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ABSTRACT The interpolation errors of the higher order bivariate Lagrange polynomial interpolation based
on the rectangular, right and equilateral triangular interpolations are measured by using the maximum
and root-mean-square (RMS) errors. The error distributions of above three kinds of interpolations are
analyzed to find the regions having the smallest interpolation error. Both analytical and numerical results
show that the right triangular interpolation is the most efficient interpolation method. Although both the
maximum and RMS errors of the right triangular interpolation are larger than that of the rectangular
interpolation, the number of data points used in the triangular interpolation is up to 50% less than that
used in the rectangular one. On the other hand, the equilateral triangular interpolation using the regions
inside a big triangle as interpolation area is proved to be the most accurate interpolation method. The
interpolation errors of the equilateral triangular are almost half of that of the rectangular interpolation. In
addition, the right triangular, equilateral triangular and rectangular interpolations for the third and fourth
orders are applied to accelerate the calculation of doubly periodic Green’s function (PGF).

INDEX TERMS Doubly periodic Green’s function (PGF), Lagrange polynomial interpolation, maximum
error, plane waves, root-mean-square (RMS) error, triangular interpolations.

I. INTRODUCTION

INTERPOLATION has been widely used in many areas
of computational electromagnetics (CEM) to save the

CPU time, e.g., the moment method, the finite element
method (FEM), and so on [1]–[5]. Accurate and efficient
evaluation of free-space periodic Green’s functions (PGF)
takes an important role in CEM [6], [7]. The PGF with
two-dimensional (2-D) lattices is in the form of double
infinite spectral and spatial summations, which is usually
slowly convergent [8], [9]. For the doubly PGF, it is not
efficient to direct calculate all observation and source points,
which poses a challenging problem drawing great interests
from researchers [10], [11]. The Ewald and the Kummer’s
methods are two robust and efficient methods to acceler-
ate the evaluation of PGF, which are still time consuming

however [12]. Pre-calculated PGFs are applied to evaluate
the PGF using the interpolation method within a certainly
accuracy to reduce the CPU time [12]–[14].
There are several approaches for interpolations such as

bivariate Lagrange polynomials and approximate prolate
spheroidal (APS) interpolations [3], [15], [16]. The com-
monly used interpolation technique is a product of the
rectangular Lagrange interpolations, where (p + 1)2 points
will be used for the p’th order interpolation in 2-D. However,
in FEM, about only half of those points are applied for inter-
polations of all points inside a big triangular area, which
is not the most optimized interpolated region [4], [17].
Choosing the center of a triangle as the interpolation area can
reduce the interpolation error. In [14], the region with the
smallest interpolation error inside a big triangle is chosen to
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reduce the interpolation error for the first and second order
interpolations.
It is quite clear that the higher degree of interpola-

tion polynomials, the more reduction in the number of
data points used in the triangular interpolation over the rect-
angular interpolation. This article focuses on choosing the
regions with the smallest error of the higher orders trian-
gular interpolations, while the maximum and RMS errors
are considered as the interpolation error measurements. In
addition, the asymptotic expressions of maximum and RMS
errors for one-dimensional (1-D) and 2-D interpolations are
derived. The organization of this article is as follows. In
Section II, the asymptotic forms of the maximum and RMS
errors for 1-D are derived. How to select the 2-D inter-
polation areas for higher order interpolations is presented
in Section III. Section IV provides the expression of dou-
bly PGF using Ewald method, the regularized doubly PGF
which has removed the singularity to smooth the function to
be interpolated, and the numerical results for the application
of the doubly PGF. Some conclusions about the triangular
interpolations are given in Section V. Finally, some details
of the derivations are shown in Appendix.

II. INTERPOLATION ERROR OF PLANE WAVE IN 1-D
The plane wave is applied to study the interpolation error
in 1-D, which is simply expressed as J(x) = e−jkx. The
Lagrange interpolation polynomial is given as (13) in
Appendix [17], [18]. The error definition and asymptotic
forms of maximum and RMS errors for the first and sec-
ond order interpolations are presented in [14]. The nearest
p + 1 points are used to interpolate a function at a given
point with the p’th order polynomial. The asymptotic form
of maximum error is derived as

RMax
p = (kh/2)p+1(2l− 1)!!/(2l)!!, l = int

[
(p+ 1)/2

]
, (1)

for uniform sampling with a distance of h, where “int” is
a function to pick up the integer part. For even orders p = 2l,
the asymptotic form of RMS error is calculated by

RRMS
p = (kh/2)p+1

(p+ 1)!

√√√√
∫ 1

0
dx x2

l∏

i=1

(
x2 − 4i2

)2 (2a)

and for odd orders p = 2l− 1,

RRMS
p = (kh/2)p+1

(p+ 1)!

√√
√√

∫ 1

0
dx (x− 2l)2x2

l−1∏

i=1

(
x2 − 4i2

)2

(2b)

From the asymptotic expressions, the maximum and RMS
errors are directly proportional to the (p + 1)’th power of
kh. The analytical expressions for the maximum and RMS
errors are listed in Tables 1 and 2, respectively. Table 3 gives
the asymptotic forms of the errors and the ratios between the
asymptotic maximum and RMS errors. The ratio between
the maximum and RMS errors approaches to

√
2 as the order

of interpolations increases. Figures 1 (a) and (b) plot the

TABLE 1. 1-D analytical maximum interpolation error for plane wave.

TABLE 2. 1-D analytical RMS interpolation error for plane wave.

TABLE 3. 1-D interpolation error for plane wave in asymptotic form.

analytical (Ana) and asymptotic (Asm) maximum and RMS
errors over different numbers of samples per wavelength,
respectively. It is observed that the asymptotical results agree
well with the analytical ones.

III. INTERPOLATION ERROR OF PLANE WAVES IN 2-D
In 2-D interpolation, the plane waves are simply expressed
as J(x, y, α) = e−jk(x cos α+y sin α), where α is the propagation
direction. Although the coefficients of interpolation errors
for arbitrarily complex cases are different, the interpolation
errors majorly depend on the order of interpolations. The
coefficients of the errors are related to the specific function
to be interpolated. The definitions of relative, maximum and
RMS interpolation errors for different angles and locations
are given in [14]. For 2-D interpolation, both the maximum
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FIGURE 1. Maximum and RMS errors of the 1-D Lagrange interpolations from order
0 to 4. “Ana” stands for the analytical results, and “Asm” for the asymptotic results.

and RMS errors are functions of locations and propagation
directions.
The asymptotic forms of maximum and RMS errors

are derived. For the rectangular Lagrange interpolation, the
expression of the maximum error is

RMax
p,q = ∣∣J(x, y, α) − Lp(x)Lq(y)

∣∣
Max (3)

where p and q are the interpolations orders along x and
y, respectively. In the Appendix, the asymptotic form is
derived as

RMax
p,q ≤ RMax

p (kh|cos α|) + RMax
q (kh|sin α|) (4)

where RMaxp is the maximum error for the p’th order inter-
polation as shown in (1) by replacing kh with kh| cos α| or
kh| sin α|. If p = q, the asymptotic form of maximum error
is simplified as

RMax
p,p (α) ≤

(
2
[
(p+ 1)/2

] − 1
)
!!

(
2
[
(p+ 1)/2

])
!!

(
kh

2

)p+1

Q(α) (5)

where Q(α) = | cos α|p+1 +| sin α|p+1. The asymptotic RMS
error for the rectangular Lagrange interpolation is derived as:

RRMS
p,p ≈ RRMS

p (kh)

×
{

cos(p+1) α + sin(p+1) α p is odd√
cos2(p+1) α + sin2(p+1) α p is even

(6)

TABLE 4. Number of data points used in the rectangular (�), right triangular ( ) and

equilateral triangular (�) interpolations.

FIGURE 2. p = 3, the error distributions of rectangular interpolation, where the
rectangle at the center is the interpolation area, λ/h = 20.

FIGURE 3. p = 3, the error distributions of right triangular interpolation, where
Area 1 is the interpolation area, λ/h = 20.

where RRMS
p is the RMS error for the p’th order interpolation

as shown in (2a) and (2b).
Table 4 lists the numbers of data points used in the

rectangular, right triangular and equilateral triangular inter-
polations. It is found that the samples of the right triangular
grid are the same as the rectangular grid, while the
data points used for interpolations are up to 50% less than
the rectangular interpolation at the same order. The mesh
size of equilateral triangular interpolation is the same as the
rectangular grid, that is to say, the distance between the
two adjacent data points along y-direction is shorter than
the rectangular grid, while that along x-direction is the same
as the rectangular grid. Thus, the number of samples along
y-direction is more than x-direction. As shown in [14], the
distance of two adjacent points of the equilateral triangular
is

√
3/2 of the rectangular grid along y-direction, while the

triangular interpolations use p(p + 1)/2 data points less at
the same order.

A. 3RD ORDER INTERPOLATION
For the third order interpolation, the numbers of data points
for the rectangular and triangular interpolations are 16 and
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FIGURE 4. p = 3, the error distributions of equilateral triangular interpolation,
where the regular hexagon at the center is the interpolation area, λ/h = 20.

TABLE 5. Numerical maximum and RMS errors for areas 1, 2, 3 shown in Fig. 3 (a)

and (b), λ/h = 20.

10, respectively. Figures 2, 3 and 4 show the numerical
maximum and RMS error distributions for rectangular, right
and equilateral triangular interpolations for different angles,
respectively. The right triangular interpolation has the largest
interpolation errors, while both the largest maximum and
RMS errors appear between points 3 and 7 or 2 and 6. The
equilateral triangular interpolation has the smallest maxi-
mum and RMS errors. Meanwhile, the largest maximum
and RMS errors of the equilateral triangular interpolation are
almost half of the rectangular interpolation. The equilateral
triangular interpolation has the smallest maximum and RMS
errors. Through choosing the small interior rectangle with the
smallest interpolation errors, the interpolation errors of right
triangular interpolation are closer to the rectangular one.
From Fig. 2 (a) and (b), it is easy to observe that the

optimal interpolation area is a rectangle formed by points
6, 7, 10, and 11. The region with the smallest error for the
equilateral triangular interpolation is the overlap of a regular
hexagon at the center with three small triangles [(4, 10, 9),
(6, 10, 5), and (7, 10, 8)], as shown in Fig. 4 (a) and (b). To
reduce the interpolation error of the right triangular interpo-
lation, the numerical interpolation errors of Area 1, Area 2
and Area 3 are analyzed to find the area with the lowest
interpolation error, as shown in Fig. 3 (a) and (b). Table 5
lists the numerical maximum and RMS errors of these areas.
It is found that Area 2 has the lowest maximum error and
the largest RMS error. On the contrary, Area 3 has the
largest maximum error and the lowest RMS error. Both
the maximum and RMS errors in Area 1 are the middle
ones among these three areas. Thus, the interpolation error
distribution in Area 1 is more uniform than other areas.
The Area 1 is chosen as the interpolation area for the right
triangular interpolation of third order.
Figures 5 and 6 plot the numerical maximum and RMS

errors of the right triangular, equilateral triangular and

FIGURE 5. p = 3, the maximum errors of the right triangular ( ), equilateral
triangular (�) and rectangular (�) interpolations.

FIGURE 6. p = 3, the RMS errors of the right triangular ( ), equilateral triangular
(�) and rectangular (�) interpolations.

rectangular interpolations over different propagation direc-
tions and different numbers of samples per wavelength. It is
found that the maximum error of the right triangular inter-
polation is 107% more than the rectangular interpolation,
while it only uses 10 data points for interpolation. For the
same maximum error, the equilateral triangular interpolation
needs the same number of samples per wavelength as the
rectangular interpolation, which is less than that of the right
triangular one.
From the above discussion, we find how to look for the

data points used in the third order interpolation for a given
point. For the rectangular interpolation, find four nearest
points, i.e., points 6, 7, 11, and 10 in Fig. 2. Then add
next 12 nearest points to be used in the interpolation. For
the right triangular interpolations, to interpolate any point
inside Region 1 in Fig. 3, firstly, three nearest data points
are found to form a small right triangle, i.e., points 4, 10,
and 9. Secondly, next three nearest points are added, i.e.,
points 1, 5, and 8, to form a medium right triangle. Finally,
extend four more data points along the hypotenuse of the
right triangle to form a big one. For the equilateral triangular
interpolation, to interpolate any point inside Region 1 for
example, find the nearest data point, i.e., point 10, then
add six nearest points from the point, i.e., points 4, 5, 6,
7, 8, and 9. After that a regular hexagon is obtained, then
extend another three points, i.e., points 1, 2, 3, to form a big
equilateral triangle.

B. 4TH ORDER INTERPOLATION
For the fourth order interpolation, the triangular interpolation
uses 10 data points less than the rectangular interpolation,
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FIGURE 7. p = 4, the error distributions of rectangular interpolation, the rectangle
formed by red dashed lines at the center is the interpolation area, λ/h = 20.

FIGURE 8. p = 4, the error distributions of right triangular interpolation, λ/h = 20.

The error distributions inside the small triangle formed by points 1, 2, and 3 are further
analyzed in Fig. 10.

FIGURE 9. p = 4, the error distributions of equilateral triangular interpolation, while
the equilateral triangle at the center is the interpolation area, λ/h = 20.

as shown in Table 4. Figures 7, 8 and 9 show the numerical
maximum and RMS error distributions of the right triangu-
lar, equilateral triangular and rectangular interpolations for
different propagation directions, respectively. For the right
triangular interpolation, as plotted in Fig. 8, the small right
triangle at the center is divided into three parts (one rectan-
gle and two small right triangles, as shown in Fig. 10) to
look for the region with the smallest interpolation error, sim-
ilar to the discussion for the first order in [14]. The error
distributions of the small triangle are shown in Fig. 10 (a)
and (b). The numerical results of Regions 1 and 2 are listed
in Table 6. It is obvious that the maximum error of Region 2
is larger than that of Region 1 , while the RMS errors of
two regions are quite close. In addition, in order to ensure
the interpolation areas for high-order interpolations are sim-
ilar to the low-order interpolations, Region 1 is chosen as
the interpolation area for the fourth order right triangular
interpolation.

FIGURE 10. p = 4, the error distributions of small right triangle at the center of big
right triangle as shown in Fig. (8), which is divided into three parts, λ/h = 20.

TABLE 6. Numerical maximum and RMS errors for areas 1 and 2 shown in Fig. 10 (a)

and (b), λ/h = 20.

FIGURE 11. p = 4, the maximum errors of the right triangular ( ), equilateral
triangular (�) and rectangular (�) interpolations.

FIGURE 12. p = 4, the RMS errors of the right triangular ( ), equilateral triangular
(�) and rectangular (�) interpolations.

Figure 11 and 12 plot the numerical maximum and RMS
errors of the right triangular, equilateral triangular and rectan-
gular interpolations over different propagation directions and
different number of samples per wavelength for the fourth
order interpolation, respectively. As is shown, the maximum
error of the right triangular interpolation is 62.4% larger
than that of the rectangular interpolation. The maximum
error of the equilateral triangular interpolation is 50.3% of
the rectangular interpolation. In other words, for the same
interpolation error and same order of interpolation, the right
triangular interpolation needs smaller mesh size than the rect-
angular interpolation. The equilateral triangular interpolation

594 VOLUME 1, 2020



TABLE 7. Numerical maximum and RMS errors ratio, λ/h = 20.

can use larger mesh size than the rectangular interpolation.
If the RMS error in the interpolation is 10−4, the number
of sampling points per wavelength is about 12, 14, and 15
for the equilateral triangular, rectangular, and right triangu-
lar interpolations, respectively. If the error is decreased by
a factor of 10, the sampling points should be increased only
by 58.5%.
We describe how to find data points involved in the

fourth order triangular interpolation for a given point. For
the right triangular interpolations, find the three nearest
data points to form a small equilateral triangle. Then extend
to next 12 nearest data points to form a bigger right tri-
angle. A similar approach is applied for the equilateral
triangular interpolation. Table 7 lists the maximum and RMS
errors ratio between triangular ( /�) and rectangular (�)
interpolations for the third and fourth order interpolations.

IV. APPLICATION OF DOUBLY PGF
The interpolation methods with the smallest interpolation
errors from previous sections are applied to accelerate the
evaluation of the doubly PGF. With the widely application
of periodic structure, the efficient and accurate evaluation of
periodic Green’s functions is a fundamental problem in com-
putational electromagnetics [12], [14]. Ewald transformation
is one of the efficient and accurate methods to accelerate
calculation PGF [12]. As given in [12], [19], a doubly PGF
using Ewald method with a rectangular unit cell of periods
a and b respectively along the x- and y-direction is

G
(
r, r′) =

∞∑

m=−∞

∞∑

n=−∞
GEmn +

∞∑

p=−∞

∞∑

q=−∞
G̃Epq (7)

with

GEmn = 1

2

e−jkt00•rmn
4πRmn

×
[
e−jkRmnerfc

(
RmnE − j

k

2E

)

+ ejkRmnerfc

(
RmnE + j

k

2E

)]

G̃Epq(x, y) = 1

2ab

∞∑

p=−∞

∞∑

q=−∞

erfc
(
γpq/(2E)

)

γpq
ej(kxpx+kyqy)

(8)

where erfc(x) is the complementary error function, kt00 =
kinc
x x̂ + kinc

y ŷ, rmn = max̂ + nbŷ, kxp = 2πp/a− kinc
x , kyq =

2πq/b − kinc
y , γpq =

√
k2
xp + k2

yq − k2, E = √
π/(ab), and

Rmn = √
(x− ma)2 + (y− nb)2.

FIGURE 13. Regularized PGF in one period.

Before interpolating, the singularity of the PGF should be
removed. The expression of regularization of the PGF is

Greg =
∞∑

p

G̃Ep +
∞∑

n

(
GEn − δnG

∞
n

)
(9)

where p = (p, q), n = (m, n), δn ={
1
0
n = (0, 0), (1, 0), (0, 1), (1, 1)

otherwise
, and G∞

n is the doubly

PGF in free-space as

G∞
mn = e−jkRmn

4πRmn
e−jkt00•rmn . (10)

When m = 0, n = 0 and R = R00 = 0, the asymptotic form
of the PGF is obtained as

lim
R→0

(
∑

±

e±jkR

R
erfc

(
RE ± jk

2E

)
− 2e−jkR

R

)

= 2

(
jkerfc

(
jk

2E

)
− 2E√

π
e

k2

4E2

)
+ O

(
R2

)
(11)

Using the periodicity of PGF, the asymptotic results of
four corners can be obtained. Figures 13 (a) and (b) give
the real and imaginary parts of the regularized PGF in one
period, respectively. It is shown that the regularized PGF is
smooth enough to be interpolated. Obviously, the function
nearing the four corners changes more rapidly than others.
The relative interpolation error is defined as

Rg =
∣
∣∣Greg − Greg

interpolate

∣
∣∣/
∣
∣Greg

∣
∣ (12)

The doubly PGF in a region of a = 0.3λ by b = 0.3λ,
total of 31 by 31 points, is interpolated from pre-calculated
samples. The rectangular samples are 7 by 7 and the equi-
lateral samples are 7 by 12 (more points along y-direction
are needed because there is no periodicity in the samples).
Figures 14, 15 and 16 show the relative interpolation error
distributions for the third and fourth orders using the right tri-
angular, equilateral triangular and rectangular interpolations,
respectively. It is observed that although the equilateral trian-
gular grids need more pre-calculated samples, the equilateral
triangular interpolation has the smallest interpolation error
for both p = 3 and p = 4, which confirms the earlier analysis
and agrees with the lower order results. The right triangular
interpolation has the largest relative interpolation error, while
it uses 6 and 10 samples less comparing with the rectangu-
lar interpolation for the third and fourth orders, respectively.
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FIGURE 14. Relative interpolation errors of right triangular interpolation ( ).

FIGURE 15. Relative interpolation errors of equilateral triangular interpolation (�).

FIGURE 16. Relative interpolation errors of rectangular interpolation (�).

All the rectangular, right and equilateral triangular interpola-
tions have the largest relative interpolation errors at the four
corners of a period, where the doubly PGFs change faster.
Table 8 lists the interpolation CPU time running on a com-

puter with Intel Core i7-4578U @3.00 GHz and 8 GB
RAM. Calculating doubly PGF using Ewald method is still
time-consuming. Here, 7 by 7 samples are calculated for
the rectangular grids for both rectangular and right tri-
angular interpolations, which take about 130 seconds. It
takes 3161 seconds to calculate 31 by 31 points directly.
Interpolation can reduce CPU time significantly in large
scale problems. The third and fourth order right triangular
interpolations are provided approximately 31.8% and 41.7%
reduction in CPU time in the interpolations. The CPU time
for the equilateral triangular interpolation is very close to the
rectangular interpolation for both the third and fourth order
interpolations, while it has the smallest interpolation error.
Compared to the rectangular interpolations, the equilateral
triangular interpolations need similar CPU time, while only
10 and 15 samples are required for the third and fourth order
interpolations with the smallest interpolation errors.

TABLE 8. CPU time for the right triangular ( ), equilateral triangular (�) and

rectangular interpolation (�).

V. CONCLUSION
In this article, both 1-D and 2-D interpolations are ana-
lyzed to minimize the interpolation errors. The interpolation
areas in 2-D interpolation are chosen based on the smallest
interpolation error for higher order right and equilateral tri-
angular interpolations. Although the distance between two
adjacent points of the equilateral triangular grid is

√
3/2 of

the rectangular grid along the y-direction, the maximum and
RMS errors of the fourth order equilateral triangular inter-
polation are only the half of the errors in the rectangular
interpolation. Only (p + 1)(p + 2)/2 data points are used
in the triangular interpolations. The asymptotic and numeri-
cal results of the rectangular, right and equilateral triangular
interpolations can be used to estimate the interpolation error
before interpolating. The appropriate interpolation method,
order and grid size can be selected to optimize interpolation
error and CPU time. In the higher order interpolations of
the doubly PGF, the right triangular interpolation needs the
least CPU time among three interpolation methods, while
the equilateral triangular interpolation is the most accurate
approach.

APPENDIX
A. 1-D INTERPOLATION
For the p’th order interpolation in 1-D, p + 1 uniformly
distributed sampling points are used to form a Lagrange
interpolation polynomial as follows [17]:

Lp(x) =
[(p+1)/2]∑

i=−[p/2]

⎛

⎝J(xi)
[(p+1)/2]∏

j=−[p/2],j 	=i

x− xj
xi − xj

⎞

⎠ (13)

where xi = ih. The square brackets [] in the range of the
summation and multiplication mean picking up the integer
part. The range makes the central region between −h/2 and
h/2 for even orders, and between 0 and h for odd orders.
Therefore, the maximum error is at x = h/2 and

∣∣Rp(x)
∣∣
Max = ∣∣Rp(h/2)

∣∣

= kp+1

(p+ 1)!

∣∣∣
∣∣∣

[(p+1)/2]∏

i=−[p/2]

(
h

2
− xi

)
∣∣∣
∣∣∣

(14)

After simplification, we have the asymptotic maximum error
as shown in (1). The RMS error is given by

RRMS
p =

√
2

h

∫ h/2

0
dx

∣∣Rp(x)
∣∣2
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= (kh)p+1

2p+1(p+ 1)!

√√√√√
∫ 1

0
dx

[(p+1)/2]∏

i=−[p/2]
(x− 2i)2, (15)

After performing the integral, we have the asymptotic form
as shown in (2a) and (2b).

B. 2-D INTERPOLATION
In (3), when p = q = 0, we have

R0,0(α, x, y) = 2 sin|k(x cos α + y sin α)/2| (16)

where |x| ≤ h/2, |y| ≤ h/2. The asymptotic form of the
maximum error is derived as

RMax
0,0 ≈ kh(|sin α| + |cos α|)

2

= kh√
2

cos
(
mod

(
α,

π

2

)
− π

4

)
(17)

It is a periodic function with a period of π/2. The RMS
error has a form of

RRMS
0,0 = √

2
√

1 − sinc(kh cos α/2) sinc(kh sin α/2)

≈ kh

2
√

3
(18)

It is the same as 1-D result listed in Table 3. For non-zero
orders,

RMax
p,q (α) ≤

∣∣∣e−jkx cos α − Lp(x)
∣∣∣
Max

+
∣∣∣e−jky sin α − Lq(y)

∣∣∣
Max

= RMax
p (kh| cos α|) + RMax

q (kh| sin α|) (19)

If p = q, the above equation is simplified to (5).
For the RMS error, we have

∣∣∣e−jk(x cos α+y sin α) − Lp(x)Lq(y)
∣∣∣
2

= ∣∣Rp(x)
∣∣2 + ∣∣Rq(y)

∣∣2 + 2Re
[
Rp(x)L

∗
p(x)e

−jky sin αR∗
q(y)

]

(20)

The leading term of the third term is 2Rp(x)R∗
q(y). The inte-

grals over x and y yield the average of the error. The RMS
error is derived as

RRMS
p,p ≈ RRMS

p (kh)
√

cos2(p+1) α + sin2(p+1) α (21a)

for even p, and

RRMS
p,p ≈ RRMS

p (kh)

×
√
(
cosp+1 α + sinp+1 α

)2 − c sinp+1(2α)

2p

(21b)

for odd p = 2m− 1, where

c = 1 −
[∫ 1

0 dx x(x− 2m)
∏m=1

i=1

(
x2 − 4i2

)]2

∫ 1
0 dxx

2(x− 2m)2 ∏m=1
i=1

(
x2 − 4i2

)2
.

It is found that for p = 1, c = 1/6, and for p = 3,

c = 183/1030. The plots of p = 1, 2 show excellent
agreements between the numerical results and the above
expressions [14]. For the higher orders, by ignoring the sec-
ond term inside the square root of (21b), we can simplify
(21a) and (21b) into (6).
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