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ABSTRACT This article deals with microwave subsurface imaging achieved by inverting the linearized
scattering operator. The focus is on the determination of a strategy for spatially sampling the data which
allows to reduce the spatial data measurements and at the same time to keep the same achievable
performance in the reconstructions. To this end, the measurement points are determined in order to
approximate the point-spread function corresponding to the ideal continuous case (i.e., the case in which
the data space is not sampled at all). For the sake of simplicity, the study is developed for a 2D scalar
configuration. Also, the standard mono-static measurement arrangement is considered. However, in order
to mimic a subsurface imaging scenario, a two-layered background medium is addressed. The main idea
is to introduce suitable variable transformations which allow to express the point-spread functions as a
Fourier-like transformation; this then provides insights for devising the sampling scheme. It is shown the
resulting measurement spatial positions must be non-uniformly arranged across the measurement domain
and their number can be much lower than the one provided by some commonly used literature sampling
criteria.

INDEX TERMS Radar imaging, sampling, migration inversion.

I. INTRODUCTION

INTHIS article we address subsurface microwave imaging
under a linearized scattering framework. Accordingly, the

problem amounts to inverting the linearized scattering inte-
gral operator pertinent to a two-layered background medium.
Moreover, data are assumed to be collected according to a
monostatic strategy [1].
Regardless of the inversion method one may choose

to employ, the scattering problem must be first translated
into its finite dimensional counterpart through a suitable
discretization process. This step is crucial and must be
designed in order to trade-off different aspects of the
problem. On the one hand, to keep the number of mea-
surements as low as possible favourably affects the data
acquisition time and the computational and the storage
burden. On the other hand, the number and the way

data are sampled impacts on the eigenspectrum of the
matrix model arising from discretization and hence on the
achievable performance and the resilience against noise and
uncertainties [2].
The discretization step can be seen as a sensor’ selection

problem [3] which can be roughly stated as follows: given an
N×M matrix model to be inverted, where N is the number
of measurements and M the number of unknowns, select
L < N so that the achievable performance is optimized.
The selection problem presents a combinatorial complexity
and hence cannot be in practice addressed by an exhaus-
tive exploration across all the possible measurement point
arrangements. To overcome this drawback a number of meth-
ods based on convex optimization, greedy methods and
heuristics have been developed in order to optimize the
selection against some error metrics, such as the confidence
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ellipsoid, the mean square error [4], the frame potential [5],
etc. Reference [6], [7], which are all linked to the singular
values of the problem and try to shape their behavior [8].
All these methods are general purpose but require to run
iterative procedures. Also, they usually require to a priori
fix the number of measurements to be retained. The latter
matter is of course connected to the Number of Degrees of
Freedom (NDF) of the scattered field which can be used
to estimate L [9], [10] and can also provide insights for
sampling the field data [11].
The selection of the measurement points can be more

specifically addressed by employing the properties of the
kernel function of the scattering integral operator to be
inverted and the related bandwidth arguments. In this case,
no iterative procedures are required and the number of mea-
surements to be employed in the reconstructions is the
sampling points that fall within the measurement aperture
and the adopted frequency band. For example, plane-wave
expansion of the Green function, once evanescent waves are
neglected, leads to a λ/4 spatial sampling step, with λ being
the wavelength. Stationary phase arguments are employed
in [12]–[15]; the resulting spatial sampling step depends on
the extent of the spatial region to be imaged and is generally
greater than λ/4 so to save many data points.

In view of the mentioned advantages provided by the sam-
pling approach, this is the strategy adopted in this article to
find the sensors’ locations. In particular, we progress with
respect to the results reported in [12], [13] by refining the
theory upon which sampling is based. More in detail, the
new sampling scheme is also able to take into account the
spatially varying filtering introduced by the propagator in
near-field configurations, the latter being usual in subsur-
face prospecting. In particular, it is shown that the sampling
points must be non-uniformly arranged across the measure-
ment domain according to a law that also depends on the
dielectric permittivity of the half-space which models the
subsurface scattering scenario. What is more, the number of
the required points is generally lower than the one returned
by previous approaches [12], [13].
The inverse problem related to subsurface imaging is

ill-posed, or equivalently said, the singular values of the
scattering operators tend to zero as their index increases [2].
Therefore, during the reconstruction some regularization
scheme must be employed. Considering a finite number
of measurements implicitly regularizes the inverse problem;
indeed, the sensors’ selection methods choose the measure-
ments so as to shape the singular values in order to optimize
some error metric. However, when L is large, it may happen
that low singular values are retained and regularization is
still necessary. Indeed, here is where the question of setting
the number of measurements according to the NDF enters.
This question is less important if the inverse operator is
approximated by the adjoint one (i.e., adjoint based inver-
sion). This is the case for migration inversion schemes which
basically obtain the reconstructions by back-propagating the
scattered field data according to the background Green

FIGURE 1. Geometry of the problem.

function [16], [17]. Indeed, by adjoint inversion, even a large
L does not represent a serious issue since stability against
the noise is implicitly obtained by the filtering imposed by
the singular values themselves. However, the resulting recon-
structions do not optimize some error metrics, for example
they do not minimize the mean square error [17].
A common way to estimate the achievable performance,

even by adjoint methods, is in terms of the point-spread
function, which of course is related to the resolution that
can be obtained in the reconstructions. Accordingly, in this
manuscript, we derive the data sampling scheme in order to
approximate the point-spread function corresponding to the
continuous case, that is the ideal case in which data are not
assumed to be sampled.
The rest of the paper is organized as follows. In Section II,

the mathematical formulation of the problem is introduced.
Section III is devoted to deriving the sampling scheme which
is then checked by numerical examples in Section IV. In this
section we consider the effect of the half-space dielectric
permittivity as well. In particular, the case of free-space is
also included and used as benchmark to better highlight
the role of the subsurface scenario. Finally, conclusions are
briefly reported. The paper also contains an appendix section
where some mathematically details are reported.

II. PROBLEM DESCRIPTION
The study is developed for the 2D scalar scattering problem
sketched in Fig. 1 with invariance assumed along the y-axis.
The background medium consists of two homogeneous non-
magnetic (i.e., the magnetic permeability is everywhere the
same as that of the free-space μ0) half-spaces separated by a
planar interface at z = 0. In particular, the upper half-space
is assumed to be the free-space and its dielectric permit-
tivity is denoted by εu = ε0; the lower one schematizes
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the subsurface region and is electromagnetically denser with
εl > ε0.

The unknown targets are embedded in the lower half-
space and assumed to reside within the rectangular region
SD = [zmin, zmax] × [−Xs,Xs] (i.e., the scatterer domain).
The incident field is radiated by an y-polarized line source
of unitary amplitude at different frequencies within the
wavenumber band k0 ∈ � = [k0min, k0max], k0 being the
wavenumber in free-space. A monostatic configuration is
considered, so that the scattered field is collected at the same
position as the source while the latter can assume differ-
ent positions across the measurement aperture. In particular,
the measurement domain is assumed to be the segment
OD = [−X0,X0] of the x-axis located at the height zo ≥ 0.
The case z = 0 corresponds to collecting the scattered field
data just over the separation interface.
Under the Born approximation [18], the buried targets and

the scattered field collected over � = OD × � are linked
through the following linear scattering operator

A : χ ∈ L2(SD) → E ∈ L2(�) (1)

where L2(SD) and L2(�) represent sets of square integrable
functions supported over SD and �, respectively, χ(r) =
(εs(r) − εl)/εl is the so-called contrast function, with εs
being the dielectric permittivity of the unknown scatterer.
The explicit form of the operator A is given as

E(xo, k0) = jk2
l ωμ0

∫
SD
G2(xo, r, k0)χ(r)dr (2)

where ω is the angular frequency, n = √
εl/εu the refractive

index and kl = nk0 the wavenumber in the lower half-space
medium. The function G(·) is the Green function pertinent
to the two-layered background medium and appears squared
because of the considered mono-static configuration.
It is assumed that |zmin| > λl, λl being the wavelength in

the lower half-space. Accordingly, the Green function in (2)
can be approximated as [19]

G(xo, r, k0) ≈ √
h(xo, r, k0)e

−jk0φ(xo,r) (3)

where
√
h(xo, r, k0) takes into account the relevant amplitude

factors, and φ(xo, r) = (Ru+nRl) is the phase term that takes
into account the propagation path. In particular, r = (x, y)
and ro = (xo, zo) are the target and the field points, and Ru =√

(xo − xm(xo, r))2 + z2o and Rl = √
(xm(xo, r) − x)2 + z2 are

the paths travelled by the waves in the upper and lower half-
spaces, respectively, Finally, xm(xo, r) is the refraction point
at the half-spaces’ interface which is given by the Snell’s
law as

xo − xm√
(xo − xm)2 + z2o

= n
xm − x√

(xm − x)2 + z2
(4)

When the observation point is just located at the sep-
aration interface then xm = xo and zo = 0 so that
the phase term simplifies as φ(xo, r) = nRl, with Rl =√
xo − x)2 + z2. Moreover, for the case of a homoge-

neous free-space background medium, the functions in (3)

become
√
h(xo, r, k0) = −j

√
j

8πk0R
and φ(xo, r) = R, with

R(xo, x, z) = √
(xo − x)2 + (zo − z)2.

In order to perform the reconstruction, equation (2) should
be inverted for the χ function. In this article we choose
to achieve inversion through the adjoint of the scattering
operator, that is

χ̂ (r) =
(
A†E

)
(r) (5)

with

A† : E ∈ L2(�) → χ ∈ L2(SD) (6)

being the adjoint of the scattering operator. This is a very
common inversion strategy found in literature where it is
addressed as migration, backpropagation, time-reversal and
so on [20]–[22].
The point-spread function obtained by such an inversion

scheme is the so-called model resolution kernel [23] which
links the actual unknown to the reconstructed one, that is

χ̂(r) =
∫
SD
dr′psf

(
r, r′

)
χ

(
r′
)

(7)

with

psf
(
r, r′

) =
∫

�

dk0dxoA
(
xo, r, r′, k0

)

× e2jk0[φ(xo,r)−φ(xo,r′)] (8)

where A(xo, r, r′, k0) = [k2
l ωμ0]2h∗(xo, r, k0)h(xo, r′, k0),

with ∗ denoting conjugation operator.
The previous formulation applies to the ideal cases where

data are continuously collected over the frequency band
and the measurement domain. Of course, practical scenar-
ios require to discretize the problem by properly sampling
the spatial and the frequency variables xo and k0. This aim
is pursued in the next section where a sampling scheme is
devised in order to approximate the point-spread function.

III. SAMPLING SCHEME
In this article we are mainly concerned with the deter-
mination of the spatial sampling. Therefore, the sampling
of the wavenumber band is achieved by employing stan-
dard arguments based on the range extent of the area
to be imaged, that is 
k0 = π/n(zmax − zmin); denote
as k0l = k0min + (l − 1)
k0 the corresponding sampled
frequencies. Hence, (8) is approximated as

psf
(
r, r′

) ≈ 
k0

∑
l

∫
OD

dxoA
(
xo, r, r′, k0l

)

× e2jk0l[φ(xo,r)−φ(xo,r′)] (9)

Now, in order to devise the spatial sampling we focus
on the spatial integral appearing in the point-spread function
expression (9), which for convenience is rewritten as follows

psfk0l

(
r, r′

) =
∫
OD

dxoA
(
xo, r, r′, k0l

)

× e2jk0l[φ(xo,r)−φ(xo,r′)] (10)
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where the frequency k0l is considered as a parameter. In order
to establish a sampling approximation that works for each
frequency and for each positions within the investigation
domain, in (10), we set k0 = k0max and z = zmin. In particular,
z = zmin is the most critical case for discrete point-spread
function approximation since the scattered field arising from
targets that are closer to the observation domain has a larger
spatial bandwidth and hence requires more samples for a
good point-spread function approximation. Accordingly, (10)
is particularized as

psfk0max(x, x
′) =

∫
OD

dxoA
(
xo, x, x

′, k0max
)

× e2jk0max[φ(xo,x)−φ(xo,x′)] (11)

where the dependence on z has been understood since it was
set at the constant value zmin.
The next step is to rewrite psfk0max so that Fourier based

arguments can be used to gain insights on the spatial sam-
pling. To this end, we basically adapt the developments and
tools presented in [24], [25] to the problem at hand.
More in detail, we first introduce a transformation η : x ∈

[−Xs,Xs] → η(x) ∈ [η(−Xs), η(Xs)] that basically stretches
the interval [−Xs,Xs] into [η(−Xs), η(Xs)]. At this juncture,
such a function does not need to be defined yet and its
usefulness will be clear later on. What is important is that
η(x) is monotonic with dη

dx > 0.
Then, by employing the first order integral form of the

Taylor remainder, the phase term is rewritten as

2k0max
[
φ(xo, x) − φ

(
xo, x

′]) = k0max(η2 − η1)w(η2, η1, xo)

(12)

with

w(η2, η1, xo) = 2
∫ 1

0

∂φ(xo, x(η))

∂η

∣∣∣∣
η=η1+ν(η2−η1)

dν (13)

and η2 = η(x) and η1 = η(x′). The function w(η2, η1, xo)
is continuous and monotonic decreasing with respect to xo
(hence invertible) ∀η2, η1 (see Appendix for some details).
This allows to replace the integration in xo with the
integration in w. In particular, on denoting

�w(η2, η1,X0) = w(η2, η1,−X0) − w(η2, η1,X0)

2
(14)

and

wavg(η2, η1,X0) = w(η2, η1,−X0) + w(η2, η1,X0)

2
(15)

and by setting w = w̄+wavg, expression (10) can be rewritten
as

psfk0max(η2, η1) = ejk0maxwavg[η2−η1] ×
∫ �w

−�w
K(w̄, η2, η1, k0max)

× ejk0maxw̄[η2−η1]dw̄ (16)

where K(w̄, η2, η1, k0max) = −A(xo(w̄), η2, η1, k0max)
dxo
dw̄ .

Note that, for the sake of notation simplicity, we omitted
to explicitly report the dependence on η2 and η1 of �w and

wavg. However, this dependence is indicated in (14) and (15)
and highlights the spatially varying behaviour of the point-
spread function which, as opposed to far-field configurations,
is a characteristic feature of near-field configurations.
At this point, in order to simplify the matter a little bit,

the transformation η(x) is conveniently set as [24]

η(x) = φ(−X0, x) − φ(X0, x) (17)

This way, the point-spread function bandwidth �w is made
constant and equal to 1 (see Appendix for the details) so
that the spatially varying behaviour mentioned above results
now encoded into the non-linear link between the variables
x and η, which clearly implies a spatially varying resolution.
Also, by noting that the leading order contribution in (16)
occurs for η2 −η1 = 0 [26], the amplitude factor is approxi-
mated as K(w̄, η2, η1, k0) ≈ K(w̄, η1, η1, k0) = K(w̄, η1, k0).
Accordingly, (16) becomes

psfk0max(η2, η1) 
 ejk0maxwavg[η2−η1]
∫ 1

−1
K(w̄, η1, k0max)

× ejk0maxw̄[η2−η1]dw̄ (18)

Now, (18) resembles a Fourier transformation that can
be approximated by assuming to collect data over a set of
spatial positions so that w̄ results uniformly sampled. Say

w̄ = 
w the corresponding sampling step and w̄m the
corresponding sampling points, then

psfk0max(η2, η1) 
 ejk0maxwavg[η2−η1]
w

×
∑
m

K
(
w̄m, η′, k0max

)
ejk0maxw̄m[η2−η1]

(19)

Hence, standard Fourier arguments, as the one invoked
for avoiding grating lobes in array antenna theory, suggest
that the sampling step for w̄ should be


w(η2, η1) ≤ 2π

k0max(η(Xs) − η(−Xs)) = π

k0maxη(Xs)
. (20)

where the outer right hand side term arises because
η(−Xs) = −η(Xs). More specifically, by highlighting w̄m
in terms of the corresponding sampling points in xo, i.e.,
xom, (20) rewrites as

w(η2, η1, xom+1) − w(η2, η1, xom) ≤ π

k0maxη(Xs)
(21)

with xom+1 < xom. Eq. (21) can be used to determine the
spatial sample positions. In particular, (21) dictates that the
sampling points change with η2 and η1 and are in general
non-symmetric with respect to the centre of the measure-
ment aperture. Since it is natural to look for a symmetric
measurement point deployment, we consider η2 = −η1.
Accordingly, (21) particularizes as

w(η,−η, xom+1) − w(η,−η, xom) = π

k0maxη(Xs)
(22)
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FIGURE 2. Comparison between Nw and Nc
X0

as a function of |zmin | for two different values of X0 and n and zo = 0, Xs = 1.5m and λmax = 1m.

with η = η2 = −η1, from which eventually the equation for
finding the sampling points xom arises as (see Appendix)

φ(xom,−x) − φ(xom, x) = mπη(x)

k0maxη(Xs)
(23)

Eq. (23) still entails that the sampling points are dependent
on x (i.e., η(x)). More in detail, through a direct solution
of (23) for xom, it can be shown that the lower x the more
the sampling points tend to accumulate around xo = 0.
Therefore, in order to have a better coverage of the mea-
surement line, in (23) we set x = Xs (the largest value
allowed by the transverse size of SD). Therefore, eventually
the sampling point equation that we use is the following

φ(xom,−Xs) − φ(xom,Xs) = mπ

αOSk0max
(24)

where αOS is an oversampling factor. At this juncture we
have to point out that, when the sampling points xom are
obtained from (24), eq. (21) is not necessarily verified for all
η2, η1. In general, an oversampling factor could be required.
A slight oversampling is also required in order to avoid the
point-spread function side-lobes start to increase for some
target positions which are close to the transverse bound-
aries (i.e., x = ±Xs). This is particularly true for small
relative bandwidths. For large bandwidths, having set the
sampling step in correspondence of kmax, guarantees a certain
degree of oversampling for most frequencies. In the sequel
we considered a slight oversampling factor of αOS = 1.1.
Accordingly, the required number of spatial samples (to be
deployed non-uniformly, though symmetrically) turns to be

Nw = 2�w


w
= 2k0maxαOSη(Xs)

π

that, for homogeneous scenario, becomes

Nw = 4αOS

λmin
[R(−X0,Xs, zmin) − R(X0,Xs, zmin)] (25)

and for the half-space case

Nw = 4αOS

λmin
[Ru(−X0,Xs, zmin) − Ru(X0,Xs, zmin)

+ nRl(−X0,Xs, zmin) − nRl(X0,Xs, zmin)]

(26)

It is interesting to compare Nw with some commonly used
literature results. To this end, we consider the estimation
reported in [12], [13]. In particular, those studies refer to
a free-space configuration. Accordingly, the comparison is
pursued only for the case of homogeneous scenario or for
zo = 0 (where, for the sampling point estimation, the back-
ground medium can be assumed as being homogeneous and
equal to the lower half-space). In [12], [13] two sampling
criteria were suggested. One, which besides the configura-
tion parameters (frequency, SD size, its distance from the
observation line), also depends on the measurement aperture;
and another one from which, after signal compression, such
a dependence is removed. The second one requires fewer
spatial samples, that is

Ncxo = 8X0Xs
λminzmin

(27)

and hence it has been selected as benchmark for our sam-
pling scheme (which in any case does not require signal
compression). It can be easily shown that, for fixed X0 and
Xs, Nw ≤ Ncxo with equality tending to be reached when
|zo−zmin| increases; for fixed |zo−zmin| and increasing X0, Nw

VOLUME 2, 2021 7



MAISTO et al.: SENSOR ARRANGEMENT IN MONOSTATIC SUBSURFACE RADAR IMAGING

FIGURE 3. Schematic representation of the geometrical parameters of the considered scattering configurations and sampling point locations for k0min = 2πm−1,
k0max = 5.337πm−1 Xs = 1.5m and X0 = 2m. Figure a) refers to scattering scenario 1 with zo = 0, zmin = −1.2m, zmax = −3.2m; the corresponding number of samples are
Nw = 29 and Nc

xo = 54. Figures b) and c) refer to scattering scenario 2, the dashed line is where the interface is located and n = 3. In particular in b) zo = 0.7m, zmin = −0.5m,
zmax = −2.5m and the sampling points are Nw = 32, whereas for c) zo = 0.5m, zmin = −0.7m, zmax = −2.7m and Nw = 33. Finally, figure d) refers to scattering scenario 3 with
n = 3, zo = 0, zmin = −1.2m, zmax = −3.2m, Nw = 85 and Nc

xo = 160. Note that in this case the interface has not been highlighted since it coincides with the measurement line.

grows more slowly than Ncxo . This comparison is graphically
illustrated in Fig. 2. It is clearly seen that Ncxo is generally
much larger than Nw and that this is enhanced as n increases.
If T is the time required for collecting data at a fixed spatial
position, then the time saved by the new sampling scheme
grows with the linear law (NcXO − Nw)T . Hence, it can be
concluded that the proposed spatial sampling scheme proves
to be more effective for near-zone configurations.

IV. NUMERICAL ANALYSIS
In this section we present a few numerical examples in order
to check the sampling scheme introduced above. In particu-
lar, eq. (7) shows that the reconstruction is basically a filtered
version of the actual unknown, with the filtering dictated by
the point-spread features. As a consequence, in order to
compare the reconstructions returned by the two sampling
schemes, we focus on the comparison between the ‘exact’
point-spread function psf and the one obtained by employ-
ing the sampling scheme in (24), psfe. In particular, in order
to obtain the two point-spread functions, we consider the
reconstruction of a point-like target whose contrast function
is defined as χ = δ(r − r’), with r’ ∈ SD. More in detail,
by exact point-spread function psf we mean (8) numerically
implemented by employing a very fine and uniform grid of

points within the data space �; psfe takes into account the
proposed sampling strategy and is still obtained by imple-
menting (8) but the spatial points are non-uniformly deployed
according to (24). In particular, according to the formula-
tion introduced in Section III, in this case the point-spread
function is computed as

psfe
(
r, r′

) =
∑
m,l

ejk0lwavg[η(r)−η(r′)]
w
k0

× K
(
w̄m, η

(
r′
)
, k0l

)
ejk0lw̄m[η(r)−η(r′)] (28)

It must be noted that, while in Section III η was high-
lighted as a function of only x because z was set at zmin
(i.e., the most critical case for sampling), here, η turns out
to be dependent on x and z.

As a final remark before addressing the numerical exam-
ples, we advise the reader that in the following, the
approximate Green function introduced in Section II is not
exploited. Indeed, the Green function is computed by using
its plane-wave expansion (Weyl expansion) [18].
The numerical examples deals basically with three scatter-

ing scenarios: the free-space case (scenario 1), the half-space
case with measurements taken away from the separation
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FIGURE 4. Illustrating the normalized point-spread function amplitudes for a point target located at (x′, z′) = (1, −1.5)m. Each panel refers to the analogous reported in Fig. 3
and shows the point-spread function and its cut-views. The ‘exact’ point-spread functions are denoted by blue solid lines whereas the ones obtained using the proposed
sampling scheme by dotted red lines.

interface (scenario 2) and the half-space case with measure-
ments just collected over the separation interface (scenario
3). In particular, the free-space case is addressed in order
to have a reference for the subsurface configuration. Also,
it allows an easy vis a vis comparison for the estima-
tion of the required number of samples reported in [13],
which has been indeed worked out for such a case. Of
course, Ncxo can be generalized to the half-space case. In
particular, for the case the scattered field is observed just
over the separation interface, the number of samples is
computed by using the wavenumber of the lower half-
space as the scattering phenomenon were taking place in
a homogeneous medium. However, for the case of the
stand off configuration we did not pursue the generalization
of Ncxo .
We start by showing in Fig. 3 the number and the spa-

tial measurement deployment across the measurement line
[−X0,X0] = [−2, 2]m for the scattering scenarios whose
details are provided in the caption. Note that in all the

cases, the sizes of OD and SD as well as |zo − zmin| are
kept constant. This allows to highlight the role played by
the background medium. More in detail, panels b) and c)
both address the case of scenario 2 but with a different stand
off distance from the interface, whereas panel a) and d) refer
to scattering scenarios 1 and 3, respectively. From such a
figure the expected non-uniform sensor arrangement can be
appreciated. Moreover, Nw results much lower than Ncxo (see
panels a) and d) for which the comparison has been pur-
sued). Also, it can be noted that the required spatial samples
increase while moving from case a) to case d). This indeed
could be expected since this is somehow like passing from
free-space to a denser medium corresponding to the lower
half-space. In Fig. 4 the normalized point-spread functions
corresponding to the cases depicted in Fig. 3 are shown.
As can be seen, while moving towards the case relative
to scenario 3, the main beam of the point-spread function
tends to become narrower. This entails an improvement of
the achievable resolution. This is a very well known fact
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FIGURE 5. Schematic representation of the geometrical parameters and sampling point locations for the scattering scenario 2 for k0min = 2πm−1, k0max = 5.337πm−1

Xs = 1.5m and X0 = 2m but n = 6. In particular, in a) zo = 0.7m, zmin = −0.5m, zmax = −2.5m and the sampling points are Nw = 32, whereas for b) zo = 0.5m, zmin = −0.7m,
zmax = −2.7m and Nw = 33. The dashed line is where the interface is located.

FIGURE 6. Illustrating the normalized point-spread function amplitudes for a point target located at (x′, z′) = (1, −1.5)m. Each panel refers to the analogous reported in Fig. 5
and shows the point-spread function and its cut-views. The ‘exact’ point-spread functions are denoted by blue solid lines whereas the ones obtained using the proposed
sampling scheme by dotted red lines.

and it is consistent with the higher number of samples that
are required. A detailed estimation of how the half-space
configuration parameters affect resolution has been reported
in [27]. Here, what matters is that the exact point-spread
function and the one returned by (28) practically overlap.
This is quantified by the correlation coefficient

C
(
r′
) =

∫
SD psfe

(
r, r′

)
psf ∗

(
r, r′

)
dr

‖psfe‖(r′)‖psf‖(r′) (29)

where ‖psfe‖(r′) and ‖psf‖(r′) are the norms computed with
respect to r and hence remains function of r′. Such a param-
eter is reported in each sub-panel of Fig. 3 and, as can be
seen, it is always very high (i.e., > 0.9). This means that the
estimated number of samples works very well for estimating
the point spread function. What is more, this holds true even
though Nw is lower than Ncxo .

In order to inspect how the dielectric permittivity affects
the sampling points and the resolution we now change the
refractive index. In particular, for the case of scenario 3 it
is readily seen from eqs. (25) and (26) that the number of
samples grows linearly with n. Therefore, we just consider
scenario 2. In particular, the same two examples as before are
re-run with a refractive index n = 6 and the corresponding
results are shown in Figs. 5 and 6(c). In particular, the first
figure shows the sampling point locations whereas Fig. 6(c)
report the point-spread functions. As can be seen from 5, by
increasing n, Nw and the distribution of the sampling points
do not change significantly (as opposed to case relative to
scenario 3). On contrary, as expected, the number of required
frequencies increases from 20 to 40. As far as the resolution
is concerned, while transverse resolution remains practi-
cally unchanged, resolution along the range improves (see
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FIGURE 7. Normalized reconstruction of a 30 × 30cm square scatterer with
dielectric permittivity εs = 11ε0 and centered in (0, −2)m. The scattering scenario is
the same as the panel d) in Fig. 3. In panel a), the reconstruction is obtained by
collecting Nc

xo = 160 measurements arranged uniformly (as suggested in [13]), in b)
Nw = 80 measurements are collected as shown in the panel d) of Fig. 3. The red lines
border the actual scatterer shape.

Fig. 6(c)). This example suggests that for stand-off distance
the lower half-space permittivity mainly affects range resolu-
tion and the number of required frequencies. Of course, this
effect quantitatively depends on the geometrical parameters
of the configuration (i.e., OD, SD and |zo − zin|). However,
again, the proposed sampling scheme works very well in esti-
mating the point-spread function. Accordingly, the proposed
theoretical framework allows to foresee what is going on
when the configuration parameters have been set.
Finally, we end this section by comparing the proposed

strategy with the one suggested in [13] for a reconstruction
example. In particular, scattering scenario 3, as in Fig. 3,
is considered whereas the scatterer is a dielectric square
30 × 30cm2 in size, with dielectric permittivity εs = 11ε0
and centered at (0,−2)m. Fig. 7 shows the corresponding
reconstruction results: the left panel refers to the reconstruc-
tion obtained by collecting the field as suggested in [13], the
right one to the proposed non-uniform sampling scheme. As
expected, due to the adopted linear inversion, only a quali-
tative reconstruction of the target is obtained. In fact, only
the scatterer’s “discontinuities” along the z axes are clearly
distinguishable due to the “high-pass” filtering introduced
by the reconstruction algorithm, which is typical of a reflec-
tion mode configuration. However, what matters here is that,
in spite of the reduction of the measurement number (from
Ncxo = 160 to Nw = 80), the proposed sampling strategy
allows to obtain a reconstruction which is practically the
same as the ones returned by using the denser sampling
in [13].

V. CONCLUSION
In this contribution, we have addressed the problem of devis-
ing a sampling scheme in order to collect the data to be
used in a migration-like reconstruction scheme for subsurface
prospecting. To this end, thanks to suitable variable transfor-
mations, the corresponding point-spread function has been
recast as a Fourier-like transformation which then suggested

the spatial sampling strategy. Instead, frequencies have been
sampled according to a standard criterion.
It has been shown that the resulting spatial sampling points

are to be non-uniformly arranged across the measurement
aperture. Also, the required number of spatial samples is
usually lower than the one dictated by commonly used lit-
erature results. This being a remarkable advantage since it
allows to use fewer sensors for real aperture radar systems
or to reduce the time for data collection in synthetic aper-
ture radar systems. A few numerical examples confirmed the
goodness of the proposed sampling scheme. Also, the role of
the dielectric permittivity of the lower half-space schematiz-
ing the subsurface scattering scenario has been highlighted.
As expected, compared to the homogeneous free-space case,
more spatial points are needed and they must be placed in
general on different positions (with respect to the free-space
case), according to the medium’s dielectric permittivity.
In view of the obtained promising results, extension of

the theory to more involved cases is currently under devel-
opment. In particular, these further developments concern
the full 3D case as well as background media consisting of
more layers [28], [29].
Related to the sampling there is, of course, the ques-

tion of the achievable resolution. Indeed, configurations that
allow for better resolution (i.e., point-spread function having
narrower main beam) require a denser sampling. This has
been clearly verified in the reported numerical examples.
Nonetheless, we did not thoroughly addressed this point in
the paper since the focus was on the sampling scheme. A
detailed study of the achievable resolution and related closed-
form estimation for the half-space configuration was reported
in [27].

APPENDIX
This appendix is devoted to providing some mathematical
details that for the sake of readability have been omitted in
the previous sections.
Derivation of eq. 12: Consider the phase term in (11),

that is

2
[
φ(xo, x) − φ

(
xo, x

′)] = 2[φ(xo, x(η2)) − φ(xo, x(η1))]

(30)

Then, by using the Fundamental Theorem of Calculus
(FTC), (30) can be rewritten as

2
[
φ(xo, x) − φ

(
xo, x

′)] = 2
∫ 1

0

∂

∂ν
φ(xo, x(η))|η=η1+ν(η2−η1)dν

(31)

which is basically the integral form of the first order Taylor
series remainder. Now, eqs. (12) and (13) simply arise on
applying the chain rule for differentiation, that is

2
[
φ(xo, x) − φ

(
xo, x

′)]

= 2(η2 − η1) ×
∫ 1

0

∂

∂η
φ(xo, x(η))|η=η1+ν(η2−η1)dν

(32)
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Invertibility of w with respect to xo: This can be eas-
ily shown by direct calculation. To this end, we need first
to express ∂

∂η
φ(xo, x(η)). By recalling that φ(xo, x(η)) =

Ru[xo, xm(xo, x(η))]+nRl[xm(xo, x(η)), x)], it is obtained that

∂

∂η
φ(xo, x(η)) = ∂Ru

∂xm

∂xm
∂x

dx

dη
+ n

[
∂Rl
∂xm

∂xm
∂x

dx

dη
+ ∂Rl

∂x

dx

dη

]

(33)

which can be more conveniently rewritten as

∂

∂η
φ(xo, x(η)) = −

(
x̂ · R̂u + nx̂ · R̂l

)∂xm
∂x

dx

dη
+ nx̂ · R̂l dx

dη
(34)

where x̂, R̂u and R̂l are unitary direction vectors (see Fig. 1)
and · denotes the scalar product. In particular, for xo < x,
R̂u = (− sin θu, cos θu) and R̂l = (sin θl,− cos θl), whereas
for xo > x, R̂u = (sin θu, cos θu) and R̂l = (− sin θl,− cos θl).
Hence, because of the Snell’s law sin θu = n sin θl, (34)
simplifies as

∂

∂η
φ(xo, x(η)) = nx̂ · R̂l dx

dη
(35)

Now, in order to show that w(η2, η1, xo) is monotoni-
cally decreasing it is sufficient to check that w(η2, η1, xo2)−
w(η2, η1, xo1) < 0 when xo2 > xo1 and ∀η1, η2. According
to (35) and the definition (12), such a difference can be
expressed as

2n
∫ 1

0
x̂ ·

(
R̂l(xo2, x(η)) − R̂l(xo1, x(η))

dx

dη
|η=η1+ν(η2−η1)dν

(36)

It can be easily verified that when xo2 > xo1, x̂ ·
(R̂l(xo2, x(η)) − R̂l(xo1, x(η)) is a real negative function of
η. Hence, by recalling that (by construction) dx/dη > 0,
then the integral (36) is always negative. This proves the
monotonic behaviour of w with respect to xo.
Invertibility of η with respect to x: With reference to

the transformation introduced in (17), to show that η(x)
is an increasing monotonic function we have to prove that
dη/dx > 0. More in detail,

dη

dx
(x) = ∂φ(−X0, x)

∂x
− ∂φ(X0, x)

∂x
(37)

which, upon employing (35), can be rewritten as

dη

dx
(x) = n

(
x̂ · R̂l(−X0, x) − x̂ · R̂l(X0, x)

)
(38)

from which, by employing the same geometrical arguments
exploited right above, one can conclude that dη/dx > 0.
Expression of the bandwidth �w: According to (14), the

bandwidth can be expressed as

�w(η2, η1,X0)

=
∫ 1

0

∂

∂η
[φ(−X0, x(η)) − φ(X0, x(η))]|η=η1+ν(η2−η1)dν

(39)

with
∂

∂η
[φ(−X0, x(η)) − φ(X0, x(η))]

= ∂

∂x
[φ(−X0, x(η)) − φ(X0, x(η))]

dx

dη
= 1 ∀η (40)

where η(x) defined in (17) has been employed.
Accordingly, (39) says that �w = 1 ∀η2, η1.
Derivation of the sample point equation (22): We start by

considering eq. (22), which here is rewritten for convenience

w(η(x), η(−x), xom+1) − w(η(x), η(−x), xom)

= π

k0maxη(Xs)
(41)

Now, by exploiting eq. (12), eq. (41) is rewritten as

φ(xom+1,−x) − φ(xom+1, x) − φ(xom,−x) + φ(xom, x)]

= πη(x)

k0maxη(Xs)
(42)

where it has been considered that η(−x) = −η(x).
Hence, (23) follows.
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