
Received 27 July 2020; revised 13 November 2020; accepted 26 November 2020. Date of publication 9 December 2020;
date of current version 15 January 2021.

Digital Object Identifier 10.1109/OJAP.2020.3043541

Large Minimum Redundancy Linear Arrays:
Systematic Search of Perfect and Optimal

Rulers Exploiting Parallel Processing
FABIAN SCHWARTAU 1, YANNIC SCHRÖDER 2, LARS WOLF 2 (Senior Member, IEEE),

AND JOERG SCHOEBEL1

1Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106 Braunschweig, Germany

2Institute of Operating Systems and Computer Networks, Technische Universität Braunschweig, 38106 Braunschweig, Germany

CORRESPONDING AUTHOR: F. SCHWARTAU (e-mail: fabian.schwartau@ihf.tu-bs.de)

This work was supported in part by the German Research Foundation and in part by the Open Access Publication

Funds of Technische Universität Braunschweig.

ABSTRACT Minimum Redundancy Linear Arrays (MRLAs) are special linear arrays that provide the
narrowest main lobe in the radiation pattern possible for a given number of antennas. We found that
the calculation of MRLAs is the same as for the mathematical problem of perfect sparse rulers. Finding
perfect rulers (or MRLAs) is a hard problem, as there is no proven mathematical rule to design them.
They can only be found by constructing ruler candidates via an exhaustive search while ensuring that
no ruler with less redundancy exists. We revisited the problem of sparse ruler construction and used
two exhaustive search algorithms to compute longer rulers than previously published. Further, we present
an approach to accelerate the execution by distributing the recursive search algorithms over multiple
computers. Our compute cluster found perfect rulers with all lengths up to 244 in 443 years of combined
CPU time. All found rulers are provided to the research community. Additionally, we confirm previously
known Low Redundancy Linear Arrays being MRLAs. Our results show that larger perfect rulers do not
always require equal or more marks (antennas) but can sometimes be constructed with fewer marks than
the previous ruler.

INDEX TERMS Aperture synthesis, linear antenna arrays, redundancy, thinned array, minimum redundancy
linear array, MRLA, sparse ruler, perfect ruler, optimal ruler.

I. INTRODUCTION

MINIMUM Redundancy Linear Arrays (MRLAs) are
a well-known type of linear antenna arrays, which

provide maximum angular resolution for a given number
of antennas [1]. An Minimum Redundancy Linear Array
(MRLA) is constructed by placing the individual antennas
on discrete spots so that there is a minimum of redundant
spacings between any of the elements. The calculation of
such MRLAs is becoming extremely time-consuming for
large arrays. Computational complexity increases drastically
with increasing MRLA length as they can only be found via
exhaustive search. Available computing resources (mainly
CPU time) are the limiting factor to find longer MRLAs.
Previously, arrays with a length of up to 113 have been

found [2]. For a given array length or number of anten-
nas, there is a finite number of possible arrays fulfilling the
criteria of an MRLA. The goal of an exhaustive search is to
find all possible results.
Recent research focused on findingLowRedundancyLinear

Arrays (LRLAs) as a pattern is observable in known MRLAs
that can be exploited to construct large arrays with low
redundancy without investing much CPU time. However,
these arrays cannot be proven to be MRLAs without an
exhaustive search for arrays with lower redundancy.
It turns out that the mathematics behind the calculation of

an MRLA is identical to perfect sparse rulers and similar to
the graceful graph problem, which are well-known problems
in the mathematical community. In comparison to MRLA,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2021 79

HTTPS://ORCID.ORG/0000-0002-9955-0322
HTTPS://ORCID.ORG/0000-0003-3205-9034
HTTPS://ORCID.ORG/0000-0001-9782-7765

SCHWARTAU et al.: LARGE MRLAs: SYSTEMATIC SEARCH OF PERFECT AND OPTIMAL RULERS EXPLOITING PARALLEL PROCESSING

the search for sparse rulers was conducted up to a length of
213 [3], [4].
The results shown in [3] are probably taken from [4], as

they reach the same length, and the program presented in [3]
is, according to our tests, not fast enough to produce such
large rulers. This would mean that the results with a length
from 114 up to 213 have not been verified independently.
We were able to verify these results by using the alterna-
tive Blanton&McClellan algorithm [2]. The algorithm was
implemented in C, optimized for speed, and adopted to allow
parallel execution on multiple processor cores and computers.
Additionally, we modified the algorithm presented in [4] to
be compatible with our parallel computation back-end and
used it to compute sparse rulers (i.e., MRLAs) up to a length
of 244. All our results, including the source code, is provided
in [5].
The following Section II introduces some definitions of

rulers that will be used throughout this article. It describes
the different type of sparse rulers and the relation to MRLAs.
Section III describes the two used algorithms and their dif-
ferences, followed by the description of the parallelization
approach we took in Section IV. The software for the distri-
bution is explained in Section V. Finally, the results and a
conclusion are given in Sections VI and VII, respectively.
The contributions of this work include the finding that

MRLAs and perfect sparse rulers are identical problems,
software implementations of two algorithms for the search
of MRLAs or perfect sparse rulers, the parallelization of
search across multiple computers, the independent confir-
mation of rulers between length 114 and 213, and additional
results up to a length of 244.
II. RULER PROPERTIES
Peter Luschny gives definitions for different properties of
rulers [6]. Three parameters define every ruler: The number
of tick marks M on the ruler (i.e., antennas), its length L,
which is the distance between the two outermost markings
(the maximum length the ruler can measure), and a list, that
indicates where on the ruler the markings are. Note that
all markings are placed on a fixed grid (like an array), so
distances between marks are without unit and always an
integer value. The definitions are as follows:
a) Fully Populated Ruler: A fully populated ruler of length

L contains M = L+1 marks. This is basically the same as an
office desk ruler with a mark for every Centimeter or Inch.
With such a ruler, it is trivial to find two marks with any
distance between them in the range 1 to L. However, such
a ruler contains a lot of redundancy, as there are multiple
different pairs of marks that are the same distance apart.
b) Sparse Ruler: A sparse ruler of length L contains M <

L + 1 marks. This removes redundant distances between
marks. However, a sparse ruler does not necessarily contain
all distances from 1 to L.
c) Complete Ruler: A complete ruler is any ruler that

contains all distances from 1 to L without specifying the
number of marksM. Every fully populated ruler is a complete
ruler.

d) Perfect Ruler: A perfect ruler is a sparse and complete
ruler, that has the minimum number of marks M for a given
length L. No complete ruler with less marks can be found for
the given length L. However, there can be multiple perfect
rulers for any L. A perfect ruler is what we call an MRLA.

e) Optimal Ruler: An optimal ruler is a perfect ruler with
the maximum length L for a given number of marks M.
No longer ruler with the same number of marks can be
constructed. If an MRLA for an antenna array is needed,
where the number of antennas is already known, an optimal
ruler with M antennas (marks) will be the longest antenna
array that can be constructed.
Other research provides the concept of LRLAs [7]–[11].

These arrays offer a lower redundancy than fully populated
arrays while not guaranteeing the perfect solution with min-
imum redundancy, i.e., it is not necessarily a perfect ruler.

III. THE ALGORITHMS
Two different algorithms are used to compute complete rulers
in this work. The first algorithm was introduced by Blanton
& McClellan [2] and is named Blanton&McClellan algo-
rithm in the rest of this article. The other algorithm was
introduced by Arch D. Robison [4] and is thus named
Robison algorithm. Both deterministically yield identical
results and are based on the same principle: Their inputs
are the desired length L of the array and the number of marks
(i.e., antennas) M to be placed (M is called N by Blanton &
McClellan). They yield either zero results if no complete ruler
with M marks could be found or the list of complete rulers
with M antennas. Note that the algorithms do not compute
perfect rulers. Found rulers are perfect rulers if the algorithm
was unable to find results with any smaller value for M.
The general approach to find perfect rulers is to choose a
length L and start with the lowest possible M, which will
be defined below. If the algorithm cannot find any results
for this combination, M has to be incremented. This process
is repeated until at least one result is found, which is, by
definition, a perfect ruler.
Both algorithms used for ou search start with an empty

ruler except for marks at the two ends. Then, zero, one,
or two marks are placed at certain positions resulting in
up to four more populated rulers. Afterward, the function
calls itself recursively for the new rulers, creating a tree
of function calls (i.e., rulers). The recursive function first
checks the current state of the ruler. If all marks are placed,
and all distances occur in the ruler, it is a complete ruler,
which is saved. Additionally, the function does a few checks,
if the goal of finding a complete ruler can still be reached.
For example, if the number of free spaces in the ruler is less
than the number of marks left to be placed, there is no way
this recursion path can lead to a ruler with M marks, and the
function returns immediately. These checks cut off branches
of the tree to be searched, which significantly reduces the
execution time. The differences between the two algorithms
are within the position where new marks are placed and the
checks that are done to increase speed. There is a not yet

80 VOLUME 2, 2021

FIGURE 1. CPU time for each combination of L and M calculating all rulers with the
Blanton&McClellan algorithm (+) and the Robison algorithm (�).

complete ruler at every stage of both algorithms, which is
to be extended with new marks. We call these intermediate
rulers templates.
The algorithms’ execution can also be aborted if the tem-

plate would not yield all distances up to L, even if every
additional mark would yield the maximum number of new
distances. This condition can be computed via Eq. (12)
from [2]. By rearranging this formula, the minimum number
of antennas Mmin for any given template can be computed:

Mmin =
⌈

1

2
+

√
1

4
+ 2L− 2k + P(P− 1)

⌉
. (1)

k is the number of distances already present in the template,
P is the number of already placed marks, and �·� is the
ceiling function.
We implemented the Blanton&McClellan algorithm in the

C programming language as a standalone application based
on the explanations in the original paper. Like the original
version, it needs values for L and M as input. However, our
version can be supplied with a template. This allows starting
the computation not only with an empty ruler but deep in the
recursion tree. It is then possible to start a parallel execution
at different points of the tree.
For the Robison algorithm, we used the author’s code,

which is written in C++, and modified it to fit the interface
of the other algorithm. The Robison algorithm is designed
to exploit modern x86 processors’ capabilities by using
Streaming SIMD Extensions (SSE) instructions on 128-bit
registers. This improves execution speed significantly. Fig. 1
compares the execution times of both implementations.

IV. PARALLELIZATION OF THE ALGORITHMS
There are several ways to implement distributed calcula-
tion of spare rulers. The simplest may be to distribute
multiple combinations of L and M over multiple computers
or processes, where each process calculates one combina-
tion. However, to run hundreds or even thousands of parallel
processes, it is impossible to provide enough L/M combi-
nations. Further, computing power on a certain combination
will be wasted if another process found a solution for a

FIGURE 2. Tree structure of MRLA templates. Each template can be split in multiple
longer templates. Compare with [2].

smaller M, and thus all solutions of the current process
cannot be perfect rulers. If the task was only parallelized
via different L/M combinations, certain computations would
take a very long time. For example, computing that there
is no perfect ruler of length 195 with 24 marks takes
697 days of CPU time on a single processor, using the
Blanton&McClellan algorithm. Any power outage would
result in a loss of the already invested calculation time,
as there would be no intermediate results to continue from.
A better approach is to execute the recursive algorithm

down to a certain level beforehand and interrupt the calcu-
lation. This way, we can build a tree of templates, as shown
in Fig. 2 for the Blanton&McClellan algorithm. In the repre-
sentation of a template, as shown in Fig. 2, an x represents
a mark (or antenna) and an o represents an empty place.
The slash splits the template into its left and right parts.
The resulting templates can now be distributed to multiple
processes, and the remaining recursions can execute in par-
allel. The list of templates is the same regardless of L and M,
as long as each template is short enough and does not con-
tain more than M marks. It is now possible to define a break
level parameter d, which defines how many recursions the
algorithm has executed before starting the parallel compu-
tation. Two different approaches to determine the parameter
d are introduced in the following sections.

A. FIXED BREAK LEVEL
The fixed break level strategy was implemented and tested
with the Blanton&McClellan algorithm. It can also be
adopted for the Robison algorithm. In this case, a break
level of d = 2 will result in the default template xx/x as
two distances are already placed. The higher the break level,
the more templates will be generated. A break level of 7 will
result in 197 templates, while d = 12 will create 30228 tem-
plates. The number of templates rises exponentially with a
base of roughly 3.

It turned out that the algorithm’s execution time differs
vastly for templates of the same break level. Fig. 3 (solid
line) shows the execution time for the set of templates for
L = 113 and M = 19 with fixed break level of d = 9. Many
jobs finish within a very short time, while some jobs take
very long. 90% of the jobs are finished within 155 seconds,
while the longest takes more than 40 minutes. It has to be
pointed out that all jobs for Fig. 3 were calculated on the
same machine. This eliminates runtime differences due to
different hardware. The observed heterogeneity of runtimes
is problematic, as workers that computed short jobs might be
idle when waiting for other workers to finish long jobs before

VOLUME 2, 2021 81

SCHWARTAU et al.: LARGE MRLAs: SYSTEMATIC SEARCH OF PERFECT AND OPTIMAL RULERS EXPLOITING PARALLEL PROCESSING

FIGURE 3. Cumulative distribution function of the calculation time with L = 113 and
M = 19 using fixed (solid line) or dynamic (dashed line) break level. 1489 (d = 9) and
1554 (maximum runtime 17 s) templates, respectively.

the next L/M combination can start. Additionally, very short
runtimes should be avoided, as the communication overhead
between the central server and workers would become the
dominating factor.
Some templates tend to have short runtimes as their pre-

computed pattern of antennas cannot generate rulers, and
thus computation is aborted early. The long-running tem-
plates have patterns that are likely to create a ruler. Thus,
the algorithm has to take many recursions before it can deter-
mine if a new ruler is found. One way to get around the
problem of extremely different runtimes is to make sure that
a template that usually requires more time is started very
early. This way, there is a lower chance of having a job
started at the very end, requiring much more time than the
others to finish. Nevertheless, experimental results show that
the runtime difference is too much for larger L to be fully
compensated by this approach. Further, this will not solve
the communication overhead problem.

B. DYNAMIC BREAK LEVEL
Another approach is to treat each template individually. By
default, a template is initialized with a certain L, while M
is calculated from (1). Once the calculation is finished, the
template is handled according to the flow graph in Fig. 4. If
the template yielded one or more rulers, all other templates
for higher M of the same L are canceled. Those other tem-
plates would likely find rulers as well, but they cannot be
perfect. Next, if the computation duration was larger than the
target split time, the template is split into its sub-templates.
This limits the execution time for subsequent runs of the
algorithm. Lastly, the template(s) are added to the database.
If any template for the same L with smaller M yielded a
ruler, the value of L is incremented by one, and the value
of M is reset to Mmin as computed via Eq. (1). If no other
template found a ruler for a smaller M, the value of L is
kept, and M is incremented instead.

Note that the fixed break level has the advantage that a
complete set of deeply split rulers can be generated for any
L/M combination right away. On the other hand, the dynamic

FIGURE 4. Flow graph for a finished template. The operations are executed by the
housekeeper at regular intervals for all finished templates.

break level depends on other combinations to be calculated
beforehand, which generated the split templates.
The approach of dynamic break levels solves the issue of

largely different runtimes as the templates are split dynam-
ically, whenever needed. If a template’s runtime was more
than a predefined threshold, it will be split into its sub-
templates for the next iteration that will run in parallel and
thus require less time each. This way, all the templates should
require roughly the same time, regardless of L and M. Fig. 3
shows the distribution of the required time for each tem-
plate using dynamic break levels with L = 113 and M = 19
(dashed line). While the fixed break level leads to a job
requiring more than 40 minutes, this value was reduced to
less than 7 minutes using dynamic break levels. The overall
heterogeneity of the runtimes is reduced significantly. The
split time, i.e., the maximum time before a template is split,
is set to 17 s, which yields roughly the same number of
templates as for the fixed break level.
Although templates were split when their execution time

exceeded 17 s, most templates required more than this time,
see Fig. 3. L = 113 requires M = 19 antennas, while the
templates were split after computing L = 112 which requires
M = 18 antennas. The increase of M increases the complex-
ity and, therefore, the execution time by more than an order
of magnitude. This also shows the limitation of this approach:
The templates can only be split based on past computations.
Whenever the number of antennas needs to be increased, the
templates’ runtimes will exceed the target time.

82 VOLUME 2, 2021

V. JOB DISTRIBUTION SYSTEM
To manage and distribute the jobs to be computed, a cen-
tral server is required. A worker (client), running on each
participating computer, registers itself with the server and
requests jobs to run. Each job is then passed to the calcula-
tion programs, implementing either the Blanton&McClellan
or the Robison algorithm, depending on the configuration of
the server. The worker reports the results back to the server
once they are finished. The server can inform the work-
ers to cancel a specific job if it turns out that the results
of that job are not required anymore. Both the server and
the worker are written in Python 3. The server is separated
into two programs. One provides the API for the work-
ers, e.g., distributing the jobs or receiving the results and
saving them in a MySQL database. It also generates a dash-
board website, which gives an overview of the current state,
the number of rulers already found for a combination of
L/M, and other information. For this purpose it utilizes the
Bottle.py1 HTTP-Server. The second part of the server is
called the housekeeper. It takes care of the database, e.g.,
splitting templates with high runtimes, calculating the new
L and M, or marking duplicate (mirrored) results.

The software supports a special mode called stop on result
where all templates are canceled/skipped, and L is increased
once a single result from any template with a lower or the
same M is known. At that point, the required number of
marks for this L and at least one perfect ruler is known. The
algorithm then continues with the next L. This way, it is
possible to find the L/M combinations for all perfect rulers
much faster. As a downside, this yields only one ruler for
each combination, while the total number of existing rulers
remains unknown.
To find all rulers for every known combination of L and

M, the software also supports the known M mode. In this
mode, L is incremented every time the template is finished,
and M is set to a previously known value. The template may
also be split if the runtime of the previous L was too long.
We used both modes one after the other. First, we searched

for the correct L/M with the stop on result mode and reached
L = 244/M = 28. Then, we used the known M mode to find
all rulers up to L = 213/M = 25. We could not reach
L = 244, as this computation is much harder because all
templates need to be checked, and the computation cannot
skip any templates.

VI. RESULTS
We performed three different types of searches. Each pro-
duced an own set of data. The results are shown in Table 1.
Additionally, Table 2 shows some examples for optimal
rulers. For these calculations, a cluster of ~60 computers was
used, providing a few hundred threads. The cluster invested
a total single-core CPU time of approximately 443 years
for all three searches together. The cluster was largely het-
erogeneous, consisting of large compute servers and smaller

1. https://bottlepy.org/

FIGURE 5. Redundancy in dependence of M for optimal rulers compared to LRLA
results from [7]–[11]. The wrong value for M = 22 from [7] has been corrected.

FIGURE 6. Simulated directivity of an arbitrary MRLA with L = 232 and M = 26. The
antenna elements are isotropic and spaced in multiples of λ/2.

desktop computers. Most machines were equipped with an
Intel Core i7-6700K CPU running at 4GHz. Our implemen-
tation with dynamic break level and all results are available
online [5].
First, we used the Blanton&McClellan algorithm in our

parallel implementation and calculated the results up to L =
190, in order to verify the results shown in [3] and [4],
which were found by the Robison algorithm. As the rulers
themselves were not published in both cases, we can only
verify that all combinations of L, M, R, and S are correct. R
is the redundancy as defined below, and S is the number of
rulers found. Next, we used the Robison algorithm to find
the correct M for all ruler lengths up to L = 244 with the
stop on result mode (see above). Finally, we searched all
rulers up to L = 213 with the known M mode. The results
are also included in Table 1.
The redundancy R in Table 2 and Fig. 5 is defined in [7]:

R = M(M − 1)

2L
. (2)

The ruler configuration examples given in Table 2 are
represented by differences in the positions of the marks.
An exponent defines how many times this distance occurs
in sequence. E.g., {12, 42, 3} would expand to the ruler
xxxoooxoooxoox, where x represents a mark and o
represents the absence of a mark.
Previous results from [2] suggested that if a perfect ruler

of length L was found with M marks, every perfect ruler

VOLUME 2, 2021 83

SCHWARTAU et al.: LARGE MRLAs: SYSTEMATIC SEARCH OF PERFECT AND OPTIMAL RULERS EXPLOITING PARALLEL PROCESSING

TABLE 1. Overview of perfect ruler results.

TABLE 2. Example rulers for every M up to 28 and the highest L found (optimal rulers,

except for M = 27, 28).

with larger L needs at least the same number of marks.
Robison [4] already found what he calls gaps. There are
certain values for L, which do not produce a perfect ruler

with M marks, although the combination of L − 1 and M
does. For example, L = 137 requires M = 20, while L = 136
does not give any results with M = 20. What was not shown
in [4], is the fact that L = 136 can have a perfect ruler when
increasing M to 21. So there are actually no gaps; it just
requires a higher M.
There are a lot of algorithms describing approaches to

calculate LRLAs like in [7]–[11]. Our results show, that
many of the found LRLAs are actually MRLAs. For example,
the two LRLAs for L = 123 and M = 19 found in [7] are not
just MRLAs, they are the only ones for this combination. It
also shows that the search presented in [10] and [8] are far
superior compared to the others. Fig. 5 gives an overview
of the currently calculated LRLAs and our MRLAs. We
calculated up to L = 244, which results in Mmin = 23.
To prove that the results between M = 23 and M = 26
are optimal rulers, we checked that there are no results for
higher L values. L has to be calculated as high, such that
the corresponding Mmin is higher than the current M.
As mentioned before, the required CPU time rises expo-

nentially with L, but not monotonically, as shown in Fig. 1.
It also shows that the Robison algorithm is about ten times
faster than the Blanton&McClellan algorithm. The calcula-
tions for Fig. 1 were carried out on a single CPU to avoid
runtime differences due to different hardware.
Fig. 6 shows a simulated radiation pattern calculated from

the MRLA with L = 232 and M = 26. The simulation uses
isotropic antennas spaced in multiples of λ/2, which is typical

84 VOLUME 2, 2021

for such arrays. The size of the array is thus depending on
the center frequency of the system according to λ = c/f . At
2.4 GHz the resulting array would have an aperture (length)
of 14.5 m. The achieved half power beam width is 0.32 ◦.

VII. CONCLUSION
It turned out that an MRLA has a mathematically identical
counterpart called perfect ruler. As there is no known mathe-
matical rule to design MRLAs or perfect rulers, finding them
can only be achieved by an exhaustive search, implement-
ing a counterproof showing there is no ruler requiring fewer
marks for the same length. This search has a high compu-
tational effort. We used two search algorithms and extended
them to work with any start template. This allowed us to dis-
tribute the problem over dozens of computers and set the start
templates to limit the execution time of the individual com-
putations. The gained results and our software is published
online and may be used by anyone. The results confirmed
previous work and extended it to larger rulers. Additionally,
the results show that current LRLA search algorithms can
calculate arrays that are at least close to MRLAs or even
provide the same results.

REFERENCES
[1] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans.

Antennas Propag., vol. 16, no. 2, pp. 172–175, Mar. 1968.

[2] K. A. Blanton and J. H. McClellan, “New search algorithm for min-
imum redundancy linear arrays,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 1991, pp. 1361–1364.

[3] P. Luschny. (2018). Perfect and Optimal Rulers. [Online]. Available:
http://www.luschny.de/math/rulers/prulers.html

[4] A. D. Robison. (2014). Parallel Computation of Sparse Rulers.
[Online]. Available: https://software.intel.com/en-us/articles/parallel-
computation-of-sparse-rulers

[5] F. Schwartau, Y. Schröder, L. Wolf, and J. Schoebel. (2020).
MRLA Search Results and Source Code. [Online]. Available:
http://dx.doi.org/10.21227/cd4b-nb07

[6] P. Luschny. (2018). Perfect and Optimal Rulers. [Online]. Available:
http://www.luschny.de/math/rulers/introe.html

[7] J. Dong, Q. Li, R. Jin, Y. Zhu, Q. Huang, and L. Gui, “A method
for seeking low-redundancy large linear arrays in aperture synthesis
microwave radiometers,” IEEE Trans. Antennas Propagat., vol. 58,
no. 6, pp. 1913–1921, Jun. 2010.

[8] C.-H. Jang, F. Hu, F. He, J. Li, and D. Zhu, “Low-redundancy large
linear arrays synthesis for aperture synthesis radiometers using particle
swarm optimization,” IEEE Trans. Antennas Propagat., vol. 64, no. 6,
pp. 2179–2188, Jun. 2016.

[9] A. Camps, A. Cardama, and D. Infantes, “Synthesis of large low-
redundancy linear arrays,” IEEE Trans. Antennas Propagat., vol. 49,
no. 12, pp. 1881–1883, Dec. 2001.

[10] E. Pegg, Jr. (2020). Sparse Rulers—Wolfram Demonstrations Project.
[Online]. Available: https://blog.wolfram.com/2020/02/12/hitting-
all-the-marks-exploring-new-bounds-for-sparse-rulers-and-a-wolfram-
language-proof/

[11] C. S. Ruf, “Numerical annealing of low-redundancy linear arrays,”
IEEE Trans. Antennas Propag., vol. 41, no. 1, pp. 85–90, Jan. 1993.

VOLUME 2, 2021 85

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

