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ABSTRACT In this paper, a microwave imaging approach based on artificial neural networks (ANNs)
for neck tumor detection is presented. The aim of this technique is to retrieve the geometric and dielectric
properties of the neck to identify the possible presence of tumors, starting from scattered electric field
data. A fully-connected neural network is developed to test the feasibility of the proposed approach.
Moreover, a numerical model including the main features of a cross section of the neck is specifically
designed in order to create a suitable training dataset. Subsequently, for the optimization of the ANN
architecture and performance evaluation, a numerical analysis is conducted. A set of simulated cases,
based on realistic neck phantoms, is tested to evaluate the robustness of the network. Preliminary results
show the possibility to identify and locate neck tumors.

INDEX TERMS Microwave imaging, neck tumors, artificial neural networks, biomedical imaging, machine
learning, inverse scattering.

I. INTRODUCTION

MICROWAVE imaging is a very promising technique
for developing novel diagnostic tools in the medical

field [1]. This method may offer several advantages over
the other standard techniques, such as Magnetic Resonance
Imaging (MRI), Computerized Tomography (CT) and projec-
tion radiography, since it does not require neither expensive
apparatuses nor ionizing radiations. Moreover, a microwave
imaging system can highlight additional details about the
part of interest of the human body, which can be merged
with the information obtained by the standard techniques.
The use of microwave imaging is nowadays consolidated
in some medical applications, like breast cancer [2]–[6] and
brain stroke detection [7]–[10], although the application to
other body parts is increasing, such as arms [11], torso [12],
and neck [13], [14]. In addition to the neck imaging,

the last medical application is focused on the microwave
hyperthermia of neck tumors [15]–[17]. Malignant primary
and secondary cancers in the neck region, such as supra-
glottic laryngeal carcinoma [18], thyroid cancer [19], cer-
vical lymph node metastases [20], are frequently occurring,
aggressive neoplasms with a 50% 5-year survival probability,
which can be treated effectively by using microwave hyper-
thermia in synergy with radio- or chemotherapy [20]–[23].
However, to ensure a high-quality treatment and achieve an
effective complete response, an accurate treatment planning
phase, with numerical simulations, is required to choose the
number, position and phases of the antennas [24], [25]. In
this framework, the tumor localization and the retrieval of
its electromagnetic properties through microwave imaging
could facilitate the clinical setup and lead to an effective
treatment [26], [27].
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Microwave imaging is based on the acquisition of
measurements due to the interactions between an incident
electromagnetic radiation and the body under test [1]. The
inversion procedure, to obtain the properties of the tar-
get starting from the scattered electric field data, requires
the solution of an ill-posed and nonlinear electromag-
netic problem [28]. To solve it, different methods were
developed by using qualitative [29]–[32] or quantitative
approaches [33]–[38]. In this framework, other new, fast
and reliable non-linear approaches for addressing the
imaging problem are investigated. In particular, artificial
neural networks (ANNs) represent a recent and use-
ful methodology for quantitative microwave imaging. The
first applications of the ANNs were focused on shal-
low network architectures [39], [40]. In the last years, the
use of deep Convolutional Neural Networks (CNNs) for
solving the inverse problem has increased [41]–[47], and
various CNN architecture were developed, such as U-
net [48], ResNet [49] and VGG [50]. In addition, inversion
techniques aimed at integrating physical insights into neu-
ral network architectures have also been proposed, with
promising results [51], [52].
In this scenario, fully-connected neural networks represent

an alternative approach for microwave imaging [53].
However, to retrieve the dielectric profile of the target,

most of standard CNN-based architectures do not work
directly with the measurements of scattered fields collected
by the receiving antennas, but require a preliminary image
retrieved by other techniques [41], [42], [45], [51], [54].
This image may be obtained with other inverse-
scattering approaches, e.g., orthogonality sampling
method (OSM) [55], back propagation (BP) [56] and direct
sampling method [57].
In this paper, we present some preliminary results for the

detection of neck tumors obtained by using ANNs applied to
microwave imaging. To the best of the author’s knowledge,
this is the first time that a deep learning approach is used
for neck tumor detection. As an initial evaluation, we used
a fully-connected neural network, whose input is the scat-
tered electric field, to reconstruct the geometric and dielectric
properties of a cross section of the human neck with the aim
of detecting the possible presence of neck tumors. It is worth
remarking that, although the neck is a rather complicated
structure with possible variations along the vertical direction
(especially for what concerns the bone structure), several
parts can be modeled, at least approximately, with cylin-
drical shapes. Consequently, in this initial work, we used a
two-dimensional scalar scattering formulation involving only
the cross-section of the neck, as often done in microwave
imaging applications to reduce the required computational
resources [58].
To obtain the dataset for the training phase, a strategy to

create the neck phantoms is developed given the scarce avail-
ability of data [46]. The proposed strategy allows creating
realistic neck phantoms in a simple and randomized way,
varying the dielectric properties of the considered tissues

FIGURE 1. Configuration of the considered tomographic imaging problem for neck
tumor detection.

and their geometry. In order to mimic neck tumors, circular
shapes were taken into account, with different sizes and
positions. Numerical analyses are firstly performed to select
the best neural network architecture, varying the number
of hidden layers and the number of neurons in each layer.
After defining the network topology that exhibited the lowest
reconstructions errors, this is used to test different simulated
cases with realistic neck phantoms, some with tumor and
some without.
This paper is organized as follows. Section II reports the

formulation of electromagnetic inverse scattering problem,
introducing the network architecture. In Section III, the
training set preparation is explained. Preliminary numerical
results are shown in Section IV. Conclusions follow.

II. FORMULATION OF THE IMAGING METHOD
A. ELECTROMAGNETIC FORMULATION
The considered two-dimensional geometry is shown in
Fig. 1. N antennas are located around the neck and are
modeled as z-directed line current sources located at points−→rs , s = 1, . . . , S. Each antenna sequentially illuminates the
neck with a transverse-magnetic (TM) field and the total
electric field due to the interaction with the neck is col-
lected in a measurement domain � composed, for each
transmitting antenna, by the remaining at M = N − 1
antennas, modeled as ideal probes located at points −→r s,m,
m = 1, . . . ,M. Moreover, the field data are collected for F
different frequencies in a band B.

In general, to reconstruct the relative dielectric permittivity
εr and the electric conductivity σ of a cross section of the
neck, an inverse scattering problem has to be solved. For the
sake of simplicity, a single-view and single-frequency case
is described here. In what follows, the indexes s = 1, . . . , S
and f = 1, . . . ,F will represent the considered view and
frequency, respectively. As shown in Fig. 1, the investigation
domain � (i.e., the circular region of interest where the
cross section of the neck is assumed to lie) is partitioned
into I square subdomains Ri, centered at −→r i, i = 1, . . . , I,
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with side length ρ. With this assumption, the samples of
the z-component of the electric field due to the scattering
phenomena in the measurement domain, which are contained

in the array ψ
s,f
scatt = [ψ s,f (1)

scatt , . . . , ψ
s,f (M)
scatt ]

T = ψ
s,f
tot,ext −

ψ
s,f
ref ,ext, being ψ

s,f
tot,ext and ψ

s,f
ref ,ext the corresponding arrays

of the total and reference electric fields, are related to the
dielectric properties of the target by means of the following
equations [28]:

ψ
s,f
tot = ψ

s,f
ref + gfstatediag(χ)ψ

s,f
tot (1)

ψ
s,f
scatt = gs,fdatadiag(χ)ψ

s,f
tot (2)

where ψ
s,f
ref = [ψ s,f (1)

ref , . . . , ψ
s,f (I)
ref ]

T
and ψ

s,f
tot =

[ψ s,f (1)
tot , . . . , ψ

s,f (I)
tot ]

T
are the arrays containing the z-

component of the reference and total electric fields for the
sth view and the f th frequency in the investigation domain.
The reference field is due to a given reference configura-
tion when illuminated by the incident electromagnetic field
produced by the source, which is modeled as a homoge-
neous circular cylinder with the same dimension of the
investigation domain and the same dielectric properties of
the matching medium. The gfstate and gs,fdata matrices con-
tain the integrals of the inhomogeneous Green’s function
for the reference configuration [28]. Finally, the array of the

contrast function χ = [
ε(−→r 1)−εref (−→r 1)

εb
, . . . ,

ε(−→r I)−εref (−→r I)
εb

]
contains the values of the complex dielectric permittivity
of the actual and reference configurations in each subdo-
main of �. Combining (1) and (2), the following equation
describing the whole electromagnetic scattering phenomena
is defined:

ψ
s,f
scatt = gs,fdatadiag(χ)

[
I − gfstatediag(χ)

]−1
ψ
s,f
ref (3)

where I is an I × I identity matrix.
The aim of this paper is to invert such a nonlinear rela-

tionship with an ANN architecture in order to retrieve the
dielectric properties of the actual configuration εr and σ .
The real and imaginary parts of the scattered electric fields
are the input data for the considered neural network.

B. NETWORK ARCHITECTURE
To reconstruct the dielectric properties of the neck starting
from scattered electric fields, a feed-forward fully-connected
network is proposed in this study. This kind of network
allows implementing a direct inversion from the scattered
electric field to the dielectric properties of the neck profiles.
The adopted fully-connected network is reported in

Fig. 2. All the hidden layers have the same number of
units. The network input is the array of scattered electric

fields P = [Re{ψ1,1
scatt}T , . . . , Re{ψS,F

scatt}T , Im{ψ1,1
scatt}T , . . . ,

Im{ψS,F
scatt}]T which contains the real and imaginary part of

the scattered field for each view s and frequency f . The
output of the network is an array containing the values of
the dielectric properties in each cell Ri of the investigation
domain O = [εr(

−→r 1), . . . ,εr(
−→r I), σ (−→r 1), . . . ,σ(−→r I)]T .

FIGURE 2. Sketch of the adopted fully-connected ANN architecture.

For the dth unit of the lth layer of the fully-connected
network, a vector of weights of its input connections Wl,d ∈
R
D and a scalar bias bl,d are defined, with l = 1, . . . ,L and

d = 1, . . . ,D that represent the number of hidden layers
and neurons for each layer, respectively. The last layer, here
denoted as L + 1, presents a different number of neurons
equal to 2I, where I is defined in Section II-A. The output
array O is obtained as:

O=R
[
WT

L+1,1OL + bL+1,1, . . . ,WT
L+1,2IOL + bL+1,2I

]T
(4)

with WT
L+1,d ∈ R

2I and bL+1,d ∈ R. The output of a
generic layer l = 2, . . . ,L can be written as:

Ol = R
[
WT

l,1Ol−1 + bl,1, . . . ,WT
l,DOl−1 + bl,D

]T
(5)

For the first hidden layer, l = 1, the output is:

O1 = R[WT
1,1P + b1,1, . . . ,WT

1,DP + b1,D]
T

(6)

with WT
1,d ∈ R

S×F×M and b1,d ∈ R, where the vec-
tor P represents the input of the neural network. In the
previous equations, the term R denotes the Rectified Linear
Unit (ReLu) activation function [59], i.e.,

R(x) = [relu(x1), relu(x2), . . . , relu(xD)]
T (7)

where x = [x1, x2, . . . , xD]T and

relu(x) =
{
x, if x ≥ 0
0, otherwise

(8)

Finally, the ADAM optimization method [60] is used for
the updating rule for the training phase, to minimize the loss
function, which is calculated as:

� = Eεr + Eσ (9)

where the normalized root mean square errors Eεr and Eσ
are given by:

Eεr =
∥∥εr,rec − εr,real

∥∥2

∥∥εr,real
∥∥2

(10)

Eσ = ‖σ rec − σ real‖2

‖σ real‖2
(11)
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FIGURE 3. Realistic cross section of the neck: (a) Slice extracted from the Duke man phantom of the Virtual Family. (b) Created phantom with simplified anatomical structures.

with εr,rec = [εr,rec(
−→r 1), . . . , εr,rec(

−→r I)] and εr,real =
[εr,real(

−→r 1), . . . , εr,real(
−→r I)] representing the array of rel-

ative dielectric permittivity of the reconstructed and actual
cross section of the neck, respectively. In the same way, σ rec
and σ real constitute the arrays of electric conductivity.

It is worth noting that, although (1) and (2) are not explic-
itly used at the input layer of the present fully-connected
architecture, connections can be established between ANN
architectures with fully-connected layers and iterative meth-
ods for nonlinear electromagnetic inverse scattering prob-
lems, where the number of layers of the network becomes
linked with number of iterations of conventional solving
procedures [61]. As a result, among the various alternative
solutions, the direct use of neural networks offers an effi-
cient alternative to solve the nonlinear problem at hand. In
the present application, the proposed ANN architecture has
been selected due to its very good balance between simplicity
and accuracy of reconstruction results.

III. DEFINITION OF THE TRAINING SET
In order to perform a quantitative inversion by means of the
proposed neural network, a strategy to define the training
set is developed with the aim of creating a set of “virtual”
neck phantoms, given that there is an established lack of
datasets for electromagnetic problems dealing with machine
learning [46]. The strategy to obtain a cross section of the
neck is based on a realistic neck slice extracted from the
Duke man phantom of the Virtual Family [62]. The extraction
procedure and the following process to obtain neck phan-
toms are performed in MATLAB R2020a (The MathWorks,
Natick, MA, USA) and allow obtaining a reference slice
stored as a matrix in ASCII format. The considered slice
from the Duke phantom is extracted at 1.60 m of height and
includes the third cervical vertebra, as shown in Fig. 3(a).
The discretization of the considered slice is equal to 2 mm
and 9 biological tissues are present, i.e., skin, fat, muscle,
vertebral bone, spinal cord, trachea, cartilage, cerebrospinal
fluid (CSF) and blood vessels. To obtain a suitable phan-
tom that can mimic the real one, all tissues are considered,
except CSF, which is only present in a few pixels of the slice,

as can be seen in Fig. 3(b). The remaining tissues, which
are fundamental to obtain a realistic cross section of the
neck, are modeled in a simple way to allow a reproducible
and randomized generation of phantoms. In this case, the
boundaries of tissues are modeled by means of two different
approaches: ellipses and splines. As shown in Fig. 3(b), the
tissues boundaries modeled with ellipses are:

• Vertebral Bone
• Infiltrated Fat
• Cartilage.

Spline functions are used to model the remaining biolog-
ical tissues boundaries, i.e.:

• Skin
• Subcutaneous Fat
• Muscle
• Spinal Cord
• Blood Vessels
• Trachea.

Considering all tissues, those created with ellipses and
those with the spline functions, the obtained phantom –
although unavoidably simplified – reproduces in a suitable
way the cross section of the neck. To create the training set,
a huge number (hundreds) of neck phantoms are required.
For this reason, each geometrical parameter, i.e., center and
semi-axes of ellipses, coordinates of the spline control points
(as detailed in Sections III-A and III-B) and dielectric prop-
erties, randomly varies in a certain range to obtain different
phantoms preserving the simplicity and the realism of the
neck. The ranges in which the dielectric properties vary are
selected following their dielectric behavior in the considered
frequency band [63]. The coordinates of the control points
vary along the x-y axis, both in the negative and positive
directions. Moreover, each neck structure is rotated by apply-
ing a rotation matrix with random angle θ ∈ [−45◦, 45◦],
to increase the variability of the training set. In Table 1, the
properties of the tissues considered for the developed phan-
toms are given. The value of each parameter is randomly
defined (with uniform distribution in the reported intervals)
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TABLE 1. Parameters of the tissues inside the neck phantoms.

and independent from each other. The approach used to gen-
erate each tissue region, the variability of the center position
and the size of semi-axes for ellipses, the number of con-
trol points and their variability for the spline functions, as
well as the variability of the dielectric properties are also
provided.
Finally, to obtain the neck cross section with tumor (i.e.,

to reproduce a pathological situation) a circle with radius
rt is inserted in the anterior part of the neck, near the tra-
chea. In these kinds of tumors, i.e., supraglottic laryngeal
carcinoma [18] and thyroid cancer [19], the cross section
can be approximated as a circular inclusion [64]. Also in
previous works [65]–[67], the tumor is simulated like a
circle. Tumors such as thyroid cancers [18], [64], neck sar-
comas or cervical lymph node metastases [20] are nodular,
being approximately spherical, with a radius in the range 3-
5 mm, located up to 3 cm below the skin surface [68]–[70].
To reproduce in an accurate way the dielectric properties
of the tumor, the results obtained in [66] are followed. For
most neck tumors, the relative dielectric properties are rel-
atively high, and in the considered frequency band are on
average around εr ≈ 59 and σ ≈ 0.9 [S/m], depending on
the type and staging, as can be derived by MRI and as usu-
ally modeled in numerical studies in the field of microwave
hyperthermia [14], [17], [65], [67]. For this reason, by also
taking into account a possible variability of such parameters,
the dielectric properties of the simulated tumor model were

chosen in the range between 55 and 65 for the relative
dielectric permittivity, whilst the electrical conductivity lies
within [0.5, 1] S/m.
At the end, the generated neck phantom is set inside a cir-

cular shape with radius r = 8 cm, representing the matching
medium, between the antenna and the neck. The dielectric
properties of the matching medium have been selected in
order to increase the field penetration and to reduce the
reflection due to the skin. In particular, as shown in [13], a
70% glycerin/water mixture allows obtaining a good trade-
off between these two requirements. Consequently, in this
work the dielectric properties of the matching medium have
been set to εr = 43 and σ = 0.8 S/m, i.e., an average value
of such a mixture in the considered frequency band.

A. TISSUES MODELED WITH NATURAL CUBIC SPLINE
FUNCTION
As previously mentioned, in order to define a curve that
models the particular shape of some tissue boundaries, the
natural cubic spline functions are considered. This kind of
functions takes the coordinates of some chosen points, called
control points, and defines a curve that passes through them.
In this way, a specific shape is obtained. Given a set of
control points in x- and y- coordinates, a two-dimensional
curve is written parametrically as [71]:

rspline(t) = (
xspline(t), yspline(t)

)
(12)
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FIGURE 4. Sketch of (a) spline curve and (b) ellipse generation.

where xspline(t) and yspline(t) are single-valued functions of
the parameter t of a point on the curve for any value of t [71].
The curve is split into q sections, each defined by separate
polynomials to form a piecewise polynomial curve, as shown
in Fig. 4(a). In general, the x-coordinates xspline(t) of points
on a curve are determined only by the x-coordinates of the
control points, analogously to yspline(t). Since both xspline(t)
and yspline(t) are treated in the same way, we will discuss
only xspline(t). The essential idea is to fit a piecewise function
with a third-degree polynomial defined by [71]:

xispline(t) = ait
3 + bit

2 + cit + ei (13)

for i = 1, 2, . . . , q−1. To determine the 4(q−1) coefficients
that completely determine a particular polynomial, con-
straints are needed. In particular, it is required that the
piecewise function xispline(t) interpolates all data points, for
i = 1, . . . , q − 1, and it is necessary that xispline(t), with its
first and second derivative, are continuous in the interval
[t1, tq] for i = 1, . . . , q− 1. The coefficients ai, bi, ci and
ei can be obtained explicitly for each interval as described
in [72]. Finally, the definition of natural means that the
second derivative will be equal to zero at the endpoints [71].
With this approach, the first modeled tissue boundary is

the skin, which also defines the external shape of the neck. To
develop the skin structure, 14 control points are considered
adequate to mimic the external shape of the phantom. The
control points allow generating different configurations and
sizes of the neck. As shown in Fig. 3(b), the obtained external
shape is similar to the actual one. The thickness of the skin,
ds, vary in the range [2, 4] mm. After that, the subcutaneous
fat tissue is also modeled with spline functions. As reported
in Fig. 3(b), this tissue is located internally, adjacent to the
skin and its thickness df varies between [2, 8] mm [64].
The subcutaneous fat is located along the skin, both in the
anterior and posterior part of the neck. Defined these two
tissues (skin and subcutaneous fat) the structure is internally
filled with the dielectric properties of muscle. In this way, the
shape of muscle depends only on the thickness of skin and
subcutaneous fat. Then, the remaining anatomical structures
are located inside the neck, overlapping with the previous
ones already created.
Internally to the vertebral bone, as shown in Fig. 3(b), the

spinal cord is inserted. In this case, 5 control points are used
to define the tissue and are chosen to obtain a shape that

can mimic the stretched configuration of the spinal cord.
Other considered structures are the blood vessels. In the
Virtual Family phantom [Fig. 3(a)], there are two arteries and
two veins, one for each side of the neck. In the developed
phantom, only one vessel for each side is considered for
simplicity and because their presence is not so relevant for
this study. In this case, 4 control points are used to define
the shape of the vessel, and then such a shape is duplicated
to obtain the second vessel [Fig. 3(b)]. Finally, the trachea
structure is created. Here, 5 control points are used to obtain
the structure. As shown in Fig. 3(b), the trachea is embedded
inside the cartilage tissue.

B. TISSUES MODELED WITH ELLIPSES
To reproduce other tissue structures, one or more ellipses are
used. These curves can be defined in parametric form as:

xellipse(t, α) = x0 + a cos(t) cos(α)− b sin(t) sin(α)

yellipse(t, α) = y0 + b sin(t) cos(α)+ a cos(t) sin(α) (14)

where x and y are the coordinates of any point on the ellipse,
x0 and y0 are the coordinates of the ellipse center, a and b
are the semi-axes along the x- and y-directions, respectively,
t is the parameter ∈ [0, 2π ] and α is the rotation angle, as
illustrated in Fig. 4(b).
First, the vertebral bone is created using two ellipses, one

placed vertically and the other horizontally. Another tissue
modeled with elliptic shape is the infiltrated fat. For this
tissue, three ellipses are placed near the bone, in the posterior
region of the neck. Within such ellipses, a binary random
variable with uniform distribution defines whether pixels are
occupied by fat or not. To complete the presence of fat in the
phantom, other two ellipses are defined, which are placed
in the anterior part of the neck. The last biological tissue
modeled with elliptic structures is cartilage: two ellipses are
located in the anterior part of the neck, overlapped to the
fat structure. To increment the variability of the biological
tissues, the centers and the semi-axes of each ellipse are
allowed to vary in the ranges defined in Table 1.

IV. PRELIMINARY RESULTS
A preliminary analysis is performed in order to choose the
best parameters for the neural network architecture. Then,
the selected architecture is tested with different cases.
To train the developed neural network, a data set of 30, 000

simplified neck phantoms is built. Each neck phantom is
generated by the random variations of the dielectric and
geometrical properties described in Section III. The dataset
does not contain any duplicate. The investigation domain is
discretized with I = 5024 square cells of side 2 mm. Half
of the dataset represents the neck profile with the presence
of variable tumors in the anterior neck area, whereas the
other half is without tumor. This dataset is portioned into
two subsets: 95% of the samples for the training procedure
and the remaining 5% for the validation phase. A custom
direct solver based on method of moments (MoM) is applied
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on the created neck profiles to calculate the corresponding
scattered electric fields, with F = 7 frequencies in the range
[600, 900] MHz, S = 10 antennas, and M = 9 measurement
points. Moreover, a white Gaussian noise with zero mean
value and a signal-to-noise ratio (SNR) of 35 dB has been
added to the total electric fields of validation cases to obtain
more realistic data.
The neural network training starts with an initial bias equal

to zero and weight parameters are initialized by a Gaussian
distribution with zero mean value and standard deviation set
to 10−2. A constant L2 norm regularization parameter equal
to 10−4 is adopted, to avoid overfitting, and the ADAM
method is used to minimize the loss function, with an initial
learning rate of 10−3 and 500 epochs for each training phase,
with mini-batch size of 256. The input layer size is defined
as F× S×M× 2 = 1260, whereas the output layer consists
of 2I = 10048 neurons.

A. SELECTION OF THE NETWORK ARCHITECTURE
PARAMETERS
In order to find a trade-off between the accuracy in the recon-
struction and computational complexity, different network
architectures are tested. To perform a quantitative assess-
ment for evaluating the best architecture, for each proposed
network structure, the average error parameters Eεr and
Eσ described in (10) and (11) are calculated for the
reconstructions of the data in the validation set.
In this analysis, the impact of the number of hidden

layers and the number of neurons (nodes) are evaluated.
To this end, the number of hidden layers is set to L =
{1, 2, . . . , 5}, whereas the number of neurons for each
layer is D = {32, 64, 96, . . . , 512}. Fig. 5, which reports
the behaviors of Eεr and Eσ versus L and D, shows that
for L = 5 hidden layers and D = 448 neurons the smallest
reconstruction errors are obtained, both for relative dielec-
tric permittivity Eεr [Fig. 5(a)] and for electric conductivity
Eσ [Fig. 5(b)]. The findings show that Eεr and Eσ assume
the highest values for L = 1, regardless of the value of D.
Moreover, the reconstruction errors remain high for L = 32
and any value of D. This analysis highlights that for one
hidden layer and a low number of neurons the reconstruction
is not accurate. Indeed, as shown in other works [53], a too
small number of hidden layers and neurons does not allow
a good quality of the recovery.
Following this preliminary analysis, quantitative recon-

structions of the cross section of neck are analyzed with
different values of L and D. In particular, three different
network topologies are tested against two selected cases from
the validation set.
The actual values of the relative dielectric permittivity

and electric conductivity in the first case are shown in
Fig. 6(a) and Fig. 6(e), respectively. The neck cross section,
in this configuration, presents each biological tissue in a nor-
mal physiological condition, without any tumor. To evaluate
the capability of retrieving the distributions of the dielec-
tric properties, the first tested network topology presents

FIGURE 5. Mean reconstruction error on (a) εr and (b) σ versus the number of
hidden layers and neurons per layer.

L = 1 and D = 32 (i.e., the simplest network architecture).
Fig. 6(b)–(f) report the reconstructed maps of the relative
dielectric permittivity and of the electric conductivity, which
are not very accurate in this case. Indeed, the relative dielec-
tric permittivity value of the infiltrated fat near the cartilage
is overestimated (24-32 vs. the actual values of 8-15), the
blood vessels are not well detected, and the subcutaneous fat
thickness is larger than in the actual configuration. The same
considerations hold for the electric conductivity reconstruc-
tion. The second tested network topology presents L = 3 and
D = 224, a slightly more complex neural network structure.
The reconstructions obtained with this network are shown in
Fig. 6(c)–(g). Now, the reconstructions are more precise: the
thickness of the subcutaneous fat is close to its true value
for both εr and σ ; the cartilage is better shaped, and the
trachea is well retrieved. On the other hand, the reconstruc-
tions show some artefacts outside the neck, in the matching
medium, and in the relative dielectric permittivity overall.
The last considered neural network has L = 5 and D = 448,
and it shows the best results of the Eεr and Eσ errors. The
reconstructed maps of the relative dielectric permittivity and
electric conductivity are plotted in Fig. 6(d) and Fig. 6(h).
With this network architecture, the reconstructions are better
than those obtained with the previous topologies. Here, in
both reconstructions of εr and σ , the blood vessels are well
identified, the cartilage shape reproduces well the real one
and the thickness of the subcutaneous fat is reconstructed
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FIGURE 6. Neck configuration without tumor, validation set: (a) Actual relative dielectric permittivity. Reconstruction of relative dielectric permittivity with (b) L = 1 and D = 32;
(c) L = 3 and D = 224; (d) L = 5 and D = 448. (e) Actual electric conductivity. Reconstruction of electric conductivity with (f) L = 1 and D = 32; (g) L = 3 and D = 224; (h) L = 5
and D = 448.

FIGURE 7. Neck configuration with tumor, validation set: (a) Actual relative dielectric permittivity. Reconstruction of relative dielectric permittivity with (b) L = 1 and D = 32;
(c) L = 3 and D = 224; (d) L = 5 and D = 448. (e) Actual electric conductivity. Reconstruction of electric conductivity with (f) L = 1 and D = 32; (g) L = 3 and D = 224; (h) L = 5
and D = 448.

correctly. Moreover, the spinal cord shape is detected, and
the artifacts visible in the previous reconstructions are less
evident.
To test the ability to detect the presence of a tumor, a sec-

ond case extracted from the validation set is analyzed. This
case is a cross section of the neck with a tumor in the anterior
neck part, as shown in Fig. 7(a)–(e). In this configura-
tion, too, the reconstructions are evaluated for three different
network architectures, as explained previously. For the first
neural network, Fig. 7(b)–(f) report the reconstructed maps
of the dielectric properties εr and σ . As before, the recon-
structions are not very precise, with an overestimation of

subcutaneous fat thickness, the absence of blood vessels, and
an incorrect tumor shape. The reconstructions achieved with
the second neural network, as can be seen in Fig. 7(c)–(g),
highlight a significant improvement of results. The tumor
is better reconstructed, as well as fat, both for dielectric
and geometric properties. Finally, the last neural network
is tested, with L = 5 and D = 448, and the correspond-
ing reconstructions can be found in Fig. 7(d)–(h). Now, the
external shape of the neck is better retrieved than in the
previous cases [Fig. 7(b), (c), (f), (g)]. Moreover, the tumor
is identified with its correct shape and the cartilage around it
is identified correctly. The trachea is now detected, although
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FIGURE 8. Realistic neck configuration without tumor (Test case #1). Relative dielectric permittivity: (a) Reconstructed values; (b) Actual configuration. Electric conductivity:
(c) Reconstructed values; (d) Actual configuration.

FIGURE 9. Realistic neck configuration with tumor centered in (0.04, −0.01) m. Test case #2, tumor radius rt = 1.5 cm: (a) Reconstructed and (b) actual relative dielectric
permittivity; (c) Reconstructed and (d) actual electric conductivity. Test case #3, tumor radius rt = 1 cm: (e) Reconstructed and (f) actual relative dielectric permittivity;
(g) Reconstructed and (h) actual electric conductivity.

the dielectric permittivity is overestimated and assumes val-
ues similar to those of the fat. However, this fact does not
prevent the identification of the tumor. Moreover, the spinal
cord is properly recognized inside the vertebral bone, too,
both in the relative dielectric permittivity and electric con-
ductivity (e.g., estimated values of 25-35 vs. the actual values
of 30-40). It is worth noting that in general, the dielectric
properties of the muscle and tumor tissues may overlap.
However, the considered laryngeal tumors are usually located
in the anterior part of the neck and near the cartilage, where
there is a reduced presence of muscle tissue. In this case, it
is still possible to identify the presence of anomalies/tumors
in reconstructed images, as confirmed by Fig. 7.
After this preliminary analysis, a network with L = 5

hidden layers and D = 448 neurons has been selected for
the training procedure and to test different cases with and
without tumor.

B. QUANTITATIVE RECONSTRUCTION OF TEST CASES
To prove the robustness of the approach, the identified
network is tested on realistic numerical neck phantoms
extracted from the Virtual Family [62]. Five test cases

are created to assess the capability of discriminating the
presence, size and position of the tumor. The dielectric
properties of neck tissues are related to the frequency of
750 MHz, and the tumor properties are set to εr = 58 and
σ = 0.8 [S/m], according to [66], [73].

First, a case without tumor is considered, to check the
ability to reconstruct the dielectric properties in a healthy
situation (Test case #1). Fig. 8(a)–(c) represent the recon-
structions of the relative dielectric permittivity and the
electric conductivity, respectively. The actual configurations
related to such a case are presented in Fig. 8(b)–(d). In the
map of εr, the neural network is able to detect the vertebral
bone, the spinal cord inside it, as well as the external shape
of the neck. Moreover, in the reconstruction of the electric
conductivity, the trachea is quite well detected. In both recon-
structions the absence of tumor is verified. Successively, four
cases with tumor-like inclusions are tested. Two different
dimensions of the tumor, with the same center, are eval-
uated. In the first configuration (Test case #2), a circular
target of radius equal to rt = 1.5 cm representing the tumor
was included. Fig. 9(a) and Fig. 9(c) represent the recon-
structed distributions of the relative dielectric permittivity
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FIGURE 10. Realistic neck configuration with tumor centered in (0.04, 0.01) m. Test case #4, tumor radius rt = 1.5 cm: Reconstructed map of (a) relative dielectric
permittivity; (b) electric conductivity. Test case #5, tumor radius rt = 1 cm: Reconstructed map of (c) relative dielectric permittivity; (d) electric conductivity.

TABLE 2. Reconstruction errors for the considered test cases.

and electric conductivity, respectively. The tumor is well
detected and characterized. Moreover, the external shape
of the neck follows the real one, and the vertebral bone
is detected. The corresponding actual neck configuration is
shown in Fig. 9(b)–(d). In the second tumor-affected case
(Test case #3), a smaller tumor is considered, with radius
equal to rt = 1 cm. Fig. 9(e)–(g) show the reconstructed
dielectric properties, whereas the actual neck properties are
reported in Fig. 9(f)–(h). In both test cases, the tumor is
centered at (0.04,−0.01) m. The reconstructed maps of the
dielectric properties allow the discrimination between the
two different tumor sizes, with better results for the rela-
tive dielectric permittivity. Furthermore, the external shape
of the neck is well reconstructed, as well as its main tissues,
i.e., vertebral bone, trachea, spinal cord, and subcutaneous
fat. On the other hand, in both cases the infiltrated fat near
the vertebral bone in the posterior part of the neck is not
identified, possibly due to its sparsity.
To test the ability to discriminate different tumor positions,

other two cases are evaluated. Fig. 10(a) and Fig. 10(b) show
the reconstructed maps of εr and σ , respectively, with radius
of tumor equal to rt = 1.5 cm (Test case #4). Fig. 10(c)–(d)
present the reconstructions with tumor radius equal to rt = 1
cm (Test case #5). In these two situations, the tumor is
centered at (0.04, 0.01) m. Again, the tumor-like inclusion,
the vertebral bone and the internal spinal cord are detected,
and the trachea is localized in the correct position. The
external boundary of the neck follows the expected shape,
as well as the subcutaneous fat. As before, the infiltrated fat
near the bone is not detected.
In Table 2, the reconstruction errors on relative dielectric

permittivity Eεr and electric conductivity Eσ for each test
case are shown. The errors are calculated using (10)-(11)
and represent the normalized root mean squared errors on

the relative dielectric permittivity and on the electric conduc-
tivity, respectively. As confirmed by the errors, the dielectric
reconstructions are more accurate for the relative dielectric
permittivity than the electric conductivity. In summary, the
reconstructed distributions of the dielectric properties show
that, at least in the considered cases, the neural network is
able to reconstruct different dimensions of tumor, for the
same position, and also to localize it inside the neck.

V. CONCLUSION
A feasibility analysis of a preliminary developed ANN to
reconstruct the microwave distribution of dielectric proper-
ties of a cross section of the neck starting from scattered
electric field data has been presented. A fully-connected neu-
ral network, trained with a set of synthetic neck phantoms, is
used to accomplish this task. Such phantoms are generated
by using a strategy that allows mimicking the distributions
of neck tissues in a realistic way, with random variations.
A subset of the created phantoms contains circular inclu-
sions to emulate a tumor, with different dimensions and
positions. The network parameters are selected after a pre-
liminary analysis of the performance of various architectures,
with different numbers of hidden layers and neurons per
layer. A performance metric based on the normalized root
mean square error, is used to evaluate the reconstruction
results. To test the selected network, anatomically realistic
numerical phantoms are considered. The results, although
preliminary, are promising and show the possibility of detect-
ing the tumor. Moreover, they suggest that ANNs can be
effectively used to reconstruct the dielectric and geometric
properties of the human neck starting from scattered electric
fields. Future works will be aimed at a more comprehen-
sive validation of the approach and at the extension to the
full-vector three-dimensional imaging of the neck to further
increase the accuracy of the reconstruction. In addition, the
explicit inclusion of physical insights into the inversion pro-
cedure will be also considered, with the objective of further
enhancing results and provide more accurate reconstructions
of the different internal neck tissues.
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