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ABSTRACT We present a simple, stable, and spectrally-accurate quasi-analytical method for studying the
reflection, transmission, and radiation of EM waves in the presence of single-layer or multilayer material,
plasma, or metamaterial slabs that are inhomogeneous along the normal to the slab interfaces. Our approach
formulates the problem as a linear Volterra integral equation of the second kind, discretized using an
entire-domain Nyström method with a high-order Gauss-type quadrature. The proposed algorithms ensure
mathematically guaranteed spectral convergence, handle electrically thin to electrically thick slabs, and can
accommodate discontinuous inhomogeneity profiles. Application examples include one-dimensional band-
gap structures, field enhancement in inhomogeneous metamaterial slabs with zero-crossings in permittivity,
and dipole-driven plasma antennas.

INDEX TERMS Dipole antennas, electromagnetic (EM) bandgap materials, EM scattering by nonhomo-
geneous media, EM scattering by plasma media, nonhomogeneous media, Volterra integral equations,
Nyström method.

I. INTRODUCTION

INHOMOGENEOUS planar layers have diverse applica-
tions in integrated optics, photonics, plasma, and mi-

crowave engineering [1]–[7]. Graded-index slabs, for in-
stance, are used for optical waveguide design and the cre-
ation of optical components. Slabs with periodically modu-
lated refractive indices exhibit frequency-selective behaviour,
serving as simple one-dimensional EM band-gap structures.
Inhomogeneous plasma layers are employed in radio com-
munications, radio astronomy, and stealth applications due to
their adaptable reflection, absorption, and transmission char-
acteristics. Other significant applications include geophysical
exploration, biomedical imaging, and optical tomography.

Analyzing wave propagation in infinite inhomogeneous
slabs almost always relies on approximation methods be-
cause exact solutions are seldom available for arbitrary
material parameter distributions. The most common ap-
proach is the staircase approximation (SA), which models
the inhomogeneous slab as a stack of thin homogeneous
layers and then applies matrix propagation methods [8]–
[11]. While SA is simple, it requires a thin stratification
for accurate results and exhibits low convergence. Another

widely used approach involves converting the generalized
Helmholtz equation into a Riccati (nonlinear) differential
equation for the local reflection coefficient and solving it as
an initial value problem using the Runge-Kutta method [12],
[13]. Several alternative approaches, such as series-expansion
[14]–[16], integral equations [17]–[19], and others [20]–[25],
are also available.

A distinct quasi-analytical method, which combines differ-
ential and integral equation techniques and exhibits spectral
convergence, has recently been used to investigate EM scat-
tering from inhomogeneous isotropic or anisotropic cylin-
drical [26], [27] or spherical [28] objects. In this study, we
extend the application of this method to address scattering by
single and multilayered slabs made of materials, plasma, or
metamaterials exhibiting inhomogeneity along the normal to
the slab interfaces. We consider two types of incident fields:
plane waves and spherical waves radiated by elementary
dipoles. Inhomogeneity profiles can be smooth or piecewise
smooth spatial functions. Our primary goal is a simple,
stable, and spectrally accurate algorithm that can provide
machine-precision results. We will approach this in two
steps.
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We start by reformulating Maxwell’s equations in the
region occupied by the slab as a first-order system of ordi-
nary differential equations (ODEs) with a spatially-varying
coefficient matrix (Sections II-IV). When addressing the as-
sociated initial value problem (IVP), a variety of efficient and
reliable numerical schemes are available, typically divided
into linear multistep and Runge-Kutta methods. However,
selecting the optimal scheme can be a complex task due
to the trade-offs between stability, convergence properties,
computational complexity, and memory usage. Additionally,
these methods are limited by their algebraic order of accu-
racy and tend to degrade in performance when faced with
discontinuous inhomogeneity profiles.

Recognizing these limitations, we depart from the conven-
tional numerical schemes commonly associated with IVPs in
the second step. Instead, we transform the system of ODEs
into an equivalent linear Volterra integral equation (VIE) of
the second kind. The transformation is followed (Section V)
by discretization of the resulting VIE using a specialized
high-order entire-domain Nyström method, coupled with an
appropriate Gauss-type quadrature.

The proposed algorithms ensure mathematically guaran-
teed spectral convergence, constrained only by the smooth-
ness of the underlying inhomogeneity profiles. When dealing
with analytic spatial functions, the convergence is exponen-
tial. This stands in contrast to widely used general-purpose
methods that exhibit an algebraic convergence rate of O(hp);
in such methods, the convergence rate is determined by
the order p regardless of the regularity of the underlying
function. Additionally, our algorithms provide simple closed-
form expressions for every entry of the Nyström matrix,
apply across a wide range of slab thicknesses, and can
efficiently handle profile discontinuities. As a result, we
attain machine-precision results at low computational and
implementation costs.

Throughout this work, we assume a time-harmonic depen-
dence of exp(iωt), which we omit for brevity.

II. SCATTERING OF E-POLARIZED PLANE WAVES
Fig. 1 shows an inhomogeneous slab, region 1, with thick-
ness d and continuous constitutive parameters ε1(z) =
ε0εr1(z) and µ1(z) = µ0µr1(z). Sectionally continuous
parameters will be addressed in Section VI. The slab extends
infinitely in the x and y directions, surrounded by homoge-
neous regions 0 (z > z1 = 0) and 2 (z < z0 = −d) with con-
stitutive parameters (ε0, µ0) and (ε2, µ2), respectively. Both
(ε1, µ1) in region 1 and (ε2, µ2) in region 2 can be complex
to account for potential losses. The primary excitation is
an incident E-polarized plane EM wave propagating in the
direction of k̄inc = −kxx̂− kz ẑ, where

kx = k0 sinψ, kz = k0 cosψ. (1)

In (1), k0 = ω
√
ε0µ0, and ψ is the incidence angle measured

from the z-axis, increasing clockwise. The electric field, with

an amplitude of E0, is given by

Ēinc(x, z) = ŷE0e
i(kxx+kzz).

 

z  

x  

1 1( ), ( )z zε µ  

0
dz = −  

1
0z =  

2 2
,ε µ  

0 0,ε µ  

d  

inc
k  

ψ  

FIGURE 1. Geometry of an inhomogeneous slab.

Remark 1. In each region, the field components vary as
f(z)eikxx, with the phase factor exp(ikxx) dictated by the
incident wave. □

In regions 0 and 2, the nonzero component of the total
electric field is expressed as

Ey0(x, z) = Eincy (x, z) + E0R e
i(kxx−kzz)

Ey2(x, z) = E0T e
i(kxx+kz2z),

(2a)

(2b)

where R and T are the reflection and transmission coeffi-
cients, respectively. In (2b), kz2 =

√
k22 − k2x with k2 =

ω
√
ε2µ2. For a lossy medium in region 2, k22 − k2x falls

within the lower half-plane of the complex plane. To ensure
a physically valid solution, we choose the branch of the
square root defining kz2 in such a way that Re(kz2) ≥ 0 and
Im(kz2) ≤ 0. The components of the associated magnetic
field are obtained from

Hx =
1

iωµ

∂Ey
∂z

, Hz = − 1

iωµ

∂Ey
∂x

(3)

with µ = µ0 or µ = µ2.
For the field in region 1, with components F (x, z) =

eikxxF̃ (z) (F = Ey1, Hx1, Hz1), from Maxwell’s equations
we obtain an algebraic equation:

Hz1(z) =
kx

ωµ1(z)
Ey1(z) (4)

and an ODE:
dū(z)

dz
= A1(z)ū(z), (5)

where the column-vector variable u(z) is defined as

ū(z) = [Ẽy1(z), H̃x1(z)]
⊺ (6)

and the matrix A1(z) is given by

A1(z) = A1(z; ε1, µ1) =

[
0 iωµ1(z)

k2x−k
2
1(z)

iωµ1(z)
0

]
(7)

with k21(z) = ω2ε1(z)µ1(z).
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A. SOLUTION OUTLINE
The general solution of (5) is:

ū(z) =W1(z, z0)ū(z0), z0 ≤ z ≤ z1, (8)

where W1(z, z0) is the transition matrix associated with the
system matrix A1(z). The transition matrix is the solution
of the matrix-valued IVP:

dW1(z, z0)

dz
= A1(z)W1(z, z0), W1(z0, z0) = I2, (9)

where I2 denotes the 2× 2 identity matrix.
The highly accurate computation of W1(z, z0), carried

out in Section V, is an integral part of our method. After
obtaining W1(z1, z0), we enforce continuity on ū(z) at
z = z0 and z = z1, leading to:

E0Te
ikz2z0

[
1
kz2
ωµ2

]
= ū(z0), Λ · h̄ =

[
1
kz
ωµ0

]
, (10)

where

h̄ =

[
Re−i2kzz1

Te−i(kzz1−kz2z0)

]
, (11)

and Λ is the 2× 2 block matrix:

Λ =

[(
−1
kz
ωµ0

) ∣∣∣ W1(z1, z0)

(
1
kz2
ωµ2

)]
. (12)

Once we obtain the unknowns R, T, and ū(z0) from (10),
we can evaluate the field everywhere using (2)-(4) and (8).

B. DNG SLABS
Our analysis extends to arbitrary isotropic inhomogeneous
materials or metamaterial slabs. Assuming all media are
lossless, we apply the second equation in (10) to a double-
positive (DPS) slab with ε1(z) > 0 and µ1(z) > 0. We
then apply the same equation to its double-negative (DNG)
counterpart with −ε1(z) and −µ1(z). This yields:

ΛDPS · h̄DPS = ΛDNG · h̄DNG = (ΛDNG · h̄DNG)∗ ≡
[

1
kz
ωµ0

]
,

where the star (*) denotes the complex conjugate. Clearly,
A∗

1(z;−ε1,−µ1) = A1(z; ε1, µ1), implying (WDNG
1 )∗ =

WDPS
1 so that (ΛDNG)∗ = ΛDPS. Thus, h̄DPS = (h̄DNG)∗ by

(10). With z1 = 0 and z0 = −d, as in Fig. 1, we obtain:

(R, T )DNG = (R∗, e2ikz2dT ∗)DPS. (13)

Hence, the transition from a DPS slab to its DNG counterpart
does not alter the reflectance (|R|2) and transmittance (|T |2).

III. SCATTERING OF H-POLARIZED PLANE WAVES
In this section, we investigate the dual problem to the
previous one. The incident plane wave is now H-polarized,
and its magnetic field is given by

H̄inc(x, z) = ŷH0e
i(kxx+kzz).

In regions 0 and 2, the nonzero component of the total
magnetic field is expressed as

Hy0(x, z) = Hinc
y (x, z) +H0R e

i(kxx−kzz), (14)

Hy2(x, z) = H0T e
i(kxx+kz2z), (15)

where R and T are the reflection and transmission co-
efficients, respectively. The components of the associated
electric field can be obtained from

Ex = − 1

iωε

∂Hy

∂z
, Ez =

1

iωε

∂Hy

∂x
(16)

with ε = ε0 or ε2.
For the field in region 1, with components F (x, z) =

eikxxF̃ (z) (F = Hy1, Ex1, Ez1), from Maxwell equations
we obtain an algebraic equation:

Ez1(z) =
kx

ωε1(z)
Hy1(z) (17)

and an ODE:
dῡ(z)

dz
= A2(z)ῡ(z), (18)

where the column-vector variable υ(z) is defined as

ῡ(z) =
[
H̃y1(z),−Ẽx1(z)

]⊺
. (19)

The matrix A2(z) is the dual of A1(z) and is given by

A2(z) =

[
0 iωε1(z)

k2x−k
2
1(z)

iωε1(z)
0

]
. (20)

The general solution of (18) is:

ῡ(z) =W2(z, z0)ῡ(z0), z0 ≤ z ≤ z1, (21)

where W2(z, z0) is the solution of the matrix-valued IVP:
dW2(z, z0)

dz
= A2(z)W2(z, z0), W2(z0, z0) = I2. (22)

The transition matrix W2 can be computed as in Section V.
Enforcing continuity on the vector variable ῡ(z) at z = z0

and z = z1, yields:

H0Te
ikz2z0

[
1
kz2
ωε2

]
= ῡ(z0),[(

−1
kz
ωµ0

) ∣∣∣ W2(z1, z0)

(
1
kz2
ωµ2

)]
· h̄ =

[
1
kz
ωε0

]
(23)

with h̄ defined in (11). Equation (23) is the dual of (10).
Once we obtain the unknowns R, T, and ῡ(z0) from (23),
we can evaluate the field everywhere using (14)-(17) and
(21).

Note: Property (13) is applicable in this case as well.

IV. ELECTRIC AND MAGNETIC DIPOLE RADIATION
In Sections IV.A and IV.B, we deal with arbitrarily oriented
electric and magnetic dipoles

p̄ = pxx̂+ py ŷ + pz ẑ, m̄ = mxx̂+my ŷ +mz ẑ,

located at r̄′(x′, y′, z′) over a bilateral [Fig. 2(a)] or grounded
[Fig. 2(b)] slab. Section IV.C focuses on dipoles embedded in
either of these slabs, whereas Section IV.D concerns dipoles
radiating in the presence of DNG slabs. For simplicity, we
assume that region 2 (z < z0) in the structure of Fig.
2(a) has the properties of vacuum (ε0, µ0). However, the
analysis readily extends to include the general case where a
homogeneous medium (ε2, µ2) occupies that region.
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FIGURE 2. (a) Bilateral inhomogeneous slab excited by an arbitrarily
oriented elementary electric or magnetic dipole. (b) Grounded
inhomogeneous slab.

A. DIPOLES ON TOP OF AN INHOMOGENEOUS SLAB
We start with the problem of electric and magnetic dipoles
radiating on top of the inhomogeneous slab of Fig. 2(a).

1) Field Representation Inside the Slab
In the 2D Fourier-transform domain defined by the pair:

f(x, y, z) =

+∞∫∫
−∞

e−i(kxx+kyy)f̃(kx, ky; z) dkx dky,

f̃(kx, ky; z) =
1

(2π)2

+∞∫∫
−∞

ei(kxx+kyy)f(x, y, z) dx dy,

(24a)

(24b)

Maxwell’s equations for region 1 split into two algebraic
equations:

kxẼy1 − kyẼx1 = ωµ1H̃z1, −kxH̃y1 + kyH̃x1 = ωε1Ẽz1,

together with four first-order scalar differential equations
having the components of the column-vector variable

ū1(z) =
[
Ẽx1(z), Ẽy1(z), H̃x1(z), H̃y1(z)

]⊺
(25)

as the unknowns. Here, for simplicity, we use f̃q1(z) as
shorthand for f̃q1(kx, ky; z), where f can be either E or
H , and q can be either x or y. Let

L =

[
kx ky
ky −kx

]
, w̄1(z) =

[
L 0
0 L

]
ū1(z). (26)

After suitable manipulation, we obtain the following ODE:
dw̄1(z)

dz
= A3(z)w̄1(z), (27)

where

A3(z) = i


0 0 0

−γ2
1(z)

ωε1(z)

0 0 −ωµ1(z) 0

0
γ2
1(z)

ωµ1(z)
0 0

ωε1(z) 0 0 0

 (28)

with
γ21(z) = k2x + k2y − ω2ε1(z)µ1(z). (29)

The general solution of (27) is:

w̄1(z) =W3(z, z0)w̄1(z0), z0 ≤ z ≤ z1, (30)

where W3(z, z0), the transition matrix of the linear differen-
tial system (27), satisfies the IVP:
dW3(z, z0)

dz
= A3(z)W3(z, z0), W3(z0, z0) = I4 (31)

with I4 denoting the 4× 4 identity matrix. The computation
of W3(z, z0) is detailed in Section V. The term w̄1(z0)
encountered in (30) is elaborated in Section IV.A.4.

Once w̄1(z) is determined, we can evaluate ū1(z) using
(26):

ū1(z) =
1

λ2

[
L 0
0 L

]
w̄1(z), λ2 = k2x + k2y. (32)

2) Field Representation in Region 2
In the homogeneous source-free region 2, the field can be
described using scalar electric (πe2) and magnetic (πm2)
Hertz potentials [29]:

Ē2 = ∇×∇× (ŷπe2)− iωµ0∇× (ŷπm2), (33)

H̄2 = ∇×∇× (ŷπm2) + iωε0∇× (ŷπe2). (34)

Both πe2 and πm2 satisfy homogeneous Helmholtz equa-
tions: (

∇2 + k20
)
πq2(x, y, z) = 0, q = e,m (35)

with Fourier-transform counterparts:( d2

dz2
+ k20 − λ2

)
π̃q2(kx, ky; z) = 0. (36)

Using, for simplicity of notation, the shorthand π̃q2(z) for
π̃q2(kx, ky; z), we obtain:

π̃e2(z) = a2e
γ(z−z0), π̃m2(z) = b2e

γ(z−z0). (37)

Here, a2 = a2(kx, ky) and b2 = b2(kx, ky) are coefficients
to be determined, and

γ =
(
λ2 − k20

) 1
2 , −π

2
< arg(γ) ≤ π

2
. (38)

Selecting the branch of the double-valued function γ as in
(38), ensures the validity of the radiation condition at z →
−∞.

We introduce the vector variable w̄2(z), defined analo-
gously to w̄1(z) but with the index 1 replaced by 2 in both
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(25) and (26). Combining (33) and (34) with (37), we express
w̄2(z) as:

w̄2(z) = C(γ)

[
a2
b2

]
eγ(z−z0), (39)

where

C(γ) = λ2
[
−iγ 0 0 ωε0
0 −ωµ0 −iγ 0

]⊺
. (40)

Here, the superscript T denotes the transpose operation.

3) Field Representation in Region 0
The field in region 0 can be written as a sum of two
components:{

Ē0(r̄)
H̄0(r̄)

}
=

{
Ēd(r̄)
H̄d(r̄)

}
+

{
Ēs(r̄)
H̄s(r̄)

}
. (41)

The first component, denoted by the subscript d, represents
the primary field that would be generated by the dipole
source radiating in an unbounded space with parameters
(ε0, µ0). We introduce the vector variable w̄d(z), defined
similarly to w1(z) but with the index 1 replaced by d in
both (25) and (26). It can be shown [29] that

w̄d(z) = g(kx, ky, z)c̄d, (42)

where

g(kx, ky, z) =
1

8π2
eikxx

′+ikyy
′−γ|z−z′| (43)

and c̄d is defined as follows:
• For the electric dipole case:

c̄d =


iγkx
ωε0

iγky
ωε0

sλ2

ωε0

− ik20ky
ωε0γ

ik20kx
ωε0γ

0

−kys kxs 0

kxs kys − iλ2

γ


pxpy
pz

 . (44)

Here, s = sign(z − z′).
• For the magnetic dipole case:

c̄d =


kys −kxs 0

−kxs −kys iλ2

γ
iγkx
ωµ0

iγky
ωµ0

sλ2

ωµ0

− ik20ky
ωµ0γ

ik20kx
ωµ0γ

0


mx

my

mz

 . (45)

The second component, denoted by the subscript s, repre-
sents the secondary field, also known as the scattered field.
It satisfies the source-free Maxwell equations and can be
expressed in terms of two scalar Hertz potentials, πse0 and
πsm0, using formulas similar to (33) and (34). The Fourier
transforms π̃se0 and π̃sm0 are given by

π̃se0(z) = a0e
−γ(z−z1), π̃sm0(z) = b0e

−γ(z−z1), (46)
where a0 = a0(kx, ky) and b0 = b0(kx, ky) are unknown
coefficients to be determined. Following a similar analysis
as in Section IV.A.2, we arrive at

w̄s(z) = C(−γ)
[
a0
b0

]
e−γ(z−z1), (47)

where w̄s(z) is defined in a similar manner to w1(z), with
the index 1 replaced by s in both (25) and (26).

4) Finalizing the Solution
To determine the yet-unknown coefficients {a0, b0, a2, b2}
and subsequently find the Fourier transforms of the fields, we
impose continuity on both the electric and magnetic fields’
x and y components—equivalent to enforcing continuity on
w̄(z)—at z = z0 and z = z1. Using (30), we obtain a 4× 4
system of linear algebraic equations:

W3(z1, z0)C(γ)

[
a2
b2

]
− C(−γ)

[
a0
b0

]
= w̄d(z1). (48)

Once these coefficients are determined, we can evaluate
w̄s(z) and w̄2(z) using (47) and (39), respectively. Sub-
sequently, we can obtain w̄1(z) by using (30) with the
condition w̄1(z0) = w̄2(z0). The field can then be computed
everywhere by applying the inverse Fourier transform (24a).

5) Far Field
In the radiation zone (r ≫ λ0), the generated field consists
of two parts: a space wave component, representing the 3D
radiation field in regions 0 and 2, and a surface wave compo-
nent, characterizing the 2D waveguide modal field across all
three regions. The evaluation of these field components can
be carried out analytically via contour integration techniques
detailed in [30] and [31] (also refer to [32], [33]). Further
details regarding their application to our specific problem
can be found in Appendix A.

Alternatively, the space wave component in regions 0
and 2 can be determined by using the stationary phase
asymptotic integration technique [34]. In spherical coordi-
nates O(r, θ, φ),

Ē(r̄) =
[
θ̂Fθ(θ, φ) + φ̂Fφ(θ, φ)

]e−ik0r
r

,

H̄(r̄) =
∇× Ē(r̄)

Z0
=

1

Z0

[
− θ̂Eφ(r̄) + φ̂Eθ(r̄)

]
, (49)

where Z0 =
√
µ0/ε0. Both Fθ(θ, φ) and Fφ(θ, φ) have

closed-form expressions, which are summarized below.
• In region 0:

Fθ(θ, φ) =F
s
θ (θ, φ)−

ik0
4π

(Z0p̄ · θ̂ + m̄ · φ̂)eik0r̂·r̄
′
,

Fφ(θ, φ) =F
s
φ(θ, φ)−

ik0
4π

(Z0p̄ · φ̂− m̄ · θ̂)eik0r̂·r̄
′
, (50)

where

F sθ (θ, φ) =
2πi

sin θ
w(1)
s (0) = −iπk30a0(κx, κy) sin 2θ,

F sφ(θ, φ) =
−2πi

tan θ
w(2)
s (0) = iπk30Z0b0(κx, κy) sin 2θ. (51)

Here, w(j)
s (z) denotes the jth scalar component of w̄s(z).

• In region 2:
Fθ(θ, φ) = −iπk30a2(κx, κy)eik0z0 cos θ sin 2θ,

Fφ(θ, φ) = iπk30Z0b2(κx, κy)e
ik0z0 cos θ sin 2θ. (52)

In (51) and (52), (κx, κy) is the stationary phase point:

(κx, κy) = (k0 sin θ cosφ, k0 sin θ sinφ). (53)
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B. DIPOLES ON TOP OF A GROUNDED SLAB
Refer to the configuration of Fig. 2(b). Now, region 2 is
perfectly electrically conducting, and as a result, both Ex
and Ey vanish at z = z0. Setting

a2 = kxH̃x(z
+
0 ) + kyH̃y(z

+
0 ),

b2 = kyH̃x(z
+
0 )− kxH̃y(z

+
0 ), (54)

the continuity of w̄(z) at z = z1 leads to the following
equation analogous to (48):

W3(z1, z0)∆

[
a2
b2

]
− C(−γ)

[
a0
b0

]
= w̄d(z1), (55)

with

∆ =

[
0 0 1 0
0 0 0 1

]⊺
. (56)

The expression of the far field in region 0 remains un-
changed.

C. HORIZONTAL DIPOLES EMBEDDED IN A SLAB
Here, we consider electric and magnetic dipoles

p̄ = x̂px + ŷpy, m̄ = x̂mx + ŷmy

positioned at r̄′(x′, y′, z′) inside the bilateral slab of Fig. 2(a)
(z0 < z′ < z1, submerged horizontal dipoles).

Region 0 is now source-free, and its field (Ē0, H̄0) can
be expressed in terms of two scalar potentials, πe0 and πm0,
with Fourier transforms:

π̃e0(z) = a0e
−γ(z−z1), π̃m0(z) = b0e

−γ(z−z1). (57)

Here a0 and b0 are coefficients to be determined. The
corresponding vector variable w̄0(z)—defined as in (26) but
with the index 1 replaced by 0 in both (25) and (26)—is
given by

w̄0(z) = C(−γ)
[
a0
b0

]
e−γ(z−z1). (58)

For the vector variable w̄1(z) associated with the field in
region 1 (z0 ≤ z ≤ z1), we can write

w̄1(z) =

{
W3(z, z0)w̄1(z0), z0 ≤ z < z′

W3(z, z1)w̄1(z1), z′ < z ≤ z1.
(59)

The field representation in region 2 remains unchanged.
By applying the boundary conditions at z = z0, z = z1,

and z = z′, we obtain the linear algebraic system:

W3(z
′, z0)C(γ)

[
a2
b2

]
−W3(z

′, z1)C(−γ)
[
a0
b0

]
= w̄d, (60)

where

w̄d =− 1

4π2
eikxx

′+ikyy
′


−kxmy + kymx

−kymy − kxmx

kxpy − kypx
kypy + kxpx

 . (61)

For dipoles embedded in the grounded slab of Fig. 2(b),
we obtain the following linear algebraic system analogous
to (60):

W3(z
′, z0)∆

[
a2
b2

]
−W3(z

′, z1)C(−γ)
[
a0
b0

]
= w̄d. (62)

The expression of the far field in region 2 (case of bilateral
slab) remains unchanged. For region 0, we use (49) with
Fθ(θ, φ) and Fφ(θ, φ) equated to F sθ (θ, φ) and F sφ(θ, φ) as
defined in (51).

D. DNG SLABS
Our analysis extends to arbitrary isotropic inhomogeneous
layers. Initially, we focus on the structure shown in Fig.
2(a) (dipoles over a bilateral slab). We define h̄DPS =
[a0, b0, a2, b2]

⊺ as the column vector containing the unknown
coefficients encountered in (48) for a DPS slab with ε1(z) >
0 and µ1(z) > 0. We designate the associated transition
matrix as WDPS

3 (z1, z0). In the case of the DNG counterpart
with −ε1(z) and −µ1(z), we use h̄DNG and W̄DNG

3 . By
substituting (42) into (48), we obtain:

ΛDPS · h̄DPS = g(kx, ky, z1)c̄d, (63)

(ΛDNG · h̄DNG)∗ =
(
g(kx, ky, z1)c̄d

)∗
, (64)

where, for q ≡ DPS and for q ≡ DNG, Λq is the 4× 4 block
matrix

Λq =
[
−C(−γ)

∣∣ W q
3 (z1, z0)C(γ)

]
. (65)

The property A∗
3(z;−ε1,−µ1) = A3(z; ε1, µ1) implies:

[WDNG
3 (z1, z0)]

∗ =WDPS
3 (z1, z0).

In the far scattered field, where (kx, ky) = (κx, κy) [see
(53)], γ = ik0 cos θ, leading to [C(±γ)]∗ = C(±γ) and
c̄∗d = c̄d. Consequently, (ΛDNG)∗ = ΛDPS, and (64) can be
restated as:

ΛDPS · (h̄DNG)∗ = [g(κx, κy, z1)]
∗c̄d. (66)

From (63) and (66), using (43), we deduce:

(h̄DNG)∗ = e−2i[κxx
′+κyy

′−k0(z′−z1) cos θ]h̄DPS. (67)

As a result, the relationship between the radiation patterns
F̄DNG(θ, φ) and F̄DPS(θ, φ) of the far scattered field, whose
components are given by (51) and (52), is:

[F̄DNG(θ, φ)]∗ = −e2i[κxx
′+κyy

′−k0(z′−z1) cos θ]F̄DPS(θ, φ).

(68)
For the structure in Fig. 2(b) (dipoles over a grounded

slab), we substitute C(γ) in (65) with ∆ and use the defini-
tions in (54) for a2 and b2. The final results–equations (67)
and (68)–remain unchanged. When a dipole is placed within
any of the slabs in Fig. 2, all the previously discussed results
and equations remain unchanged. However, in (67) and (68),
the phase term −k0(z′ − z1) cos θ should be omitted.

Under the specified conditions, transitioning from a DPS
slab to its corresponding DNG slab does not alter the
magnitude of the radiation pattern of the far scattered field.
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V. NUMERICAL SCHEME FOR COMPUTING THE
TRANSITION MATRICES
In this section, we present an overview of the numerical
scheme used to compute the transition matrices W1, W2,
and W3 needed in equations (8), (12), (21), (23), (30), (48),
(55), (60), and (62). Instead of focusing on a specific case,
we provide a unified approach for solving the IVP

dW (z, z0)

dz
= A(z)W (z, z0),

W (z0, z0) = I,

(69a)

(69b)

where I represents the identity matrix of the same order as
A. In (69a), A can be A1, A2, or A3, and correspondingly,
W represents W1, W2, or W3.

To solve the IVP in (69), we transform it into a second-
kind Volterra integral equation (VIE):

W (z, z0) = I +

∫ z

z0

A(z′)W (z′, z0)dz
′ (70)

by integrating (69a) from z0 to z and using (69b). To simplify
notation, we introduce a change of variable:

z = α+ βt (−1 < t < 1),

{
α
β

}
=
z1 ± z0

2
. (71)

We then define:

F (t) =W (z(t), z0), Φ(τ) = A[z(τ)]. (72)

With these definitions, we express (70) as:

F (t) = I + β

∫ t

−1

Φ(τ)F (τ)dτ. (73)

To discretize the VIE (73), we employ the Legendre-
Gauss-Radau (LGR) quadrature with nodes at the zeros
t1 < t2 < . . . < tN = 1 of PN−1(t) − PN (t), where Pk(t)
is the k-th degree Legendre polynomial. The corresponding
weights are:

wj =
1

N2

1 + tj
[PN−1(tj)]2

, j = 1, . . . , N.

Using the expansion:

Φ(τ)F (τ) ≈
N−1∑
k=0

MkPk(τ) (74)

with coefficients [27]:

Mk = h−1
k

N∑
j=1

wjΦ(tj)F (tj)Pk(tj), hk =
2

2k + 1
, (75)

we derive the discrete counterpart of (73) as:

F (t)− β

N∑
j=1

Φ(tj)F (tj)

N−1∑
k=0

wj
hk
Pk(tj)Ck(t) = I. (76)

Here [27],

Ck(t) =

∫ t

−1

Pk(τ)dτ =

{
1 + t, k = 0
Pk+1(t)−Pk−1(t)

2k+1 , k ≥ 1.
(77)

Subsequently, applying (76) at t = t1, t2, . . . , tN yields a
system of linear algebraic equations:

F (ti)− β

N∑
j=1

wjbijΦ(tj)F (tj) = I, i = 1, . . . , N, (78)

where

bij =

N−1∑
k=0

h−1
k Pk(tj)Ck(ti). (79)

Once we find {F (ti)}Ni=1 from (78), we can evaluate F (t)
at any t in (−1, 1) either using (76) or by interpolation [27]:

F (t) ≈ FN (t) =

N−1∑
k=0

1

hk
Pk(t)

N∑
j=1

wjPk(tj)F (tj). (80)

The property W (z1, z0) = F (1) = F (tN ) allows for
the direct evaluation of W (z1, z0) from (78) without the
need for interpolation, justifying our preference for the LGR
quadrature method in this paper. This property is also shared
by other alternatives, including Gauss-Legendre-Lobatto and
Clenshaw-Curtis rules.

A. ERROR ESTIMATE
Let F (t) be the exact solution of (73) and FN (t) its
approximation obtained from either (76) or (80). A con-
vergence analysis (see [35], [36]) provides the following
error estimate: If F ∈ Cm(−1, 1), then, for a sufficiently
large N , ∥F − FN+1∥ = O(N

1
2−m). When F is analytic

(F ∈ C∞(−1, 1)), ∥F − FN+1∥ = O(ecN ) (c is a con-
stant independent of N ), indicating exponential convergence.
These properties demonstrate that the proposed technique
exhibits the typical convergence behaviour of a spectral
method.

The algorithm’s spectral convergence rate depends on, and
benefits from, the smoothness of the underlying functions,
distinguishing it from general-purpose methods that have
fixed algebraic convergence rates (O(hp)); in such meth-
ods, p remains constant regardless of the regularity of the
function.

Discontinuous (non-smooth) profiles can be addressed in
the way outlined in Section VI.

B. SINGULAR PROFILES
For later reference in Section VII.D, we will discuss simple-
zero and double-zero inhomogeneity profiles, resulting in
corresponding simple-pole and double-pole system matrices

A(z) =
1

(z − zp)m
Ã(z), m = 1 or m = 2. (81)

Here, zp represents the pole, and m is its multiplicity. The
function Ã(z) = (z − zp)

mA(z) is smooth with respect to
z. With z = z(t) as in (71), we define:

F (t) =W (z(t), z0), Φ̃(τ) = Ã[z(τ)].

For Φ̃(τ)F (τ), we use an expansion of the form (74).
Following a procedure similar to the one that led from (69)
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to (78), we derive a system of linear algebraic equations
analogous to (78):

F (ti)− β1−m
N∑
j=1

wjb
(m)
ij Φ̃(tj)F (tj) = I (82)

for i = 1, . . . , N , where

b
(m)
ij =

N−1∑
k=0

h−1
k Pk(tj)C

(m)
k (ti) (83)

with

C
(m)
k (t) =

∫ t

−1

Pk(τ)

(τ − tp)m
dτ, tp =

zp − α

β
(84)

(−1 < tp < 1). When tp is in the interval (−1, t), the integral
in (84) should be interpreted as the Cauchy principal value
for m = 1 and in the Hadamard finite-part sense for m = 2.

Once we find {F (ti)}Ni=1 from (82), we can evaluate F (t)
at any point, for instance, via interpolation based on (80).

1) Evaluation of C(m)
k (t)

We can evaluate C(m)
k (t) using the recurrence relation:

Pk+1(τ) =
1

k + 1
[(2k + 1)τPk(τ)− kPk−1(τ)].

This leads to the following expression:

C
(m)
k+1(t) =

2k + 1

k + 1
[C

(m−1)
k (t) + tpC

(m)
k (t)]

− k

k + 1
C

(m)
k−1(t), m = 1, 2. (85)

The term C
(0)
k (t) that arises in (85) for m = 1 is given by:

C
(0)
k (t) =

∫ t

−1

Pk(τ)dτ ≡ Ck(t) (86)

with Ck(t) defined in (77). The initial values are:

C
(1)
0 (t) = C

(1)
0 (t; tp) = ln

|t− tp|
1 + tp

,

C
(1)
1 (t) = C

(1)
1 (t; tp) = 1 + t+ tpC

(1)
0 (t) (87)

and

C
(2)
0 (t) =

∫ t

−1

dτ

(τ − tp)2
=
∂C

(1)
0 (t; tp)

∂tp
,

C
(2)
1 (t) =

∫ t

−1

τdτ

(τ − tp)2
= C

(1)
0 (t) + tpC

(2)
0 (t). (88)

VI. LAYERED AND ELECTRICALLY THICK SLABS
Our analysis extends to multilayer slabs, such as the one
shown in Fig. 3, with the region (z0, z1) comprising L
inhomogeneous sublayers. The core results—equations (10),
(23), (48), (55), (60), and (62)—remain unchanged. Now,
when W = Wi with i = 1, 2, 3, we compute W (z1, z0) by
cascading the transition matrices of all the layers:

W (z1, z0) =W (z1, ζL−1) . . .W (ζ1, z0). (89)

The matrices W3(z
′, z0) and W3(z

′, z1) appearing in (60)
and (62) are computed similarly.
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FIGURE 3. Multilayer inhomogeneous slab with L inhomogeneous
sublayers.

The convergence of the algorithm relies on the smooth-
ness of {ε(i)(z), µ(i)(z)}Li=1. Exponential convergence is
achieved when these functions are analytic.

A. HANDLING DISCONTINUOUS PROFILES
The latter observation offers a simple and efficient method
for handling single-layer slabs with discontinuous inhomo-
geneous profiles: Modelling the slab as a stack of lay-
ers by introducing artificial interfaces at the locations of
the discontinuities and then applying (89). The algorithm
achieves spectral convergence, with the rate depending on
the smoothness of the parameters within each sublayer.

B. THICK SLABS
While the model in Fig. 3 primarily focuses on multilayer
slabs, it also offers advantages when applied to single,
electrically thick slabs. In the case of a single slab, the
required quadrature order N increases with the electric size
of the slab. As k0d becomes larger, the size of the Nyström
matrix (N2) and, consequently, the computational demands
can become quite high and potentially prohibitive. To address
this challenge, a thick slab can be artificially divided into
a stack of L moderate-thickness layers, and the equation
(89) can be used. This approach optimally maintains N at
a manageable level, significantly enhancing the stability and
computational efficiency of the algorithm. For more details,
refer to Section VII.

VII. NUMERICAL RESULTS AND COMPARISONS
In this section, we present numerical examples to validate the
algorithms and demonstrate the high accuracy and flexibility
of the proposed method. For scattering problems involving
E (H) polarized plane-waves, we assume that (ε2, µ2) =
(ε0, µ0), and use an incident field amplitude of E0 = 1V/m
(H0 = 1A/m), unless stated otherwise.

The computer programs were implemented in Mathemat-
ica 10.4, which employs machine precision arithmetic as
the default setting. It uses double-precision floating-point

8 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Antennas and Propagation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJAP.2023.3347704

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



numbers with approximately 16 decimal digits of precision.
However, Mathematica also supports variable precision arith-
metic, allowing users to specify their desired precision for
numerical calculations. Precision can be set either globally,
using the global variable $PreRead, or on a per-expression
basis using the SetPrecision function. In our work, we
consistently used a precision setting of 17 digits for all
examples, except for Table 1 and Fig. 8.

A. CONVERGENCE ANALYSIS
In Fig. 4, we demonstrate the convergence of the algorithm
by plotting the base-10 logarithm of the relative errors of |R|
and |T | against the quadrature order N . These results pertain
to the E-case with k0d = π and ψ = π/4. We consider six
distinct inhomogeneity profiles, labelled as Case I through
Case VI, each of which has exact analytical solutions avail-
able (see Appendix B). The relative error ϵ for X = |R|
and X = |T | is defined as ϵ = |(X −Xexact)/Xexact|.
The figure illustrates exponential convergence, consistently
achieving an error on the order of 10−16, comparable to the
round-off error, with the appropriate selection of N .

For a deeper insight into the convergence behavior of
the method, Table 1 presents the relative error of |R|
for various quadrature orders N with parameter values
matching those in Fig. 4. These computations use high-
precision arithmetic. Notably, Table 1 reveals a phenomenon
of super-convergence: doubling the value of N yields more
than double the number of correct digits in the computed
reflection coefficient. This observation, combined with the
results from Fig. 4, suggests that the algorithm’s accuracy
is only limited by the employed machine precision. These
findings emphasize the exceptional precision and reliability
of the method.

TABLE 1. Convergence of relative error for |R| in the E-case with k0d = π

and ψ = π/4. Constitutive parameters εr1(z) and µr1(z) in Case I–Case

III are the same as in Fig. 4.

Relative Error
N Case I Case II Case III

8 0.305575 0.00996931 0.00349806
16 1.6634×10−7 3.85954×10−10 2.95448×10−10

32 2.35123×10−32 4.53615×10−31 9.15876×10−29

64 2.07652×10−102 1.03709×10−83 2.26694×10−73

128 1.41282×10−281 8.8053×10−210 3.39653×10−174

In Fig. 4, the slab had a thickness falling within the reso-
nance region. However, the results shown in Fig. 5, with k0d
at 20π, 200π, 500π, emphasize that the algorithm can handle
significantly thicker slabs. By employing the model shown
in Fig. 3 and appropriately selecting the number of artificial
layers L and the quadrature order N , we consistently achieve
an error on the order of 10−16 in all cases, underlying the
reliability of the method for very thick slabs.

In all previous examples, the profiles were continuous
spatial functions. To explore the algorithm’s behavior in the

presence of discontinuous parameters, we now consider a
slab with µr1 = 1 and a relative permittivity given by:

εr1(z) =

{
2 + 2(z + d)2/d2, −d ≤ z ≤ −d

2

5
4d

2/(z + d)2, −d
2 < z < 0.

This profile has a second-kind (jump) discontinuity at z =
−d/2. Following the framework outlined in Section VI, we
use the model of Fig. 3 with L = 2, introducing an artificial
interface at z = ζ1 = −d/2, and use (89). In Fig. 6, we
present the relative errors of |R| and |T | as N increases for
the E-case, with k0d = 5π and ψ = π/4, demonstrating
exponential convergence similar to our previous examples.

In Fig. 7, we show the base-10 logarithm of the rela-
tive error for |F̄ (θ, φ)|, representing the radiation pattern
of an electric dipole in the configuration of Fig. 2(a).
We used the model from Fig. 3 with 10 artificial layers
(L=10). The parameters values are: (θ, φ) = (π/3, π/4),
p̄ = (x̂ +

√
3ŷ)/2, k0d = 2π, and r̄′ = (0, 0, 0). The

relative permittivity and permeability profiles, shown in the
inset, are εr1 = exp(−k0z) and µr1 = exp[k0(d + z)].
The convergence remains exponential, with the relative error
reaching approximately 10−15 when an appropriate value of
N is chosen.

In Fig. 8, we compare the convergence of our algo-
rithm with that of the widely used SA method (staircase
approximation) for the E-case with parameters ψ = π/4,
k0d = 20π, εr1 = 3 + cos[k0(z + d)], and µr1 = 1. In
Fig. 8(a), the relative error is plotted against N2L for our
algorithm and against L for the SA method. Notably, SA
requires nearly L = 106 layers to achieve a relative error of
10−13, whereas our algorithm, with L = 20 and N = 70,
attains an error of 10−100. Moving to Fig. 8(b), we compare
the time required for both methods to reach a set accuracy
level, further highlighting the superiority of our approach.

B. APPLICATION EXAMPLE: PHOTONIC CRYSTAL
As mentioned in the Introduction, inhomogeneous slabs with
periodically modulated refractive indices can function as 1D
EM band-gap structures. In Fig. 9, we explore this possibility
with d = 1m, εr1 = 2 + 15 sin4(30πz) and µr1 = 2.
In Fig. 9(a), we show the first three band gaps in the
transmittance |T |2 for ψ = 0, indicating equal transmittance
for both E and H polarizations. Focusing on the lower
portion of the first band gap, in Figs. 9(b) and 9(c), we
depict transmittance variations with the angle of incidence
in the E and H case, respectively. Notably, within the
range 22 < k0d < 32, transmittance remains consistently
below 10−8 for both polarizations, regardless of the angle
of incidence.

C. SCATTERING ON A PLASMA SLAB
We now consider an inhomogeneous cold collisional plasma
layer with relative permittivity

εr1(z) = 1−
ω2

p(z)

ω2

1− iνen(z)ω

. (90)
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FIGURE 4. log10 of relative error for |R| and |T | versus quadrature order N in the E-case with k0d = π and ψ = π/4. (a) Case I: εr1(z) = e−k0z ,
µr1(z) = ek0(z+d). (b) Case II: εr1(z) = 1 + 2[k0(z + d)]2, µr1 = 1. (c) Case III: εr1(z) = 1 + ek0(z+d), µr1 = 1. (d) Case IV: εr1 = 1,
µr1(z) = ek0(z+d). (e) Case V: εr1(z) = 3 + cos [k0(z + d)], µr1 = 1. (f) Case VI: εr1(z) = 2d/(z + 2d), µr1(z) = (z + 2d)/d.

Here, νen is the frequency of electron-neutral collisions, and
ωp is the angular plasma frequency: ωp =

√
e2ne(z)/ε0m,

where ne, e, and m stand for the plasma density, electron
charge, and electron mass, respectively. For generality, we
assume that both ne and νen vary spatially with distributions:

ne(z) = n0

[
1−

(
1 +

2z

d

)2]2
,

νen(z) = ν0e
−α(1+2 z

d )
2

(91)

shown in Fig. 10. Here, n0 is a constant, and the parameter
α can be set to either α = 0 (in which case νen(z) = ν0
remains constant) or α = 1.

In Fig. 11, we validate the algorithm for α = 0, resulting
in a constant νen(z) set equal to ν0. The figure displays
reflectance (|R|2), transmittance (|T |2), and absorbance (A =
1−|R|2−|T |2) as functions of νen/f with ψ = 0, f = 2.85
GHz, n0 = 1.00755×1017 m−3, and d = 10 cm. Our results
perfectly match those in Fig. 3 of Ref. [18].

In Fig. 12, we analyze reflectance, transmittance, and
absorbance as functions of frequency for two ν0 values (1
GHz and 10 GHz) under both α = 0 and α = 1. We maintain
n0 = 1018 m−3 and d = 10 cm constant. Notably, the curves
associated with νen = ν0 = 1 GHz (corresponding to α = 0)
closely resemble those in Fig. 4 of Ref. [18]. The ability to
control the scattering characteristics by varying ν0 is evident.

Fig. 13 shows the dependence of reflectance and ab-
sorbance on frequency (f ) and slab thickness (d) in the E-

case for ψ = 0, α = 1, and n0 = 1018 m−3. In Figs. 13(a)
and 13(c), ν0 = 1 GHz, while in Figs. 13(b) and 13(d),
ν0 = 10 GHz.

For future reference, Figs. 14 and 15 display the variation
of the reflectance, transmittance, and absorbance with fre-
quency (f ) and incidence angle (ψ) in the E and H cases,
respectively, for ν0 = 1 GHz, n0 = 1018 m−3, d = 10 cm,
and α = 1.

D. FIELD ENHANCEMENT IN EPSILON-CROSSING-ZERO
FILMS
Field enhancement occurs in structures with near-zero pa-
rameters [37]. To illustrate, consider a thin (k0d << 1)
homogeneous slab with permittivity ε0εr, positioned in air
and illuminated by an H-polarized wave. The boundary
conditions Ez(z−1 ) = Ez(z

+
1 )/εr and Ez(z+0 ) = Ez(z

−
0 )/εr

signify an amplification of |Ez| within the slab, inversely
proportional to εr. As εr approaches zero, this phenomenon
intensifies, leading to significant energy confinement.

To investigate the field enhancement effect in inhomoge-
neous slabs with permittivity profiles that exhibit zero cross-
ings, Fig. 16 presents the distribution of |Ez(z)| within a
plasma slab surrounded by air in the H-case, with parameters
ψ = π/4, k0d = π, Z0H0 = 1, n0 = 1018 m−3. The relative
permittivity, defined as:

εr1(z) = 1− ω2
p(z)/ω

2, (92)

corresponds to (90) with ν0 = 0 in (91).
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FIGURE 5. log10 of relative error for |R| and |T | versus N in the E-case
with ψ = π/4, εr1 = 3 + cos[k0(z + d)] and µr1 = 1. (a) k0d = 20π, (b)
k0d = 200π, (c) k0d = 500π.

In Fig. 16(a), we select the circular frequency as ω =
ωp(−d/2) = 5.64146× 1010 rad/s. With this choice, εr1(z)
takes the form εr1(z) = (d + 2z)2

(
d2 − 4dz − 4z2

)
/d4

(inset), exhibiting a double zero at z = −d/2. As a result,
substantial field confinement occurs at the slab’s mid-plane.
The results in Fig. 16(a) were obtained using the algorithm
outlined in Section V.B (case m = 2).

In Fig. 16(b), we have chosen ω = 5.5 × 1010 rad/s. For
this specific choice, εr1(z) has zeros at z/d = −0.4208244
and z/d = −0.5791756 (see inset), leading to twin field
confinement at these two planes. The results in Fig. 16(b)
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N
FIGURE 6. log10 of the relative error for |R| and |T | versus N in the
E-case with a discontinuous permittivity profile (inset) at k0d = 5π and
ψ = π/4.

9 1 2 1 5 1 8 2 1- 1 5
- 1 2
- 9
- 6
- 3

- 1 . 0 - 0 . 5 0 . 0
0

2 0 0
4 0 0
6 0 0

�r 1 ( z )

z / d

�r 1 ( z )

k 0 d = 2 �
L = 1 0

log
10|�

|

N
FIGURE 7. log10 of relative error for |F̄ (θ, φ)| with (θ, φ) = (π/3, π/4),
p̄ = (x̂+

√
3ŷ)/2, k0d = 2π, r̄′ = (0, 0, 0), εr1 = exp(−k0z),

µr1 = exp[k0(d+ z)].

were obtained using the algorithm in Section V.B (case m =
1).

E. DIPOLE RADIATION OVER A METAMATERIAL SLAB
For an electric dipole p̄ = 1ŷ (in Am) positioned at r̄′ =
(0, 0,−d/2) within the bilateral slab of Fig. 2(a), Fig. 17
illustrates the amplitude of the radiation pattern |F̄ (θ, φ)|
in both the E-plane (φ = 0) and the H-plane (φ = π/2).
The parameter values are: k0 = 1, k0d = 2π, εr1(z) =
exp(−k0z), and µr1 = exp[k0(z+d)]. Our computed results
precisely match the corresponding analytical solutions.

For a dipole radiating on top of a grounded homogeneous
DNG slab, in Fig. 18, we show 20 log10 |F̄ (θ, φ)|, (a) in
the E–plane and (b) in the H–plane with p̄ = 10−3x̂ (in
Am), f = 5.943 GHz, d = 60 mm, r̄′ = (0, 0, 0), εr1 =
−1.831, and µr1 = −0.0238. The agreement with Ref. [38]
is excellent.
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accuracy. E-case, ψ = π/4, k0d = 20π, εr1 = 3 + cos[k0(z + d)],
µr1 = 1.

For a µ-near-zero grounded metamaterial slab with εr1 =
1.2 and µr1 = 0.01, Fig. 19 illustrates the power pattern
P (θ) = |F̄ (θ, φ)|2/(2Z0) (in dB) at the principal planes
φ = 0 and φ = π/2. In Fig. 19(a), the pattern is shown for an
electric dipole p̄ = 1ŷ (in Am) located at r̄′ = (0, 0,−d/2),
while in Fig. 19(b) it is shown for a magnetic dipole
m̄ = Z0ŷ (in V m) located at r̄′ = (0, 0,−d). The operating
frequency is f = 9.122 GHz, and the slab thickness is
d = 75 mm. Our results are indistinguishable from those
presented in Ref. [39].
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FIGURE 9. Transmittance (|T |2) vs. k0d for εr1 = 2 + 15 sin4(30πz) and
µr1 = 2. (a) ψ = 0 for both E- and H-polarization. (b) E-case with various
ψ values: 0◦, 30◦, 60◦, 80◦, 89◦. (c) H-case with the same ψ values.

F. SOME FEATURES OF A DIPOLE DRIVEN PLASMA
ANTENNA
At the frequency of f = 8 GHz, in Fig. 20, we show
the radiation patterns |F̄ (θ, φ)| (in dB) in the E-plane
(φ = 0) and H-plane (φ = π/2) for horizontal electric
[p̄ = 0.001x̂ in Am, Figs. 20(a) and 20(b)] and magnetic
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ψ = 0, α = 0, f = 2.85 GHz, d = 10 cm, and n0 = 1.00755 × 1017 m−3.
Solid lines: this work, open and solid circles: Ref. [18].

[m̄ = 1x̂ in V m, Figs. 20(c) and 20(d)] dipoles. The dipoles
are positioned at the upper interface z = 0 of either a
bilateral plasma slab (solid lines) or a grounded plasma slab
(dotted lines); the other parameter values are: r̄′ = (0, 0, 0),
d = 10 cm, α = 1, ν0 = 1 GHz, and n0 = 1018 m−3.
Additionally, Figs. 20(e) and 20(f) display similar radiation
patterns |F̄ (θ, φ)| on the φ = φ0 plane, where φ0 can be
any constant value, corresponding to vertical electric and
magnetic dipoles. Notably, the radiation patterns for the
bilateral slab align perfectly with those of the grounded slab.
This alignment is easily explained by examining the plots in
Figs. 14(b) and 15(b), which reveal that, at f = 8 GHz, the
transmittance is extremely small for any angle of incidence.
This indicates that the interface z = z0 = −d behaves like a
perfectly conducting plane. Based on the results in Fig. 20,
we can conclude that, at the selected operating frequency,
the bilateral plasma slab of Fig. 2(a) serves as a practical
implementation of the grounded plasma slab of Fig. 2(b),
eliminating the need for any conductive elements.

CONCLUSIONS
We have introduced a simple yet highly accurate numerical
scheme for studying scattering of plane and spherical elec-
tromagnetic waves on inhomogeneous materials, plasma, and
metamaterial slabs. While our primary focus has been on
scattering and radiation, the algorithms can also address the
related propagation problems, as well as complex frequency
eigenvalue and eigenvalue lasing problems [40]. Further-
more, these algorithms can be extended to slabs containing
complex inhomogeneous media that can be anisotropic,
chiral, or bi-anisotropic. Such an extension would enable
investigations into intricate EM problems across a broad
spectrum of innovative materials and configurations.

APPENDIX A
FAR SCATTERED FIELD
Here, we provide an overview of the application of the
method of contour integration to our specific problem. We
focus on a vertical electric dipole (p̄ = ẑp) located at
r̄′ = ẑz′ above the slab in Fig. 2(a), and limit our discussion
to the analytical evaluation of the Hertz potential πse0 as
defined in Section IV.A.3. The approach for evaluating the
remaining Hertz potentials and the field within the slab is
similar.

A closer examination of (78) reveals that the transition
matrix W3 follows the structure noted in [11]:

W3 =


w11 0 0 w14

0 w22 w23 0
0 w32 w33 0
w41 0 0 w44

 . (93)

The elements wij are analytic functions of λ2 (or equiva-
lently, of γ2). Once we determine a0 from (48) using (93),
we can derive π̃se0 from (46) as follows:

π̃se0(γ, z) =
ip

8π2ωε0

N (γ)

γD(γ)
e−γ(z+z

′−2z1), (94)

where,
N (γ)
D(γ)

= (ωε0)
2w14 ± γ2w41 − iωε0γ(w11 ∓ w44). (95)

To evaluate the inverse Fourier transform πse0 of π̃se0, we
introduce a change of variables:

kx = λcosβ, ky = λsinβ, x = ρ cosφ, y = ρ sinφ

(0 ≤ β, φ ≤ 2π) and follow the procedure outlined in [31].
When z1 = 0, as in Fig. 2, we obtain:

πse0(r̄) =

+∞∫∫
−∞

e−i(kxx+kyy)π̃se0(γ, z) dkx dky

=
ip

8πωε0

∫ ∞

−∞
H

(2)
0 (λρ)

N (γ)

γD(γ)
e−γ(z+z

′)λdλ. (96)

The original inverse transform path C0 takes the form
shown in Fig. 21, accounting for the presence of the two
branch points ±k0 of the multivalued function γ(λ) and the
surface wave poles of the integrand. These poles correspond
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FIGURE 12. (a) Reflectance, (b) Transmittance, and (c) Absorbance vs. frequency for ψ = 0, n0 = 1018 m−3, d = 10 cm. Solid lines: α = 1, dotted
lines: α = 0.
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FIGURE 13. Reflectance (a, b) and Absorbance (c, d) as a function of frequency and slab thickness in the E-case for ψ = 0, α = 1, and n0 = 1018 m−3.
Subfigures (a, c) are for ν0 = 1 GHz, while subfigures (b, d) are for ν0 = 10 GHz.
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FIGURE 14. E-polarization: (a) Reflectance, (b) Transmittance, and (c) Absorbance vs. frequency and angle of incidence for n0 = 1018 m−3, d = 10 cm,
α = 1, ν0 = 1 GHz.

to the roots λ = ±β1, . . . ,±βn of D[γ(λ)] = 0, representing
the dispersion equation for the supported TMy modes. (Note:
The pole configuration illustrated in Fig. 21 is specific to
the lossless case. When the slab exhibits loss, these poles
shift away from the Re(λ) axis.) The branch cuts of γ
extend to infinity as illustrated in the figure. Additionally,
the Hankel function introduces a branch point at λ = 0 with
the corresponding branch cut extending to infinity along the
positive Im(λ) axis.

Next, we deform C0 as shown in Fig. 21 and apply
Cauchy’s residue theorem on the formed closed path C0 +

C1 + C2. Working as in Refs. [30]–[32], we obtain:

πse0(r̄) = −
∫
C2

f(λ)dλ− 2πi

n∑
j=1

Res
λ→βj

(f, βj), (97)

f(λ) =
ip

8πωε0
H

(2)
0 (λρ)

λN (γ)

γD(γ)
e−γ(z+z

′), γ = γ(λ).

A. SPACE-WAVE COMPONENT
The first term in (97) which contains the integral over C2

represents the space-wave component of the potential. A
steepest descent evaluation of this integral, as outlined in
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FIGURE 15. H-polarization: (a) Reflectance, (b) Transmittance, and (c) Absorbance vs. frequency and angle of incidence for n0 = 1018 m−3, d = 10 cm,
α = 1, ν0 = 1 GHz.

- 4 - 2 0 2 41 0 - 2

1 0 0

1 0 2

1 0 4

1 0 6

- 1 . 0 - 0 . 5 0 . 0
0 . 0

0 . 5

1 . 0

- 1 . 0 - 0 . 5 0 . 0
0 . 0

0 . 5

1 . 0

 er1
  

z / d

 er1
  

z / d
z e r o  c r o s s i n g

 

 

|Ez
|

z / d
(a)

- 2 - 1 0 11 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4

- 1 . 0 - 0 . 5 0 . 0
0 . 0

0 . 5

1 . 0

- 1 . 0 - 0 . 5 0 . 0
0 . 0

0 . 5

1 . 0

 er1
  

z / d

 er1
  

z / d
z e r o  c r o s s i n g

 

 

|Ez
|

z / d
(b)

FIGURE 16. Field distribution |Ez(z)| for an Epsilon crossing zero
plasma slab in the H-case for ψ = π/4, k0d = π, Z0H0 = 1, and
n0 = 1018 m−3. (a) ω = ωp(−d/2) = 5.64146 × 1010 and (b)
ω = 5.5 × 1010 (in rad/s). The relative permittivity is given in (92).

Ref. [31] and valid for large distances from the dipole, results
in the closed-form expression:

πse0(r̄) =
ip

4πωε0

N (γ)

D(γ)

e−ik0r−γz
′

r
, γ = ik0 cos θ. (98)

The correctness of (98) has been checked via an independent
derivation using the stationary phase integration technique.

B. SURFACE-WAVE COMPONENT
The second term in (97) represents the surface-wave com-
ponent of the potential. Here, for large distances from the
dipole, it is appropriate to use the large-argument asymptotic
form: H(2)

0 (λρ) ∼
√

2i
πλρe

−iλρ. In obtaining the Res
λ→βj

, we

employ the chain rule:

dD[γ(λ)]

dλ
=
dD(γ)

dγ

dγ

dλ
=
λ

γ
D′(γ).

The resulting expression for the surface-wave component is:

πse0(r̄) =
p

4ωε0

√
2i

πρ

n∑
j=1

N (γj)√
βj D′(γj)

e−iβjρ−γj(z+z′)

(99)

with γj = {β2
j − k20}1/2. The term D′(γj) can be easily

obtained from (95) provided the derivative w′
ij(γ) can be

computed.

1) Computation of {βj}nj=1

As previously mentioned, the elements wij with 1 ≤ i, j ≤ 4
of the transition matrix W3 are analytic functions of λ2 (or
γ2). Consequently, D(γ), as defined in (95), is an analytic
(i.e., pole free) function of γ. This property enables us
to compute the roots {γj}nj=1 of D(γ) = 0 using well-
established algorithms, such as the one described in Ref.
[41]. Once the set of roots {γj} has been obtained, we
compute βj as βj =

√
γ2j + k20 .

As an illustrative example, Table 2 displays the normalized
propagation constants β/k0 for the TMy modes supported by
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FIGURE 17. |F̄ (θ, φ)|, (a) in the E-plane (φ = 0) and (b) in the H-plane
(φ = π/2) for p̄ = 1ŷ (Am), k0 = 1, k0d = 2π, r̄′ = (0, 0,−d/2),
εr1 = exp(−k0z), and µr1 = exp[k0(z + d)].

the bilateral slab of Fig. 2(a). The parameters are as follows:
k0d = 4π, µr1 = 1, and εr1 = 3 + cos[k0(z + d)] − iε′

with ε′ = 0 (representing a lossless dielectric) or ε′ = 0.5
(indicating a lossy dielectric).

2) Computation of D′(γ) and w′
ij(γ)

Efficient and accurate computation of D′(γ) and its prereq-
uisite, w′

ij(γ), is a crucial requirement for applying specific
root-finding algorithms detailed in Ref. [41]. Additionally,
D′(γ) is essential for (99).

We will use the change of variable z = z(t), as defined
in (71), and introduce the notations F (t) = F (t; γ) =
W3(z(t), z0; γ) and Φ(τ) = Φ(τ ; γ) = A3(z(τ); γ) to
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FIGURE 18. Grounded DNG slab: Radiation pattern |F̄ (θ, φ)| in dB for
p̄ = 0.001x̂ (Am), f = 5.943 GHz, d = 60 mm, r̄′ = (0, 0, 0), z0 = −d,
z1 = 0, εr1 = −1.831, and µr1 = −0.0238. (a) E-plane. (b) H-plane.

emphasize their dependence on the parameter γ. The de-
pendence of A3(z) on γ becomes evident from (28), where
γ21(z) = γ2 + k20 − ω2ε1(z)µ1(z) according to (29). The
justification for the dependence of F (t) on γ can be based
on (76). Using this notation, we can rephrase (76) as:

F (t; γ)− β

N∑
j=1

Φ(tj ; γ)F (tj ; γ)

N−1∑
k=0

wj
hk
Pk(tj)Ck(t) = I.

Upon differentiating with respect to γ, we obtain:

∂F (t; γ)

∂γ
− β

N∑
j=1

{Φ(tj ; γ)
∂F (tj ; γ)

∂γ
+
∂Φ(tj ; γ)

∂γ
F (tj ; γ)}

×
N−1∑
k=0

wj
hk
Pk(tj)Ck(t) = 0. (100)
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FIGURE 19. E-plane and H-plane Power patterns for a µ-near-zero
grounded slab at f = 9.122 GHz, d = 75 mm, εr1 = 1.2, and µr1 = 0.01.
(a) Electric dipole p̄ = 1ŷ (Am) at r̄′ = (0, 0,−d/2). (b) Magnetic dipole
m̄ = Z0ŷ (Vm) at r̄′ = (0, 0,−d). Solid lines: this work. Open circles:
Ref. [39].

Applying (100) with t = t1, . . . , tN yields:

∂F (ti; γ)

∂γ
− β

N∑
j=1

wjbijΦ(tj ; γ)
∂F (tj ; γ)

∂γ

= β

N∑
j=1

wjbij
∂Φ(tj ; γ)

∂γ
F (tj ; γ), i = 1, . . . , N, (101)

where bij is given by (79). With {F (tj ; γ)}Nj=1 deter-
mined from (78), (101) transforms into a linear alge-
braic system from which we can compute the unknown
{∂F (tj ; γ)/∂γ}Nj=1. The required w′

ij(γ) with 1 ≤ i, j ≤ 4
are the elements of ∂F (tN ; γ)/∂γ. In terms of them, D′(γ)
can be obtained using (95).

TABLE 2. β/k0 for an inhomogeneous slab. Parameters: k0d = 4π, µr1 =

1, εr1 = 3 + cos[k0(z + d)] − iε′ with ε′ = 0 and ε′ = 0.5.

βi/k0

i ε′ = 0 ε′ = 0.5

1 1.04804494442525 0.99844346886324 - i 0.137392890929445
2 1.23054600391380 1.23318975167569 - i 0.177503706190931
3 1.45472296058384 1.46344391146134 - i 0.167831444565456
4 1.54923147650879 1.55506026745734 - i 0.152894081358176
5 1.57247500347992 1.57890989681788 - i 0.153761795181344
6 1.80465808008725 1.81116267735049 - i 0.142925345806486

APPENDIX B
EXACT ANALYTICAL SOLUTION FOR SPECIAL CASES
We will focus on the scattering problem in the E-case, noting
that the H-case can be addressed through duality. Let

Ē1 = ŷEy1(x, z) = ŷeikxxẼy1(z).

From (5) using (3) and (7), we can derive the generalized
Helmholtz equation:

d2Ẽy1
dz2

− µ′
1(z)

µ1(z)

dẼy1
dz

+ (k21(z)− k2x)Ẽy1 = 0. (102)

Here, k21(z) = ω2ε1(z)µ1(z), and µ′
1(z) is the derivative of

µ1(z).
Let V +(z) and V −(z) be two linearly independent solu-

tions of (102). Then

Ẽy1(z) = c1V
+(z) + c2V

−(z), (103)

where c1 and c2 are constant coefficients. In terms of Ẽy1,
we can obtain H̃x1 from

H̃x1 =
1

iωµ1

dẼy1
dz

. (104)

By enforcing continuity of both Ey(z) and Hx(z) at the
interfaces z = z0 and z = z1, using (2), (3), (103), and
(104), we obtain a 4×4 linear system of algebraic equations
from which R, T, c1, and c2 can be determined.

At this stage, the solution procedure is purely formal
because V ±(z) cannot be expressed in terms of known
special functions for general inhomogeneity profiles. In Table
3, we provide a summary of special profiles for which exact
solutions to (102) are feasible. The eigen-solutions for Case
I to Case VI are presented below.

TABLE 3. Special inhomogeneity profiles.

Case εr1 µr1

I ek0(d−z) ek0z

II 1 + α1(k0z) + α2(k0z)2 1

III 1 + aebz 1

IV 1 aebz

V a+ cos(bz) 1

VI b
1+az

1 + az

Case I: V ±(z) = e
z
2 (k0±

√
k20+4kx2−4ek0dk02).
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FIGURE 20. Radiation patterns |F̄ (θ, φ)| in dB for electric and magnetic dipoles at r̄′ = (0, 0, 0) with d = 10 cm, α = 1, ν0 = 1 GHz, n0 = 1018 m−3,
f = 8 GHz. Solid lines: bilateral plasma layer, dotted lines: grounded plasma layer.
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Case II: V ±(z) = Dν± [g±(z)],
where Dν(z) is the parabolic cylinder function, and:

g±(z) =
±1 + i

2α2
3/4

(α1 + 2k0α2z),

ν± =
±i

8k0
2α2

3/2

[
(±4iα2

3/2 − 4α2 + α1
2)k0

2 + 4kx
2α2

]
.

Case III: V ±(z) = J± 2ikz
b

(
2k0

√
aebz/b

)
,

where Jλ(·) denotes the Bessel function of the first kind.
Case IV: V ±(z) = e

bz
2 J

±
√

b2+4kx2

b

(
2k0

√
aebz/b

)
.

Case V:

V ±(z) = MathieuCS
[
− 4

b2
(
kx

2 − ak0
2
)
,−2k0

2

b2
,
bz

2

]
.

Here MathieuC[a, q, z]/MathieuS[a, q, z] denote the
even/odd Mathieu function with characteristic value a and
parameter q. The Mathieu functions are solutions to the
equation y′′ + [a− 2q cos(2z)]y = 0.

Case VI:

V +(z) = u(z)J1[υ(z)], V −(z) = u(z)Y1[υ(z)],

where Y1 denotes the Bessel function of the second kind,
and

u(z) =
√
1 + az{q(z)}1/2, υ(z) = − i

a
q(z)

with q(z) = az
√
kx

2 − bk0
2 + i

√
bk0

2 − kx
2.

For additional inhomogeneity profiles with exact solutions
to the wave equation, see Section 4.3.4 in Ref. [29].
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