H(2)
0 (k0r1)θ̂1, d1 ≤ z < 2d1

−H(1)
0 (k0r1)θ̂1, 2d1 < z ≤ d2

H(1)
0 (k0r2)θ̂2, d2 ≤ z < 2d

H(2)
0 (k0r2)θ̂2, z > 2d,

(35)

where now R = ‖r̄‖ = r, R1 = ‖r̄1‖ = r1, and R2 =
‖r̄2‖ = r2 and θ̂ = zŷ−yẑ√

y2+z2 , θ̂1 = (z−2d1)ŷ−yẑ√
y2+(z−2d1)

2
and θ̂2 =

(z−2d)ŷ−yẑ√
y2+(z−2d)2

.

Plots of the electric field corresponding to (34) as well as
observations regarding its value at the particular boundaries
of interest are provided in Section III-A.
Next, the Poynting vector can be found as

S̄(r̄|d1, d) = Ē(r̄|d1, d) × H̄∗(r̄|d1, d)

= η

[
k0I

4π

]2

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C(k0r̄) r̂, z ≤ d1

−C(k0r̄1) r̂1, d1 ≤ z < 2d1

C∗(k0r̄1) r̂1, 2d1 < z ≤ d2

−C∗(k0r̄2) r̂2, d2 ≤ z < 2d

C(k0r̄2) r̂2, z > 2d,

(36)

where r̂ = yŷ+zẑ√
y2+z2 , r̂1 = yŷ+(z−2d1)ẑ√

y2+(z−2d1)
2

and r̂2 =
yŷ+(z−2d)ẑ√
y2+(z−2d)2

. Also, C∗(·) indicates the complex conjugate

of C(·) � [J1(·)Y0(·)− J0(·)Y1(·)] + j[J0(·)J1(·)], and Jν and
Yν are respectively the Bessel functions of νth order for
ν = 0, 1.

Using identity (D-17) on [30, p. 463], the time-
average Poynting power density can be obtained
from (36) as

〈
S̄(r̄|d1, d)

〉 = 1

2
�{
S̄(r̄|d1, d)

}

= η

π

[
k0I

4

]2

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
r r̂, z ≤ d1

− 1
r1
r̂1, d1 ≤ z < 2d1

1
r1
r̂1, 2d1 < z ≤ d2

− 1
r2
r̂2, d2 ≤ z < 2d

1
r2
r̂2, z > 2d,

(37)

where � indicates the real part of a complex number.
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As can be observed from these expressions for the
power density, the amount of incoming power at the sin-
gularities of Regions II and III are equal to that of
outgoing power from these same singularities. Also, at
the transfer planes the power flow is tangent to the
plane with no vectorial component crossing the plane.
This is indicated in Fig. (3) by the color of the arrows
representing S̄.

The 3D electromagnetic fields for the different polariza-
tions can also be easily obtained as follows. For the ZED
polarization, where the source is J̄(r̄) = ẑIlδ(r̄), we have
Az = μ0μrIl g0(r̄|r̄0). So using relation (2a) the electric field
can be written as

Ē(r̄|d1, d) = −jωμ0μrIl

[
1 + 1

k2
0

∇∇
]

· g0(r̄|r̄0, d1, d)ẑ

= −jωμ0μrIl

[
ẑ+ 1

k2
0

∇ ∂

∂z

]
g0(r̄|r̄0, d1, d),

(38)

where μr = −1 inside the VL and 1 everywhere else and
r = ‖r̄‖, r1 = ‖r̄1‖ = ‖(x, y, z − 2d1)‖ and r̄2 = ‖r̄2‖ =
‖(x, y, z−2d)‖, respectively. Thus, in each region the electric
field can be written as

Ē(r̄, d1, d) = −jωμ0Il

4π⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
ẑ 1
r α(r) − z

r3 β(r)r̄
}
e−jk0r, z ≤ d1

−
{
ẑ 1
r1

α(r1) − (z−2d1)

r3
1

β(r1)r̄1

}
e−jk0r1 , d1 ≤ z < 2d1

−
{
ẑ 1
r1

α∗(r1) − (z−2d1)

r3
1

β∗(r1)r̄1
}
ejk0r1 , 2d1 < z ≤ d2{

ẑ 1
r2

α∗(r2) − (z−2d)
r3
2

β∗(r2)r̄2
}
ejk0r2 , d2 ≤ z < 2d

{
ẑ 1
r2

α(r2) − (z−2d)
r3
2

β(r2)r̄2

}
e−jk0r2 , z > 2d,

(39)

where

α(r) = 1 − j

k0r
+

(
j

k0r

)2

, and

β(r) = 3α(r) − 2 = 1 − 3
j

k0r
+ 3

(
j

k0r

)2

, (40)

and α∗ and β∗ indicate complex conjugates of α and β,
respectively. Equivalently, using the cylindrical coordinate
unit vectors with ρ̂ = x̂x+ŷy

ρ
and ρ = √

x2 + y2, these can
be written as

Ē(r̄|d1, d) = −jωμ0Il

4π

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
ẑ
[
α(r) − z2

r2 β(r)
]

−ρ̂
zρ
r2 β(r)

}
e−jk0r
r , z ≤ d1

−
{
ẑ

[
α(r1) − (z−2d1)2

r2
1

β(r1)

]

−ρ̂
(z−2d1)ρ

r2
1

β(r1)

}
e−jk0r1
r1

, d1 ≤ z < 2d1

−
{
ẑ

[
α∗(r1) − (z−2d1)2

r2
1

β∗(r1)
]

−ρ̂
(z−2d1)ρ

r2
1

β∗(r1)
}
ejk0r1
r1

, 2d1 < z ≤ d2{
ẑ

[
α∗(r2) − (z−2d)2

r2
2

β∗(r2)
]

−ρ̂
(z−2d)ρ

r2
2

β∗(r2)
}
ejk0r2
r2

, d2 ≤ z < 2d
{
ẑ

[
α(r2) − (z−2d)2

r2
2

β(r2)

]

−ρ̂
(z−2d)ρ

r2
2

β(r2)

}
e−jk0r2
r2

, z > 2d,

(41)

and completely in spherical coordinates as

Ē(r̄|d1, d) = −jωμ0Il

4π⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
r̂ [α − β](r) cos θ

−θ̂ α(r) sin θ
}
e−jk0r
r , z ≤ d1

−{
r̂1[α − β](r1) cos θ1

−θ̂1α(r1) sin θ1

}
e−jk0r1
r1

, d1 ≤ z < 2d1

−{
r̂1[α − β]∗(r1) cos θ1

−θ̂1α
∗(r1) sin θ1

}
ejk0r1
r1

, 2d1 < z ≤ d2{
r̂2[α − β]∗(r2) cos θ2

−θ̂2α
∗(r2) sin θ2

}
ejk0r2
r2

, d2 ≤ z < 2d{
r̂2[α − β](r2) cos θ2

−θ̂2α(r2) sin θ2

}
e−jk0r2
r2

, z > 2d,

(42)

where

[α − β](r) = α(r) − β(r) = 2(1 − α(r))

= 2

(
j

k0r
−

[
j

k0r

]2
)

,

[α − β]∗(r) = α∗(r) − β∗(r) = 2(1 − α∗(r))

= −2

(
j

k0r
+

[
j

k0r

]2
)

. (43)

Note that to obtain equation (42), similar to the con-
ventional relation ẑ = r̂ cos θ − θ̂ sin θ for z = r cos θ ,
we have introduced the relations ẑ = r̂1 cos θ1 − θ̂1 sin θ1
for z − 2d1 = r1 cos θ1 and ẑ = r̂2 cos θ2 − θ̂1 sin θ1 for
z−2d = r2 cos θ2, with shifted spherical coordinate variables
and unit vectors as in Fig. 4(b).
The magnetic field for this polarization is written as

H̄(r̄|d1, d) = 1

−jωμ0μr
∇ × Ē(r̄, d1, d)
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FIGURE 4. (a) The vectors r̄ , r̄1 and r̄2 for an arbitrary point A = (x, y, z). (b) Representation of the point A in different systems of coordinates including cylindrical and
spherical coordinates with respect to the three origins located at (0, 0, 0), (0, 0, 2d1) and (0, 0, 2d).

= Il

4π

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
1
r2 γ (r)

(
x̂y− ŷx

)}
e−jk0r, z ≤ d1{

1
r2
1
γ (r1)

(
x̂y− ŷx

)}
e−jk0r1 , d1 ≤ z < 2d1{

1
r2
1
γ ∗(r1)

(
x̂y− ŷx

)}
ejk0r1 , 2d1 < z ≤ d2{

1
r2
2
γ ∗(r2)

(
x̂y− ŷx

)}
ejk0r2 , d2 ≤ z < 2d

{
1
r2
2
γ (r2)

(
x̂y− ŷx

)}
e−jk0r2 , z > 2d,

(44)

where

γ (r) = −jk0

(
1 − j

k0r

)
. (45)

Equivalently, this can be written in spherical coordinates as

H̄(r̄|d1, d) =

= −φ̂ Il4π

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ (r) sin θ e−jk0r
r , z ≤ d1

γ (r1) sin θ1
e−jk0r1
r1

, d1 ≤ z < 2d1

γ ∗(r1) sin θ1
ejk0r1
r1

, 2d1 < z ≤ d2

γ ∗(r2) sin θ2
ejk0r2
r2

, d2 ≤ z < 2d

γ (r2) sin θ2
e−jk0r2
r2

, z > 2d

(46)

where φ̂ = 1
ρ
(−x̂y+ ŷx). (See Fig. (4(a)) and (4(b)) for the

geometric visualization of the applied coordinates in different
systems.)
As can be seen from (39) and (44) or (46), the required

BCs that the tangential components of electric and magnetic
fields be continuous at the VL boundaries are satisfied. It
is also apparent that all the field components on one side
of the power transfer plane are complex conjugates of the
corresponding field components on the other side of the
plane. This does not seem to be problematic for the tangential

FIGURE 5. The amount of power flowing into the either of the singularities in one
side is equal to that of which flowing out from the other side.

components, but we notice that the electric field is normal
to the plane and, thus, also the electric flux density will
have such a discontinuity. This discontinuity results in the
appearance of a surface charge density on this plane. This
is indeed a surprising result that needs to be explained if
the ideal VL is physically realizable. Given that there is no
conductivity present in the lens, it is unclear exactly how
such a surface charge might arise in reality. Alternatively,
the complex-conjugate jump across the power transfer plane
will need to be interpreted without postulating a supporting
surface charge density.
Figures (6) and (7) provide plots of the electric fields in

the relevant regions. It is worthy to note that our 2D expres-
sions will result in the exact same numerical evaluation of
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FIGURE 6. Visualizations of the Electric field of a line-source in front of the VL.

the field as Kong’s spectral-domain expressions in his 2002
paper [14]. On the other hand, for his 3D expressions, Kong
does not split Regions II and III into two sub-regions rely-
ing instead on a single expression in each of these regions.
Thus, Kong’s expressions produce outgoing waves at both
the singularity within the VL as well as at the external focus
point. Our expressions provide a consistent flow of power
across the transfer planes.
The Poynting vector for this ZED polarization can easily

be found as

S̄(r̄|d1, d) = Ē(r̄|d1, d) × H̄∗(r̄|d1, d) = η

[
k0Il

4π

]2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
r2

{
r̂ξ(r) sin2 θ + θ̂ ζ(r) sin 2θ

}
, z ≤ d1

− 1
r2
1

{
r̂1ξ(r1) sin2 θ1 + θ̂1ζ(r1) sin 2θ1

}
, d1 < z ≤ 2d1

1
r2
1

{
r̂1ξ∗(r1) sin2 θ1 + θ̂1ζ

∗(r1) sin 2θ1

}
, 2d1 ≤ z ≤ d2

− 1
r2
2

{
r̂2ξ∗(r2) sin2 θ2 + θ̂2ζ

∗(r2) sin 2θ2, d2 ≤ z < 2d

1
r2
2

{
r̂2ξ(r2) sin2 θ2 + θ̂2ζ(r2) sin 2θ2

}
, z > 2d,

(47)

where

ξ(r) = 1 +
(

j

k0r

)3

and ζ(r) = j

k0r
−

(
j

k0r

)3

= jξ∗(r)
k0r

.

(48)

The time-average power density can be obtained as

〈
S̄(r̄|d1, d)

〉 = 1

2
�{
S̄(r̄, d1, d)

}

= η

2

[
k0Il

4π

]2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r̂ 1
r2 sin2 θ, z ≤ d1

−r̂1 1
r2
1

sin2 θ1, d1 ≤ z < 2d1

r̂1
1
r2
1

sin2 θ1, 2d1 < z ≤ d2

−r̂2 1
r2
2

sin2 θ2, d2 ≤ z < 2d

r̂2
1
r2
2

sin2 θ2, z > 2d.

(49)

As can be seen from the obtained relations in (49), the
time-average Poynting power in region II-A is a vector with
opposite direction to that of in region II-B. Therefore, as
it is shown in Fig. (5), it can be concluded that the total
time-average power emanating from any sphere centered at
r̄ = (0, 0, 2d1) with a radius smaller than the minimum of
d1 and d−d1 is zero. Alternatively, the total power entering
from any hemisphere in Region II-A into the singularity is
equal to the power emanating from the singularity out of any
other hemisphere into Region II-B. This fact is true for the
power in Regions III-A and III-B and any two hemispheres
centered at r̄ = (0, 0, 2d). This shows that the two singular
points associated with our solution, inside and outside of the
VL, are neither sources nor sinks, and justifies our denoting
them as transfer singularities. This is a novel result that, to
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FIGURE 7. Visualization of the Electric field of a ZED in front of the VL.

the best of the authors’ knowledge, has not been reported
elsewhere in the literature.
Similar expressions can be obtained for the XED and

YED. (See Appendix A.)

A. VISUALIZATION OF THE ELECTRIC FIELD
Fig. (6) depicts the real part, imaginary part, the phase and
the absolute value of the electric field for an x-directed line-
source using the 2D VL Green’s function introduced in (31).
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The line-source is located at the origin with the magnitude
of the current chosen such that the coefficient becomes unity.
The spatial units are depicted in terms of wavelength. The
source is located in free-space in front of the VL having
thickness d = 0.3λ and d1 = 0.1λ.

The singularity at the source is clearly visible in the imag-
inary part and the magnitude of the electric field. In addition,
across the two transfer planes (lines in 2D) we see the flip-
ping of the sign in the imaginary part and phase. The actual
value of the field at these planes has not been plotted because
of the uncertainty of the value of the field on these planes.
Fig. (7) illustrates the real part, imaginary part and the

phase of the electric field distribution of a ZED polarization
located at the origin of the Cartesian system of coordinates,
with unity as the coefficient of the magnitude of the current.
The thickness and distance from the lens is the same as
in the 2D case. As can be seen from the plots the real
and imaginary parts of the x and y-components of the field
are continuous everywhere including the boundaries of the
VL (these being the tangential components). For the 3D
case, the z-component of the electric field is discontinuous
across the lens boundaries and transfer planes. At the lens
boundaries, because of the negative-sign flip in the relative
permittivity, the z-component of the electric flux density
remains continuous and does not require a supporting surface
charge density. At the power-transfer planes there is no sign
flip and therefore requires that we postulate a supporting
surface charge density.

IV. CONCLUSION
We have derived 2D and 3D Green’s functions correspond-
ing to the electromagnetic field of a point-source in front of
a slab of double-negative material constituting the ideal VL.
These are given for a line-source in the 2D case and two
polarizations of an electric dipole in the 3D case. The elec-
tromagnetic fields are given in terms of the scalar Green’s
function associated with a particular scalar BVP for each
case. For convenience, the expressions are written in dif-
ferent systems of coordinates and can be easily utilized in
inverse scattering work associated with microwave imaging.
The occurrence of singularities in these expressions are ratio-
nalized as a new type of power-transfer singularity and do
not present any logical grounds to deny the existence of such
a lens. On the other hand, we find that all the fields suf-
fer a complex-conjugate jump across the two power-transfer
planes. For the case where the excitation produces a nor-
mal component of the electric field at these planes, we have
found it necessary to postulate a problematic surface charge
density. If such a charge density cannot be re-interpreted
then this result goes against the realizability of an ideal VL.

APPENDIX A
SIMILAR RELATIONS FOR THE XED AND YED
XED polarization with current density J̄(r̄) = x̂Ilδ(r̄) located
at the origin, again in front of a similarly defined VL. The

electric field of the XED in the first region, where the point-
source is located, following a procedure similar to that taken
for the ZED polarization of (38) as

Ē(r̄|d1, d) =
= −jωμ0μrIl

[
x̂+ 1

k2
0

∇ ∂

∂x

]
g(r̄|r̄0, d1, d)x̂. (50)

Introducing the 3D Green’s function g(r̄|r̄0, d1, d) intro-
duced in (33) for an XED, and taking the required
partial derivatives in (50), taking care to consider the
change of sign of the permeability inside the VL,
gives rise to the following expression for the electric
field as

Ē(r̄|d1, d) = −jωμ0Il

4π⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
x̂ 1
r α(r) − x

r3 β(r)r̄
}
e−jk0r, z ≤ d1{

x̂ 1
r1

α(r1) − x
r3
1
β(r1)r̄1

}
e−jk0r1 , d1 ≤ z < 2d1{

x̂ 1
r1

α∗(r1) − x
r3
1
β∗(r1)r̄1

}
ejk0r1 , 2d1 < z ≤ d2{

x̂ 1
r2

α∗(r2) − x
r3
2
β∗(r2)r̄2

}
ejk0r2 , d2 ≤ z < 2d

{
x̂ 1
r2

α(r2) − x
r3
2
β(r2)r̄2

}
e−jk0r2 , z > 2d,

(51)

where α(r) and β(r) are defined as in (40). Equivalently,
noting that x̂ = ρ̂ cos φ − φ̂ sin φ, (51) can be written in
cylindrical coordinates as

Ē(r̄|d1, d) = −jωμ0Il

4π⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
−φ̂ sin φα(r) + ρ̂ cos φ

[
α(r) − ρ2

r2 β(r)
]

−ẑ ρz
r2 β(r)

}
e−jk0r
r , z ≤ d1{

−φ̂ sin φα(r1) + ρ̂ cos φ

[
α(r1) − ρ2

r2
1
β(r1)

]

−ẑ ρ(z−2d1)

r2
1

β(r1)

}
e−jk0r1
r1

, d1 ≤ z < 2d1{
−φ̂ sin φα∗(r1) + ρ̂ cos φ

[
α∗(r1)−

ρ2

r2
1
β∗(r1)

]
− ẑ ρ(z−2d1)

r2
1

β∗(r1)
}
ejk0r1
r1

, 2d1 < z ≤ d2{
−φ̂ sin φα∗(r1) + ρ̂ cos φ

[
α∗(r1)−

ρ2

r2
1
β∗(r1)

]
− ẑ ρ(z−2d1)

r2
1

β∗(r1)
}
ejk0r1
r1

, d2 ≤ z < 2d
{
−φ̂ sin φα(r2) + ρ̂ cos φ[α(r2)−

ρ2

r2
2
β(r2)

]
− ẑ ρz

r2
2
β(r2)

}
e−jk0r2
r2

, z > 2d.

(52)

Using x̂ = r̂ sin θ cos φ + θ̂ cos θ cos φ − φ̂ sin φ,
which is valid in the θ , θ1, and θ2 variables
as well, this can easily be written in spherical
coordinates as

Ē(r̄|d1, d) = −jωμ0Il

4π
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
r̂[α − β](r) sin θ cos φ + θ̂ α(r)

cos θ cos φ − φ̂ α(r) sin φ
}
e−jk0r
r , z ≤ d1{

r̂1[α − β](r1) sin θ1 cos φ + θ̂1 α(r1)

cos θ1 cos φ − φ̂ α(r1) sin φ
}
e−jk0r1
r1

, d1 ≤ z < 2d1{
r̂1[α − β]∗(r1) sin θ1 cos φ + θ̂1 α∗(r1)

cos θ1 cos φ − φ̂ α∗(r1) sin φ
}
ejk0r1
r1

, 2d1 < z ≤ d2{
r̂2[α − β]∗(r2) sin θ2 cos φ + θ̂2 α∗(r2)

cos θ2 cos φ − φ̂ α∗(r2) sin φ
}
ejk0r2
r2

, d2 ≤ z < 2d{
r̂2[α − β](r2) sin θ2 cos φ + θ̂2 α(r2)

cos θ2 cos φ − φ̂ α(r2) sin φ
}
e−jk0r2
r2

, z > 2d,

(53)

where [α − β] and [α − β]∗ are as defined in (43).
Applying Faraday’s law to the electric field obtained

in (51) leads to the magnetic field:

H̄(r̄|d1, d) = 1

−jωμ0μr
∇ × Ē(r̄, d1, d) = Il

4π⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
1
r2 γ (r)

[
ŷz− ẑy

]}
e−jk0r, z ≤ d1

−
{

1
r2
1
γ (r1)

[
ŷ(z− 2d1) − ẑy

]}
e−jk0r1 , d1 ≤ z < 2d1

−
{

1
r2
1
γ ∗(r1)

[
ŷ(z− 2d1) − ẑy

]}
ejk0r1 , 2d1 < z ≤ d2{

1
r2
2
γ ∗(r2)

[
ŷ(z− 2d) − ẑy

]}
ejk0r2 , d2 ≤ z < 2d

{
1
r2
2
γ (r2)

[
ŷ(z− 2d) − ẑy

]}
e−jk0r2 , z > 2d,

(54)

where γ and γ ∗ are as defined in (45). Equivalently, this
can be written in spherical coordinates as

H̄(r̄|d1, d) = Il

4π⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ (r)
[
θ̂ sin φ + φ̂ cos θ cos φ

]
e−jk0r
r , z ≤ d1

−γ (r1)
[
θ̂1 sin φ + φ̂ cos θ1 cos φ

]
e−jk0r1
r1

, d1 ≤ z < 2d1

−γ ∗(r1)
[
θ̂1 sin φ + φ̂ cos θ1 cos φ

]
ejk0r1
r1

, 2d1 ≤ z ≤ d2

γ ∗(r2)
[
θ̂2 sin φ + φ̂ cos θ2 cos φ

]
ejk0r2
r2

, d2 ≤ z < 2d

γ (r2)
[
θ̂2 sin φ + φ̂ cos θ2 cos φ

]
e−jk0r2
r2

, z > 2d,

(55)

where now, again, ŷ = r̂ sin θ sin φ + θ̂ cos θ sin φ + φ̂ cos φ,
and also ẑ = r̂ cos φ− θ̂ sin θ are valid in the shifted systems.
Notice that for the XED polarization, and similarly for the
YED polarization, at the two power transfer planes there is
no normal component of the electric field. Thus, although
all the fields suffer a complex-conjugate jump across these
planes, there is no surface charge generated that needs to be
explained.
The Poynting vector for the XED can be found as

S̄(r̄|d1, d) = η

[
k0Il

4π

]2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
r2

{
r̂ ξ(r)[ cos2 θ cos2 φ + sin2 φ] − θ̂

ζ(r) sin 2θ cos2 φ + φ̂ ζ(r) sin θ cos 2φ
}
, z ≤ d1

− 1
r2
1

{
r̂1 ξ(r1)[ cos2 θ1 cos2 φ + sin2 φ] − θ̂1

ζ(r1) sin 2θ1 cos2 φ + φ̂ ζ(r1) sin θ1 cos 2φ
}
, d1 ≤ z < 2d1

1
r2
1

{
r̂1 ξ∗(r1)[ cos2 θ1 cos2 φ + sin2 φ] − θ̂1

ζ ∗(r1) sin 2θ1 cos2 φ + φ̂ ζ ∗(r1) sin θ1 cos 2φ
}
, 2d1 < z ≤ d2

− 1
r2
2

{
r̂2 ξ∗(r2)[ cos2 θ2 cos2 φ + sin2 φ] − θ̂2

ζ ∗(r2) sin 2θ2 cos2 φ + φ̂ ζ ∗(r2) sin θ2 cos 2φ
}
, d2 ≤ z < 2d

1
r2
2

{
r̂2 ξ(r2)[ cos2 θ2 cos2 φ + sin2 φ] − θ̂2

ζ(r2) sin 2θ2 cos2 φ + φ̂ ζ(r2) sin θ2 cos 2φ
}
, z > 2d,

(56)

where ξ and ζ are as defined in (48). Finally the time-average
power density can be obtained from (56) as

〈
S̄(r̄|d1, d)

〉 = 1

2
�{
S̄(r̄|d1, d)

}

= η

2

[
k0Il

4π

]2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r̂ 1
r2 [ cos2 θ cos2 φ + sin2 φ], z ≤ d1

−r̂1 1
r2
1

[ cos2 θ1 cos2 φ + sin2 φ], d1 ≤ z < 2d1

r̂1
1
r2
1

[ cos2 θ1 cos2 φ + sin2 φ], 2d1 < z ≤ d2

−r̂2 1
r2
2

[ cos2 θ2 cos2 φ + sin2 φ], d2 ≤ z < 2d

r̂2
1
r2
2

[ cos2 θ2 cos2 φ + sin2 φ], z > 2d,

(57)

Finally, the YED polarization with current density J̄(r̄) =
ŷIlδ(r̄), can be obtained from the XED relations by changing
φ to −π

2 + φ, so we do not repeat them here.
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