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ABSTRACT A novel design approach to high-gain, wideband, dual-resonant, closely-spaced, three-
element Yagi-Uda antenna is advanced. The antenna is comprised by a full-wavelength, principal sectorial
dipole, a circular metallic flat reflector, and a sectorial director. At first, a multi-source model is developed
to predict the initial values of the key antenna parameters, e.g., the flared angle/radius of the director, and
the separation between them. Then, as theoretically predicted, numerically simulated and experimentally
validated, the flared angles of the principal radiator and the director are eventually determined as 270°
and 180°, respectively. They are further tightly coupled at a close separation of 0.024-wavelength to
yield relatively compact size and high gain simultaneously. Prototype antenna with a circular metallic
reflector successfully exhibits an impedance bandwidth up to about 40%, with in-band maximum gain up
to 10.4 dBi and gain fluctuation less than 3 dB. Finally, the antenna is comparatively studied with other
Yagi-Uda antennas to highlight its unique wideband and high gain characteristics.

INDEX TERMS Wideband antenna, Yagi-Uda antenna, full-wavelength dipole antenna, dual-mode

resonance, high gain antenna.

. INTRODUCTION
ITH the rapid development of  wireless
communication technology, there is a growing

demand for antennas with high performances. Yagi-
Uda antennas enjoy many advantages over conventional
elementary antennas, such as high gain/directivity, easy to
set up, and low cost. Since invented in 1926 [1], variants
of Yagi-Uda antennas have been extensively developed and
presented [2]-[4]. Up to now, Yagi-Uda antennas can be
basically classified into four distinctive types. The first one
should be the fundamental type [5], which are composed
of a principal dipole, a reflector, and some directors
that resonating at their respective half- wavelength mode
with linear polarization. Typically and empirically, the
directors and the principal dipole are coupled at a distance

between 0.1-wavelength and 0.3-wavelength [5]. Modified
Yagi-Uda antennas, e.g., curved Yagi-Uda antenna [6],
origami antennas [7], those with special reflectors [8]—-[9],
compact designs [3], [10]-[16], etc, can be recognized
as the second type. Dipole shaping technique can yield
improved performance as expected, such as directivity
enhancement [6]—[7], [13], high front-to-back ratios [8]-[9],
broadband operation [7], [10]-[11], size miniaturiza-
tion [11]-[16], etc. The “array technique” can be recognized
as the third type design approach to further performance
enhancements [16]-[22], e.g., higher efficiency [16]-[18],
more compact size [17] and better directivity [19]-[22].
Such Yagi-Uda arrays with enhanced performances have
been widely applied in satellite communications [16],
vehicle communications [16], [23], millimeter-wave
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communications [24]-[26], radar systems [27], etc. The
fourth type is the printed-circuit board (PCB) Yagi-
Uda antennas, which is also generally called as “quasi-Yagi
antennas” [28]-[34]. Quasi-Yagi antennas have several
advantages over the traditional ones: The presence of
dielectric substrate can provide its attractive ability in
mechanical support of the antenna and on-chip integrability
with planar feeding circuits as well, which may bring the
merit of easy fabrication.

Basically and typically, the reflector, director and radia-
tor of Yagi-Uda antennas are 1-D, half-wavelength dipoles,
where two adjacent ones are closely spaced at a separa-
tion between 0.1-wavelength to 0.3-wavelength. To our best
knowledge, there are no reported Yagi-Uda antennas, which
are comprised by full-wavelength dipoles, so far. Recent
studies have revealed that both 1-D and 2-D full-wavelength
dipoles [35]-[38] can exhibit better performance than the
half-wavelength dipole, such as wider bandwidth [35], [38],
higher gain [36]-[37], and improved polarization purity
within the whole beamwidth [38]. Therefore, it is highly
expected that a novel class of wideband, high gain Yagi-
Uda antennas can be presented, designed and implemented
by using multi-resonant, 2-D full-wavelength sectorial
dipoles [38].

In this paper, a novel design approach to high-gain,
dual-mode resonant, closely-spaced, three-element Yagi-
Uda antenna is advanced based upon 2-D full-wavelength
sectorial dipoles. The antenna is composed of a full-
wavelength, principal sectorial radiator, a circular metallic
flat reflector, and a full-wavelength sectorial director [38].
At first, a multi-source model is developed to calculate the
initial parameters of the antenna. Through numerical simula-
tions, the design parameters can be finely tuned and properly
determined. Then, the antenna prototypes are fabricated and
measured to verify design approach. In final, the performance
of the antenna is further improved by adjusting the size of
the ground plane.

Il. PRINCIPLE AND DESIGN APPROACH

A. EQUIVALENT SIX-SOURCE MODEL

The design procedure initiates from a full-wavelength, 2-D
sector principal radiator with a full-wavelength sectorial
director and a flat reflector, with the sketch of its surface
current distributions to be depicted in Fig. 1 (a).

The flared angle of the principal dipole is set as 270° [38].
In order to determine the distance between the director
and the principal radiator as well as the radius and flared
angle of the director, a six-source model is developed and
shown in Fig. 1 (b): Six infinitesimal, electric current sources
are sampled on the peripherals of the director and princi-
pal radiator, at the antinode and half-power point of the
current distribution, respectively. The combined far field
of the antenna at arbitrary observation point P can be
superpositioned as
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FIGURE 1. Conceptual design in preliminary, (a) schematic diagram of the
conceptual antenna, and (b) a six-source model of the proposed antenna.
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The radiation behavior of the antenna can be accordingly
functioned by F (6, ¢) shown in (1), where E is the mag-
nitude of the E-fields, with its detailed phase shift terms
presented in the Appendix. As seen from Fig. 1 (b), source
2 locates at z = d, source 5 is set at the origin (i.e., the
phase center of the whole antenna system). The magnitudes
of source 5, and the reflector are set as 1.0, while the ones of
source 4 and 6 should be accordingly as A4 = Ag = 0.707,
respectively. Since the director can be treated as a parasitic
element, the magnitude of the electric field intensity should
be smaller than unity. Therefore, the amplitude of source
2 can be reasonably set as 0.707, while the ones of source 1
and 3 should be accordingly as A; = A3 = 0.5, respectively.

Suppose the antenna will be designed on dielectric sub-
strate with relative permittivity of ¢, = 2.65 at the center
frequency of 2.4 GHz. The radius and flared angle of the
principal sectorial dipole can be calculated by (2) [39], where
g 1s relative dielectric constant that can be estimated by
empirical expressions indicated in [40], v is the circumfer-
ential eigen-number determined by the flared angle «, and
Xv1 is the first root of the first-order derivative of the v-
order Bessel function of the first kind, respectively [38],
[39]. When the flared angle is set as § = 270° [38], the
radius can be initially calculated as Ry = 26.5 mm [41].

Ry = Xvl 3
2me,
p=2 )
o

Secondly, let’s set o« = 240° as the initial value for the
director. By using (1), the normalized directivity function
can be analyzed, tuned, and plotted in Fig. 2. Radiation pat-
terns are normalized with respect to the peak gain in each
principal-cut plane. When d is tuned to 0.024A; (A, is the
guided wavelength of the corresponding center frequency),
the front-to-back ratio can be enhanced and the E-plane
pattern can be narrowed down, with H-plane pattern rarely
changed. Therefore, it is seen that a close separation of
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FIGURE 2. Theoretically calculated normalized radiation behavior of the proposed
antenna with different d (« = 240°), (a) zx-plane, (b) zy-plane.
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FIGURE 3. Theoretically calculated normalized radiation behavior of the proposed
antenna with different «(d = 0.0241g) , (a) zx-plane, (b) zy-plane.

d between principal dipole and director may be beneficial
for directivity enhancement for Yagi-Uda antenna designs.
Unlike the conventional cases of 0.1-wavelength to 0.3-
wavelength [5], the separation can be remarkably reduced to
0.024A¢ in the case of 2-D full- wavelength sectorial case.

Then, in the other cases of o = 180°, 210°, 240°, the
radius of the director can be analyzed and tuned by using (1)
and (2), for further directivity enhancement, which yield
R1 = 32.6 mm, 29.3 mm, 26.8 mm, respectively. When « is
tuned to 180°, the front-to-back ratio can be improved, and
the main beam can be narrowed down. Therefore, a semi-
circular director with radius of 32.6 mm can be initially
determined and set in the design.

Through the approximate theoretical prediction and anal-
yses, it can be well figured out that a better directivity
and narrower main beam can be simultaneously attained
when the key parameters of the director set as o = 180°,
Ry = 32.6 mm, and d = 0.024,, respectively.

B. ANTENNA DESIGN AND PARAMETRIC STUDIES

Fig. 4 depicts the schematic of the proposed three-element
PCB Yagi-Uda with a principal sectorial radiator, a circular
metallic flat reflector, and a sectorial director, which will
be designed herein at the center frequency of 2.4 GHz as
one design example. The radius of the circular metallic flat
reflector is r = 62.5 mm, which is approximately equal
to one half-wavelength of center frequency. The dielectric
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FIGURE 4. Schematic of the proposed three-element Yagi-Uda antenna.

TABLE 1. Design parameters of proposed antenna (unit: mm).

Parameters R, R, o p L L, Ls W W, W, Wy r
Theoretical 26.5 32.6

. 180° 270° 14 6 228 1.6 11.3 8 88 625
Numerical 26.0 31.8

constant of the dielectric substrate is 2.65, and the thick-
ness is 7 = 1 mm. The relative dielectric constant can be
approximately calculated by [40], which yields g¢ = 1.124.

As seen from Fig. 4, the principal radiator is symmetri-
cally fed by an adhesive coaxial cable with a dummy cable.
The outer conductor of the cable is bonded to one arm of
the principal radiator, with the inner one connected to the
other one [42]. To maintain the antenna’s balanced con-
figuration, a dummy cable should be attached to the other
arm. A pair of open-circuited, tuning stubs with lengths of
Ly, L, and widths of Wy, W, can be introduced on the
periphery of the sectorial principal radiator to perturb the
second odd-order resonant mode and to yield dual-resonant
characteristic [38].

Parametric studies on three design parameters of W,
Lz and W3 have been performed to validate the theoreti-
cal results by using the HFSS simulator, with the results
given in Fig. 5(a) to (c). The initial design parameters of
W = 1.6 mm, L3 = 22.8 mm, W3 = 8.8 mm are empirically
estimated with reference to [38]. All initial parameters are
given in Table 1. It can be seen that the antenna’s impedance
bandwidth can be finely tuned by adjusting the three param-
eters. In addition, the effect of the radius of reflector of
r is studied. As can be seen from Fig. 5(d), the frequency
response of |S11| is insensitive to the radius of the reflector to
a certain extent. The final parameters of the antenna are tabu-
lated in Table 1 and the key ones compared to the theoretical
ones. It is seen both results agree reasonably well.
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FIGURE 5. Parametric studies on the position of the feed line and the reflector,
(a) W3 (L3 =22 mm, W = 1.6 mm), (b) Lg (W3 =9 mm, W = 1.6 mm), (c) W
(L3 =22 mm, W3 =9 mm) and (d) r (W = 1.6 mm, L3z = 22.8 mm, W3 = 8.8 mm).

Ill. NUMERICAL AND EXPERIMENTAL VALIDATIONS

Based on the theoretical calculations and numerical simula-
tions, a prototype antenna (Ant.1) is designed and fabricated
for validation. The design approach is then validated on
a modified Teflon substrate [43] with relative permittivity
& = 2.65 and thickness 4 = 1 mm, as shown in Fig. 6. The
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FIGURE 6. Photograph of the fabricated antenna prototype of the proposed
antenna, (a) front view, (b) back view.
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FIGURE 7. Simulated and measured reflection coefficients of Ant.1.

antenna prototype’s reflection coefficient, radiation patterns,
efficiency and gain are measured by employing an Agilent’s
N5230A vector network analyzer (VNA) and a Satimo’s
Starlab near-field antenna measurement system, respectively.

The simulated and measured reflection coefficients of the
antenna are shown in Fig. 7 (Ant.1). It is seen that the sim-
ulated and measured reflection coefficients match very well
with each other. Due to two resonances in the range of 1.79 ~
2.63 GHz, the fabricated antenna exhibits broadband radi-
ation characteristics. For reflection coefficients lower than
—10 dB, the measured impedance bandwidth is up to 37.1%.

Fig. 8 shows the measured and simulated normalized radi-
ation patterns in zx-plane and zy-plane at different resonant
frequencies (1.93 GHz, 2.46 GHz) of the Ant.1. It is able to
be seen that all measured patterns match well with the simu-
lated ones. Moreover, the measured cross-polarization levels
within both principal-cut planes are lower than —20 dB,
which implies the antenna should exhibit good polarization
purity.

The simulated and measured bore-sight (i.e., +z-direction)
radiation gains are plotted in Fig. 9. It can be seen that the
measured gain is in good agreement with the simulated gain
in the whole impedance bandwidth with discrepancy less
than 0.7 dB. Furthermore, it is clearly seen from Fig. 9 that
the in-band gain fluctuation does not exceed 2.1 dB, which
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FIGURE 10. Simulated and measured radiation gains for Ant.1, Ant.1a and Ant.1b
(d = 0.024rg).

FIGURE 8. Simulated and measured results of the normalized radiation behaviors of
Ant.1 at different frequencies, (a) and (b) zx- and zy-plane at 1.93 GHz, (c) and (d) zx-
and zy-plane at 2.46 GHz.
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FIGURE 9. Simulated and measured gain variation of Ant.1.

indicates that gain variation should be relatively flat. In
addition, the maximum gain of the simulated antenna is
up to 10.1 dBi, and the average in-band gain also reaches
to 9.0 dBi. The measured maximum and average gains
are 9.6 dBi and 8.5 dBi, respectively, which match well
with the simulated ones. For the traditional three-element
Yagi-Uda antenna, the maximum gain is generally about
7.5 dBi [5]. It can be clearly seen that the presented design
approach can effectively improve the gain and realize a wide
bandwidth in simultaneous way.

Without loss of generality, two kinds of Yagi-Uda antennas
with different directors having flared angle of 210° and 240°
(Ant. 1a and Ant.1b) are further designed, manufactured, and
measured to verify the validity of the design approach. Let’s
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set d = 0.024A; as the initial value for the distance between
the principal radiator and the director. Fig. 10 shows the
bore-sight simulated and measured radiation gains for the
antenna having a director with different flared angles of
a = 180° o = 210°, and o = 240°, respectively.

As can be seen from Fig. 10, all measured bore-sight
gains agree well with the simulated ones. The in-band gain
fluctuation of all antennas does not exceed 2.5 dB, which
indicates that the gain fluctuation of such type of anten-
nas should be relatively stable. The maximum gains in the
cases of ¢ = 210° and o = 240° are 9.9 dBi and 9.6 dBi,
respectively, which are inferior to 10.1 dBi in the case of
a = 180°.

Next, let’s come to study the effect of separation d of
the dipole and the director. Two antennas (Ant. 1c and Ant.
1d) with d = 0.051; and d = 0.11g between the principal
radiator and the director are designed to verify the predicted
results. Set o« = 180° as the flared angle of the director.
Fig. 11 shows the simulated and measured radiation gains
for d =0.05g, d = 0.1Ag, and d = 0.024A,.

As seen from Fig. 11, the simulated and measured bore-
sight gains match well with each other, the variation in gain
is still stable. The maximum gains at the distances of 0.05A
and 0.1 Ay are 9.8 dBi and 9.7 dBi, respectively, which are
inferior to the 0.024A, ones. It proves that narrow distance
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FIGURE 12. Simulated and measured reflection coefficients of Ant.2.

can lead to better performance, and can also validate the pre-
dicted results. These further validations evidently convince
the correctness and effectiveness of the design approach
based on the simplified multi-point equivalent source model
presented in Section II-A.

Further studies have been carried out to enhance the
antenna gain. The gain can be further improved by setting
the length of the reflector to about 1.3A, [6], [44]. For com-
parisons, the length of the reflector is modified to 1.36A,
(r = 85 mm), with other parameters in Table 1 unchanged.
This yields the design of Ant.2.

Fig. 12 depicts the simulated and measured reflection
coefficients of Ant.2. The simulated and measured reflec-
tion coefficients agree well, and the fabricated antenna still
shows a dual-resonant wideband characteristic from 1.81 to
2.7 GHz, with an impedance bandwidth for |S1;| < —10 dB
of 39.5%.

Fig. 13 exhibits the measured normalized radiation pat-
terns in comparison with the simulated ones. It is observed
that all the measured radiation patterns are in good agreement
with the simulated ones. In particular, in most of frequency
ranges, the simulated cross-polarization levels are lower than
—40 dB and the measured one are lower than —25 dB. The
cross-polarization components are caused by fabrication tol-
erance of the prototype and unpredicted imperfectness (i.e.,
loss and surface roughness, etc.) of the materials. This
implies a larger reflector should be beneficial for polarization
purity enhancement, compared to Ant.1.

The simulated and measured bore-sight radiation gains and
efficiencies of Ant.2 are plotted in Fig. 14. As seen, both the
simulated and measured efficiencies within the impedance
bandwidth exceed 90%. The simulated and measured peak
gains reach to as high as 10.8 dBi and 10.4 dBi, and the aver-
age gains are 9.5 dBi and 9.4 dBi, respectively. The in-band
gain fluctuation does not exceed 3.0 dB, while maintaining
its bandwidth of nearly 40%.

Table 2 tabulates a comprehensive comparison with
other reported Yagi-Uda antennas [6]-[7], [10]-[11], [31],
[45]-[48], in terms of the number of elements, type of
the principal radiator, impedance bandwidth, peak gain and
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FIGURE 14. Simulated and measured radiation gains and efficiencies of Ant.2.

peak realized gain. It is shown that the proposed antenna is
unique, in terms of its 2-D, full-wavelength dipole con-
figuration. In addition, the proposed antenna has a 39.5%
impedance bandwidth and the measured maximum gain is up
to 10.4 dBi, while maintaining a simple design. Compared
to the high gain counterparts [6], [11], [48], the advanced
antenna exhibits wider bandwidth, simpler configuration, and
comparable gain. The gain of the advanced antenna is about
3.0 dB superior to the conventional wideband, three-element
counterparts [10], [31], [45]-[47], and even about 1.0 dB
higher than the four-element one [7]. By comparison, it is
seen that the proposed antenna can maintain a relatively
small size while maintaining a high gain [7], [45]-[48].
In general, the proposed antenna has exhibited its superior
performance and lower configurational complexity to most
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TABLE 2. Yagi-Uda antennas for comparisons (N.A. = not available).

Peak
Reference Number of Principal radiator Size (A5*Ag) Impedapce Realized
Elements Bandwidth . .
Gain (dBi)
6 3 1.5-wavelength N.A. N.A. 11.5
7 4 Half-wavelength 2.34%2.34 66% 9.5
10 3 Half-wavelength 0.5%0.5 48% 6.5
11 3 Half-wavelength N.A. 12.44% 10.3
32 3 Half-wavelength 1.56*%1.52 92.2% 6
46 3 Half-wavelength 0.28*0.23 41.5% 55
47 3 Half-wavelength 1.3*1.47 96.4% 6.8
48 3 Half-wavelength 0.24*0.24 69.1% 4.1
49 3 Half-wavelength 1.2%12 17.6% 10
This « o
work 3 Full-wavelength 0.48*%0.69 39.5% 104
5 =057 N
B ‘| Director
4=0.2
Principal radiator
+10 o-1 a_;
hoA
4,=0.2] £
9]

Circular reflector

d=J.

S,,1(dB)

— — traditional
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T T
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FIGURE 16. Simulated reflection coefficients of Ant.1.1 and proposed antenna.

of the existing Yagi-Uda antennas, while realizing wideband,
high gain and maintaining simple configuration.

Without loss of generality, an example of classical Yagi-
Uda antenna having linear, half-wavelength dipole radiator
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FIGURE 17. Simulated gain variation of Ant.1.1 and proposed antenna.

and director above the conductive circular disk reflector
has been added for comparison. In Fig. 15, the three-
element Yagi-Uda antenna under comparison (Ant.1.1) uses
an identical flat, circular reflector. The distance between
the reflector and principal radiator is 0.24¢, and the dis-
tance between the principal radiator and the director is also
0.2);, as conventional Yagi-Uda antennas [5] behave. The
simulated reflection coefficients of Ant.1.1 and proposed
antenna are shown in Fig. 16. It is seen that the bandwidth of
Ant.1.1 is about 14.5%, while that of the proposed antenna is
enlarged up to 39.5%, i.e., nearly triple of the traditional one.
Fig. 17 exhibits the simulated gain frequency responses of
Ant.1.1 and the advanced antenna. It is seen that the peak
gain of the traditional Yagi-Uda antenna is 8.8 dBi, which
is about 1.6 dB lower than that of the advanced one’s. By
comparisons, the advanced 2-D sectorial configuration would
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be more promising for high gain Yagi-Uda antenna designs
without significantly increasing the size.

IV. CONCLUSION

In this paper, a novel design approach to a wideband closely-
spaced, three-element Yagi-Uda antenna is advanced. The
advanced antenna is designed based upon a unique 2-D, full-
wavelength dipole configuration. Unlike the conventional
Yagi-Uda antennas based on half-wavelength dipoles, the
director of the novel antenna can be coupled in a close
proximity to the principal dipole through a separation of
0.024- wavelength, which yields a high gain characteristic
of over 10 dBi. As validated, the proposed antenna can
exhibit an impedance bandwidth up to about 40%, with
in-band maximum gain up to 10.4 dBi and gain fluctua-
tion less than 3 dB. It has been verified that the designed
antenna can cover a variety of wireless spectra such as
5-G mobile communications (2.6 GHz), TD-LTE (2.37-
2.66 GHz), WLAN (2.4-2.5 GHz), etc. Moreover, the
advanced Yagi-Uda antenna has been extensively investi-
gated and discussed to reveal its attractive advantages of
high gain, wide band, simple structure and easy fabrication.
As a consequence, this antenna can be applied as a promising
high gain antenna for future broadband wireless applications.

APPENDIX

In the multi-source model, the array factor is dependent
on the spatial and temporal phase shift terms, which can
be calculated according to the geometrical relationship. The
spatial and temporal phase shift terms of ¢oo, ©10, ¥20, ©30,
@40, and @go in (1) can be depicted in detail by

woo = —klcosO + /2 (A1)
@10 = —kd, sin6 cos ¢ + kd, cos 6 (A.2)
@20 = kd cos 6 (A.3)
@30 = kd, sin6 cos ¢ + kd, cos 0 (A.4)
@40 = —kd., sin 6 cos ¢ + kd, cos 6 (A.5)
@60 = kd., sin6 cos ¢ + kd_, cos 6 (A.6)
dy = Ry sin(a/4) (A.7)
d. = R, sin(B/4) (A.8)
d, = d + Ro[1 — cos(at/4)] (A.9)
d, = Ri[1 —cos(B/4)] (A.10)

where ¢ is the total phase of the reflector contributed by the
spatial phase shift and the temporal one of 7 /2, k = 27w /A
is the wavenumber, A is the free-space wavelength, Ry is
the radius of the director, Ry is the radius of the principal
radiator, / is the separation between the reflector from the
origin of the coordinates, o and § are the flared angles of the
director and the principal radiator, 6 and ¢ are elevation angle
and azimuth angle, respectively. A more intuitive six-source
model is shown in Fig. Al.
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