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ABSTRACT Aiming at early detection of tumors, microwave breast imaging is investigated with a priori
information on tissue boundaries yielded from ultrasound reflection data. A regularization term is to
incorporate the information that two neighboring pixels should exhibit similar dielectric properties when
not on a boundary while a jump would be allowed otherwise. This regularization is enforced in the
distorted Born iterative method and in the contrast source inversion method. Comprehensive numerical
experiments are carried out, involving a simple synthetic model and on two anatomically-realistic MRI-
derived numerical breast phantoms. Imaging quality appears greatly improved with this regularization
when tissue boundaries are indeed provided. Improvement is observed also when real parts and imaginary
parts are retrieved in separate fashion.

INDEX TERMS Breast imaging, microwave, ultrasound priors, distorted Born iterative method, contrast
source inversion method, tissue boundary regularization.

I. INTRODUCTION

BREAST tumors are some of the most common tumors
among women. Early detection is critical at an early

stage of cancer progression [1]. Therefore, to develop tech-
nologies to image a small tumor at low cost and with low
risk is an important issue. Currently, X-ray mammography
is still the gold standard for this detection. Despite of the
high-resolution of imaging result, X-ray mammography has
a number of limitations including low sensitivity, ionizing
radiation, discomfort from breast compression, and detection
quite affected by breast density.
Microwave imaging has been investigated as an alterna-

tive or at least a complementary imaging modality. Several
investigations on the electromagnetic (EM) properties in dif-
ferent types of tissue have been led, e.g., [2], [3]. Based on
the difference in dielectric properties between tumorous and
normal tissues, the contrast appears relatively higher than
the one associated to X-ray. Also, microwave imaging is
non-ionizing, low-cost, and enables easy examination. The
techniques proposed for microwave imaging can be roughly
divided into two groups: radar and tomography. Radar

techniques [4]–[6] rely on ultrawide-band pulse illuminations
to identify regions with high contrast from backscattered sig-
nals. This is efficient and indeed indicates the location of
strongly scattering parts. However, less detailed information
about the breast is made available [7]. To achieve a pos-
sibly better retrieval of the distribution of EM parameters
within the breast, tomographic microwave imaging is widely
used, refer to [8]–[10] among many others. In this approach,
several transmitting and receiving antennas are set around
the breast. The transmitting ones illuminate it sequentially
and scattered fields1 are acquired by the receiving ones.
Simulation is usually needed to get the scattered field when
breast geometry and EM parameters are known, which is a
forward problem linear w.r.t. the incident field. To recon-
struct the contrast given the scattered field is an inverse
problem and it is as well-known nonlinear due to multiple
scattering.

1. In practice, one should extract them from total fields as collected, and
also field values are not observed but antenna-related S-parameters.
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This inverse problem can be cast into an optimization
problem where the misfit between measurements and sim-
ulation results from a numerical model is minimized.
Under some conditions, it can be solved without iteration,
e.g., a weak scatterer the size of which is no much
larger than the wavelength, within the framework of the
Born approximation (the total field being replaced by the
incident one). In practice, these assumptions are usually
not valid and imaging results remain unsatisfactory. This
can be overcome by correcting the misfit iteratively. The
Born Iterative Method [11], Distorted Iterative Method
(DBIM) [12], Contrast Source Inversion (CSI) method [13],
and Subspace-based Optimization Method (SOM) and its
several variants [14]–[17], work this way. Recently, convo-
lutional neural networks (CNN) has been investigated as a
tool to solve the inverse scattering problem [18]–[20]. A
well-trained network can provide the complex permittivity
of the object given the scattered fields or the preliminary
results of some traditional inversion algorithms.
It is also well-known that the inverse problem is ill-posed.

To alleviate ill-posedness and stabilize the inversion, regular-
ization is usually applied in additive or multiplicative fashion.
In DBIM, Tikhonov regularization is standardly enforced to
reach a robust estimation. Further, a priori information can
be incorporated into the regularization term. Two-fold SOM
(TSOM) confines the reconstruction within a low-dimension
subspace. Huber regularization [8], [21] and weighted L2-
norm total variation (TV) [22] smoothen small-scale noise
while trying to preserve discontinuities. For piecewise con-
stant profiles, value picking (VP) [23] regularization can be
applied. Level set is also a regularization technique suitable
for binary cases [24] though it now addresses a broad range
of cases [25].
The main drawback of microwave imaging is the rela-

tive low resolution due to the long wavelength. To achieve
higher spatial resolution, a higher frequency is needed [26].
However, the dimension of the scatterer gets correspond-
ingly larger compared to this wavelength and the inverse
problem more difficult to solve while the penetration depth
may be affected also. Besides, tissue heterogeneity and the
fact that geometries and EM parameters vary from person to
person may render the challenge quite complicated. Then,
additional model-specific information from other imaging
modalities can be very useful.
The structural region information can be extracted from

images provided by the high-resolution modality as prior
information. As an example, in [27], MRI-derived horizon-
tal and vertical boundaries are incorporated into a Bayesian
framework for functional image reconstruction. In [28], dif-
ferent tissue clusters are extracted from ultrasound (US)
images by K-means to get a better distribution of dielectric
properties which results into more accurate tissue-specific
time-delays in Delay and Sum algorithm in EM reconstruc-
tion. In [29], the structural information is extracted from MRI
and Diffuse Optical Tomography (DOT) involving a finite
element method (FEM) is considered. In [30], a smaller

regularization parameter is distributed in a Tikhonov regu-
larization scheme to pixels identified as part of tumor from
X-ray images in DOT breast imaging. In [31], MRI images
are segmented into different regions to provide a FEM mesh
and a Laplacian-type regularization follows to minimize vari-
ation in each region in near infrared (NIR) tomography.
In [32], the structural information is extracted from US
reconstruction with K-means clustering algorithm. Tissue
permittivity values are assigned to these regions to form an
inhomogeneous background and assist the EM reconstruction
by the FEM-CSI algorithm. In [33], high-resolution images
are segmented into different regions and pixels in the same
region are constrained to have similar dielectric parameters
in EM reconstruction.
Considering US imaging can offer high-resolution images

with interior tissue boundaries from reflection algorithms
when the travel time of the acoustic signal is recorded and
an average sound speed is assumed, being emphasized that
US data can be acquired simultaneously with EM ones so
that no registration is needed (the hypothesis is the one
of a pending breast). US imaging is chosen to offer the
additional information in the present work. The tissue bound-
ary information is incorporated into a traditional method for
microwave breast imaging with a regularization term, which
imposes on two adjacent pixels that the EM properties are
the same when not on the boundaries and only undergo
changes at interfaces of tissues. Then, one incorporates the
US-information-guided regularization term into DBIM and
CSI. Besides, CSI with separate constraints on real and imag-
inary parts is developed. For comparison, results of DBIM
with Tikhonov regularization and CSI with Huber regular-
ization are also shown. A synthetic breast model is used
to validate the algorithm, then two anatomically-realistic
MRI-derived numerical breast phantoms are considered.
The contribution is organized as follows. The forward

problem is described in Section II. Regularization as well
as inversion algorithms are considered in Section III.
Experiments on breast phantoms are discussed in Section IV.
One concludes about present results and outlines ways ahead
involving fusion procedures in Section V.

II. FORWARD PROBLEM
One henceforth considers a two-dimensional non-magnetic
case with transverse magnetic (TM) polarization. Time-
harmonic waves are assumed with dependence exp(−iωt).
The breast is located inside a domain of interest (DoI) D. The
known background medium is characterized by a complex
relative permittivity εb, permeability μb and wavenumber
kb = ω

√
ε0εbμb. The unknown scatterers (of same per-

meability μb) have complex relative permittivity εr(r) and
wavenumber k(r) functions of position. Ni transmitters illu-
minate the DoI successively and the scattered fields are
collected by Nr receivers evenly located on an exterior
circle S .
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The problem can be associated to two integral equations

Et(r) = Ei(r) +
∫
D

(k2(r′) − k2
b)g

(
r, r′)Et(r′) d r′, r ∈ D

(1)

Es(r) =
∫
D

(k2(r′) − k2
b)g

(
r, r′)Et(r′) d r′, r ∈ S (2)

where incident field Ei(r) and total field Et(r) represent the
electric field inside D, object absent or present, resp. Es

is the scattered field collected by the receivers. The scalar
Green’s function is g(r, r′) = i

4 H(1)
0 (kb|r−r′|), H(1)

0 1st-kind
0th-order Hankel function. Denote the contrast as

χ(r) = k2(r) − k2
b

k2
b

(3)

and integral operators

Gd[x](r) = k2
b

∫
D
g
(
r, r′)x(r′) d r′, r ∈ D (4)

Gs[x](r) = k2
b

∫
D
g
(
r, r′)x(r′) d r′, r ∈ S (5)

The equations above simplify into

Et(r) = Ei(r) + Gd[χEt](r), r ∈ D (6)

Es(r) = Gs[χE
t](r), r ∈ S (7)

To handle the problem numerically, discrete forms of
the equations have to be derived, here via a pulse-basis
point-matching Method of Moments (MoM). The DoI is
discretized into M = Nx × Ny subwavelength cells with
centers at rm, m = 1, 2, . . . ,M. The dielectric properties
are considered homogeneous in each cell. Every square cell
is approximated by a small disk with same area and with
equivalent radius R whether needed. The equations above
become

Et = Ei + Gd diag(χ)Et (8)

Es = Gs diag(χ)Et (9)

In this form, χ is a M× 1 vector. The M×M matrix Gd is

Gd(m,m′) =

⎧⎪⎨
⎪⎩
ikbπR

2
J1(kbR) H(1)

0 (kb|rm − rm′ |),m �= m′
ikbπR

2
H{1}

1 (kbR) − 1, otherwise
(10)

where J1 is the 1st-kind Bessel function and H(1)
1 the 1st-kind

1st-order Hankel function. The Nr ×M matrix Gs is

Gs(s,m) = ikbπR

2
J1(kbR) H(1)

0 (kb|rs − rm|) (11)

where rs is the position of receiver s.
A source-type framework is widely used. Consider the

contrast current J(r) = χ(r)Et(r), the formulation becomes

J(r) = χ
(
Ei(r) + Gd[J](r)

)
, r ∈ D (12)

Es(r) = Gs[J](r), r ∈ S (13)

The discrete form reads as

J = diag(χ)Ei + diag(χ)GdJ (14)

Es = GsJ. (15)

III. INVERSION ALGORITHMS
Due to the large wavelength, resolution in microwave imag-
ing is expected to be poor. Ultrasound imaging with its high
resolution is employed to assist it. An ultrasound-guided
smoothness (UGS) regularization term is proposed to incor-
porate a priori information. This regularization is introduced
first and then its implementation into DBIM and CSI is
shown. DBIM with Tikhonov regularization and CSI with
Huber regularization are presented in parallel.

A. SMOOTHNESS CONSTRAINT
Assume that interior boundaries of the breast model follow
from US imaging. For easier incorporation, the tissue bound-
aries are depicted via two images to show discontinuities
in vertical and horizontal directions, resp., where dielectric
properties also change. The principle is quite intuitive, two
vertically or horizontally adjacent pixels should exhibit sim-
ilar parameters when none lies at the boundaries. Otherwise,
regularization is imposed. This constraint is expressed as

FUGS =
∑
i

∑
j

bv(i, j)‖χ̃(i, j) − χ̃(i, j+ 1)‖2

+
∑
i

∑
j

bh(i, j)‖χ̃(i, j) − χ̃(i+ 1, j)‖2 (16)

Notice that χ̃ is a Nx × Ny matrix and χ = vec(χ̃). bv and
bh are included in the prior information and indicate if the
pixel is at a boundary as

bv(i, j) =
{

0, (i, j) on horizontal boundaries
1, else

(17)

bh(i, j) =
{

0, (i, j) on vertical boundaries
1, else

(18)

Similarly with other smoothness constraints, the regular-
ization term is based on the module of the gradient of the
contrast, coefficients bv and bh guiding the smoothness while
preserving edges with US information. Compared with other
methods of incorporating US prior into EM inversion, the
boundary is directly used but not the tissue region from
segmentation.
This regularization term can be written in matrix form as

FUGS(χ) = ‖Dvχ‖2 + ‖Dhχ‖2 (19)

with matrices Dv and Dh providing the difference of two
adjacent pixels in vertical and horizontal directions. Take
Dv as an example, it can be written as

Dv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1

. . .
. . .

0 0
. . .

. . .

1 −1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)
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Notice that the diagonal elements are 1 only when corre-
sponding to pixels not at the boundaries, otherwise the value
is zero, no constraint is imposed, and a jump is allowed.
This regularization term is quadratic and incorporated

in an additive way, thus it will not introduce additional
nonlinearity.

B. DISTORTED BORN ITERATIVE METHOD
Consider the contrast χ as a small perturbation δχ w.r.t. an
inhomogeneous background χn; one has χ = χn + δχ [12].
The secondary incident field by this inhomogeneous back-
ground is

Ebac = (IM − Gd diag(χn))
−1Ei (21)

where IM is the M-dimensional identity matrix, with this
background, the scattered field is

Es = Gs diag(χn)E
bac + Gχn

s diag(δχ)Et (22)

Here, Gχn
s is the inhomogeneous background Green’s func-

tion. The cost functional is the sum of the difference between
measured and calculated data and a regularization term

F(δχ) =
Ni∑
p=1

∥∥∥Esp −Gs diag(χn) Ebac
p −Gχn

s diag(δχ)Ebac
p

∥∥∥2

+ αFr(δχ) (23)

within which Et is replaced by Ebac with the Born approx-
imation. The optimization procedure is summarized below.
At each iteration, update Gχn

s by

Gχn
s = Gs(IM − diag(χn)Gd)

−1 (24)

Solve the forward problem

Ebac
p,n = Eip +Gd diag(χn) Ebac

p,n (25)

Calculate the scattered field

Esp,n = Gs diag(χn) Ebac
p,n (26)

Solve the optimization problem with 0th-order Tikhonov
regularization

min : F(δχ) =
Ni∑
p=1

∥∥∥Esp − Esp,n −Gχn
s diag(δχ) Ebac

p,n

∥∥∥2

+ α‖δχ‖2 (27)

or with UGS regularization

min : F(δχ) =
Ni∑
p=1

∥∥∥Esp − Esp,n −Gχn
s diag(δχ) Ebac

p,n

∥∥∥2

+ α
(
‖Dvδχ‖2 + ‖Dhδχ‖2

)
(28)

It can be dealt with directly as

δχ = [K∗K + αD]−1K∗ b, (29)

D = IM for Tikhonov regularization, D = D∗
hDh + D∗

vDv for
the UGS one. K is a (NiNr) ×M matrix and element K(i+

Nr(p− 1), j) = Gχn
s (i, j) Ebac

p,n(j) and b is a (NiNr)× 1 vector
with b(i+Nr(p− 1)) = Esp(i) − Esp,n(i). K

∗ is the conjugate
transpose of K. To conclude, update the contrast as

χn+1 = χn + δχ (30)

Considering the imaginary part of the contrast contributes
less due to the high difference in magnitude with the real
part; consequently, one can separate them and the UGS
regularization term becomes

FUGS(δχ) = FUGS(�{δχ}) + βFUGS(	{δχ}) (31)

A larger regularization parameter (β > 1) can be assigned
to the imaginary part based on the prior information of the
magnitude of real and imaginary parts of contrast. To update
δχ , the linear equation

[
Kd + αrD Km

−Km Kd + αiD

][�{δχ}
	{δχ}

]
=

[
yr
yi

]
(32)

needs to be solved, with yr = �{K∗ b}, yi = 	{K∗ b},
Kd = K∗

rKr + K∗
i Ki, Km = K∗

i Kr − K∗
rKi, Kr = �{K} and

Ki = 	{K}. The regularization parameters are αr = α and
αi = αβ.

C. CONTRAST SOURCE INVERSION
The contrast source inversion method is based on the
source-type integral equations wherein the contrast source is
regarded as an independent parameter. The cost function is
a sum of normalized mismatches in data and state equations

F(J1, . . . , JNi ,χ) =
∑Ni

p=1

∥∥∥Esp −Gs Jp
∥∥∥2

∑Ni
p=1

∥∥∥Esp

∥∥∥2

+
∑Ni

p=1

∥∥∥diag(χ) Eip + diag(χ)Gd Jp − Jp
∥∥∥2

∑Ni
p=1

∥∥∥Eip

∥∥∥2
(33)

Notice that in the classical CSI [13] the second term nor-
malization is

∑Ni
p=1 ‖ diag(χ) Eip ‖2, one simplifies it as∑Ni

p=1 ‖ Eip ‖2 [16]. To improve the quality of the recon-
struction and incorporate high frequency components of the
image, one introduces prior information. Inspired by [8],
[21], one incorporates Huber regularization into CSI.
The Huber function can be expressed as

h(x) =
{ |x|2, |x| ≤ γ

2γ |x| − γ 2, else
(34)

with γ as the threshold. This function is used to estimate
the difference in dielectric properties between the pixel and
its neighborhood. The total difference is measured by

FHB =
∑
v

∑
v′∈Nv

h(χv − χv′) (35)
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where Nv represents the neighborhood of v. Eight neigh-
bors are used for one pixel.2 The first derivative of Huber
regularization w.r.t. the contrast is

gχ
HB =

∑
v′∈Nv

ωv′ (36)

with

ωv′ =
{

χv − χv′ , |χv − χv′ | ≤ γ

γ (χv − χv′)/|χv − χv′ |, else
(37)

Another regularization term is the smoothness constraint
guided by US information described in Section III-A. The
first derivative of UGS regularization is

gχ
UGS = (D∗

vDv + D∗
hDh)χ (38)

With these regularizations, the criterion becomes

F(J1, . . . , JNi ,χ) =
∑Ni

p=1

∥∥∥Esp −Gs Jp
∥∥∥2

∑Ni
p=1

∥∥∥Esp

∥∥∥2

+
∑Ni

p=1

∥∥∥diag(χ) Eip + diag(χ)Gd Jp − Jp
∥∥∥2 + αFr(χ)

∑Ni
p=1

∥∥∥Eip

∥∥∥2

(39)

There is no need to solve the forward problem at
each iteration, so it is more efficient. With function
F(J1, . . . , JNi ,χ), it is difficult to optimize contrast current
and contrast simultaneously due to their dependence. Here
one follows [34] to optimize them alternately by minimizing
the cost functional w.r.t. J, assuming known χ , and update
χ , assuming known J. The optimization procedure is in
Algorithm 1.
Similarly, the regularization term can also be enforced on

the real and imaginary parts separately as

Fr(χ) = Fr(�{χ}) + βFr(	{χ}) (40)

During update of the contrast, the gradients of the cost
functional w.r.t. to real and imaginary parts are

g�{χ}
n =

∑
p

�
{
(χn−1 Etp,n − Jp,n)(E

t
p,n)

∗}

+ αrg
�{χ}
Fr

(�{χ}) (41)

g	{χ}
n =

∑
p

	
{
(χn−1 Etp,n − Jp,n)(E

t
p,n)

∗}

+ αig
	{χ}
Fr

(	{χ}) (42)

with αr = α and αi = αβ.

2. In [8], there is a coefficient 0.5 since the difference between two
neighboring pixels is calculated twice. Here it is in the regularization
parameter.

Algorithm 1 CSI With HB/UGS Regularization

Input: Es, Ei, Gs, Gd
Output: χ

Initialize χ0 and J by back propagation [35] with

Jp,0 =
∥∥∥G∗

s Esp

∥∥∥2

∥∥∥GsG∗
sE

s
p

∥∥∥2
G∗

s Esp and χ0 =
∑Ni

p=1 Jp,0 E*
p,0∑Ni

p=1

∥∥Ep,0
∥∥2

for n = 1:itermax do
Calculate data equation error

ρp,n−1 = Esp −Gs Jp,n−1
Calculate state equation error
rp,n−1 = diag(χn−1) Etp,n−1 − Jp,n−1
Update contrast current:

Gradient gJp,n = −G∗
sρp,n−1/

∑
p

∥∥∥Esp

∥∥∥2

− rp,n−1 − G∗
d diag(χn−1)

∗rp,n−1

∑Ni
p=1

∥∥∥Eip

∥∥∥2

Polak-Ribière conjugate gradient search direction

vp,n = gJp,n +�〈gJp,n, gJp,n − gJp,n−1〉
〈gJp,n−1, gJp,n−1〉

vp,n−1

Update J by Jp,n = Jp,n−1 +βp,n vp,n
Update total field by Etp,n = Eip +Gd Jp,n
Update contrast:
Gradient

gχ
n = ∑

p(χn−1 Etp,n − Jp,n)(Etp,n)
∗ + αgχ

HB/UGS(χ)

Polak-Ribière conjugate gradient search direction

dn = gχ
n +�〈gχ

n , gχ
n − gχ

n−1〉
〈gχ
n−1, gχ

n−1〉
dn−1

Contrast
χn = χn−1 + αn dn

end for

IV. NUMERICAL SIMULATIONS
In this section, one considers numerical experiments on three
breast models: a synthetic one, Model 1, to validate algo-
rithms, and two realistic breast phantoms, Models 2 and 3.
As mentioned, in US imaging, reflective boundaries where
acoustic impedance changes can be detected by reflection
algorithms when the travel time t of acoustic signals is
recorded and an average sound speed c assumed. Here, tis-
sue boundary information is not derived from carrying out
these methods in full but from simpler simulations: three
sources are put around the object; each one emits ultrasonic
pulses in different directions (from −45◦ to 45◦ towards the
center); the position of the boundary along each direction is
calculated as d = ct/2; based on the angle of acoustic wave
it is decided whether the boundary is vertical or horizontal
and the images subsequently follow. The experiments are
conducted at a single frequency of 1GHz.

A. RECONSTRUCTION OF SYNTHETIC BREAST MODEL
This simple synthetic breast model consists of skin, fatty,
fibroconnective/glandular and tumorous tissues. Each tissue
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FIGURE 1. Real (a) and imaginary (b) parts of synthetic Model 1.

type is of regular shape and has uniform permittivity. The
skin is 2mm thick and the tumor of 6mm-diameter. The
immersion medium is chosen from [8], letting εb = 10 +
4i. Relative permittivities of tissues at 1GHz are 39.89 +
15.64i, 4.80 + 0.82i, 48.82 + 15.89i, 56.27 + 17.96i, resp.
Figure 1 depicts the distribution of real and imaginary parts.
The DoI is of size 0.1m×0.1m. 40 antennas are distributed
evenly on a circle of 0.057m radius, operated as sources
and receivers simultaneously. For the forward problem, the
DoI is discretized into 200 × 200 pixels and the problem
tackled by a conjugate-gradient fast Fourier transform (CG-
FFT) algorithm. Additive Gaussian noise is added to the
synthetic data with SNR=30 dB.
For inversion, the domain is discretized into 80×80 pixels.

One assumes that the breast is in a circle with 0.045m
radius (the radius of outer boundary of the breast model is
0.042m). The reconstruction is confined within the region
and pixels outside it restricted to same dielectric properties
as the coupling medium. Retrieved real and imaginary parts
of the relative permittivity are bounded by 1 ≤ �{εr} ≤ 70
and 0 ≤ 	{εr} ≤ 40 at each iteration.
The regularization parameter α can be chosen by

L-curve [36], generalized cross-validation [37], or other
methods. When it is determined, it can be chosen as αr in
separate inversion. β, as the ratio of regularization param-
eter of imaginary part to real part, is chosen based on the
relative magnitude of these two parts. γ in Huber regular-
ization is the threshold below which a quadratic cost is used
to smooth noise and above which a linearly-varying cost is
added to penalize it in a lesser extent for edge-preserving.
It is selected as the smallest difference in the contrast (a
margin can be left).
First, one experiments on DBIM with Tikhonov regulariza-

tion (DBIM-TK) and CSI with separate Huber regularization
(CSI-HB-S). The DBIM regularization parameter is α =
0.05. With Huber, the threshold is γ = 0.5 and the regular-
ization parameter αi = 0.1 for the imaginary part, αr = 0.001
for the real part. CSI with no regularization is run also in
comparison and its results shown.
Results are in Figure 2. The glandular part is reconstructed

as a ring with relatively higher relative permittivity but is
still recognized. The contrast value of the center part is
usually underestimated. Dielectric properties are not smooth
in each region and the small tumor is not found. Now, one
incorporates the prior information from US imaging by UGS

FIGURE 2. Retrieved real (left) and imaginary (right) parts of Model 1 with. (a), (b)
DBIM-TK reconstruction; (c), (d) CSI reconstruction; (e), (f) CSI-HB-S reconstruction.

FIGURE 3. Boundary information in vertical (left) and horizontal (right) directions.

regularization. The tissue boundary information incorporated
is in Figure 3. As explained, these two images show the
discontinuities in vertical and horizontal directions.
The regularization parameter is set to 1 in DBIM, 0.01

in CSI. Besides, one separates real and imaginary parts in
DBIM-UGS (DBIM-UGS-S) and CSI-UGS algorithm (CSI-
UGS-S). The regularization parameters are αr = 1 and αi =
10 for DBIM-UGS-S and αr = 0.01 and αi = 10 for CSI-
UGS-S. Results are in Figure 4.
With this US information guided regularization, the results

are smoother, while edges are well preserved with both
algorithms. Besides, the tumor is well distinguished within
the glandular part in the reconstruction of the real part.
Upon separation of real and imaginary part reconstruc-
tions and assigning a large regularization parameter to
the imaginary part, one sees obvious improvement in its
retrieval.
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FIGURE 4. Retrieved real (left) and imaginary (right) parts of Model 1. (a), (b)
DBIM-UGS; (c), (d) DBIM-UGS-S; (e), (f) CSI-UGS; (g), (h) CSI-UGS-S.

TABLE 1. Relative error with Model 1 with SNR=30 dB.

To evaluate the imaging results quantitatively, one com-
putes the relative error of the permittivity as

Err(ζ ) = ‖ζest − ζtrue‖2

‖ζtrue‖2
(43)

where ζ is the parameter to evaluate and subscripts “true”
and “est” represent true value and estimation result, resp.
The errors with the algorithms above are in Table 1.
Reconstructions are more accurate than those with the algo-
rithms without prior information. Also, one sees a small
decrease in the error result of the real part and a large one
in the imaginary part when the two parts of contrast are
retrieved separately.
The CPU time is also compared between the cases whether

the real and imaginary parts are reconstructed separately.

FIGURE 5. Inexact boundaries tested in experiments with Model 1: (a), (b) fake
tumor; (c), (d) incomplete boundary.

In average, it takes 13.89 seconds for one iteration in DBIM-
UGS,14.38 in DBIM-UGS-S, 1.79 in CSI-UGS, and 0.73 in
CSI-UGS-S, performed on Intel Core i7-8850H CPU (2.60
GHz) with 32 GByte memory. Considering both computa-
tion cost and imaging quality, DBIM-UGS and CSI-UGS-S
are henceforth used to incorporate US information in the
following experiments.
Robustness of the algorithm is tested based on DBIM-

UGS. Here the reflective boundaries are assumed to have
been obtained from some reflection mode imaging methods,
however, in fact, those cannot be perfect. The acoustic signal
may bounce between two interfaces so there will be artifacts
and some boundaries may be missing due to a small variation
in acoustic impedance. So, it is worthwhile to discuss the
effects of inexact boundaries.
One has carried out several experiments with two kinds

of inexact boundaries, which are shown in Figure 5. In the
first kind, there is a fake tumor, and in the second one,
interfaces between tumor and glandular part are incomplete.
With these boundaries, retrievals are depicted in Figure 6.
Since the regularization term is intended to suppress the dis-
continuity between two adjacent pixels not at a border, it has
no constraint otherwise. That is more severe when boundaries
are not complete. This is consistent with the experiments.
If a fake tumor in the US information, it appears in the
map with lower contrast, while the real one still has higher
permittivity and one can detect it. When the boundaries are
incomplete, the tumor has no evident border and is difficult
to find. Thus, if the boundary information cannot yield the
interface between tumor and other tissues, it is hard to image
it with microwaves.
Now, a higher level of noise is considered with

SNR=10 dB. Experiments are conducted on DBIM-TK,
DBIM-UGS, CSI-HB-S and CSI-UGS-S with the same reg-
ularization parameters. The relative errors are summarized
in Table 2. Due to the high level of noise, the quality of the
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FIGURE 6. Retrieved real (left) and imaginary (right) parts of Model 1. (a), (b) case
with a fake tumor; (c), (d) case with incomplete boundary.

TABLE 2. Relative error with Model 1 with SNR=10 dB.

FIGURE 7. Real (a) and imaginary (b) parts of Model 2.

imaging is degraded for all algorithms yet the one proposed
is affected to a lesser extent.

B. RECONSTRUCTION OF REALISTIC BREAST
PHANTOMS
To better validate the approach, one tests it on two more
realistic breast phantoms as slices extracted from breast
phantoms of the UWCEM repository [38], categorized in
different classes according to radiographic density.

1) CLASS 2 BREAST PHANTOM

Model 2 (ID 070604) has a scattered fibroglandular density.
Debye parameters are from [9]. Figure 7 shows the phantom.
The cell size is 0.5mm and one uses this grid to solve the

forward problem. 40 antennas are set evenly on a circle of
0.08m radius. Additive Gaussian noise of 30 dB is added to
the data. For inversion, one adopts a 2mm cell size, resulting
in 88 × 77 pixels. Other configurations are the same as with
experiments before. The reconstruction results of DBIM-TK
and CSI-HB-S are in Figure 8. The regularization parameter

FIGURE 8. Retrieved real (left) and imaginary (right) parts of Model 2. (a), (b)
DBIM-TK; (c), (d) CSI-HB-S.

FIGURE 9. Tissue boundaries of Model 2.

is α = 0.05 for DBIM and one sets αr = 0.001 and αi = 0.1
in CSI for Huber regularization, its threshold being γ = 0.5.

The main glandular part is well retrieved by both algo-
rithms, yet with a smaller size. Both fail in imaging the fine
structure in the phantom. Yet, imaging is satisfactory as one
can at least see the main structure.
Figure 9 shows the vertical and horizontal boundaries

for the experiments next. As observed, discontinuities occur
more frequently in the breast phantom and several points
presenting discontinuities are adjacent in the same direction
with null corresponding diagonal elements in D∗

hDh + D∗
vDv.

As a result, in DBIM, even with regularization term
FUGS = α(‖Dvδχ‖2 + ‖Dhδχ‖2), the problem may remain
ill-conditioned.
This can be tackled by adding a small penalty term on

the points where discontinuity shows in prior information.
One sets bv/h(i, j) = γt when the point is on a boundary
and Dv/h also changes accordingly. γt is chosen as a small
value meanwhile keeping matrix K∗K + α(D∗

vDv + D∗
hDh)

well-conditioned. Regularization parameters are chosen as
α = 10 and γt = 0.1 for UGS regularization in DBIM-UGS.
In CSI-UGS-S, they are set as αr = 0.01 and αi = 1 for the
real and imaginary parts.
Results of DBIM-UGS and CSI-UGS-S are in Figure 10.

The results improve and finer structures are imaged when the
boundary information is incorporated. The relative errors of
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FIGURE 10. Retrieved real (left) and imaginary (right) parts of Model 2. (a), (b)
DBIM-UGS; (c), (d) CSI-UGS-S.

TABLE 3. Relative error with Model 2.

FIGURE 11. Real (a) and imaginary (b) parts of Model 3.

results above are proposed in Table 3. From this error calcu-
lation, one observes that imaging quality is indeed enhanced
when US high-resolution information is incorporated.

2) CLASS 3 BREAST PHANTOM

Model 3 (ID 080304) is heterogeneously dense and its struc-
ture is quite complicated, see Figure 11. In Model 3, one
inserts a synthetic 1 cm-diameter tumor at position (1.2 cm,
−0.5 cm). Its relative permittivity is 59.98 + 19.83i, cor-
responding to the 75th percentile curve at 1GHz in [3].
Configurations are as with Model 2. Cell size remains 2mm
for inversion and the DoI has 83 × 51 pixels.

One chooses α = 0.001 for the Tikhonov regularization,
αr = 0.001 and αi = 0.1 for the Huber regularization.
Figure 12 displays the reconstruction results. Those by CSI-
HB-S are smoother than those by DBIM-TK since the latter
enforces no constraint on the spatial gradient of the contrast.
Neither algorithm however can image the glandular part well
and both fail in detecting the tumor.
Boundaries now used are shown in Figure 13. For DBIM,

one sets γt = 0.2 and the other parameter values are like in
the Model 2 experiment.

FIGURE 12. Retrieved real (left) and imaginary (right) parts of Model 3. (a), (b)
DBIM-TK; (c), (d) CSI-HB-S.

FIGURE 13. Tissue boundaries of Model 3.

FIGURE 14. Retrieved real (left) and imaginary (right) parts of Model 3. (a), (b)
DBIM-UGS; (c), (d) CSI-UGS-S.

When boundary information is incorporated, results
improve. Glandular and tumorous tissues are retrieved well.
The small tumor can be distinguished from the glandular
part, i.e., can be detected. Yet, singular points emerge with
higher value. The regularization parameter γt must be prop-
erly chosen: too small, one may see those singular pixels, too
large, the result may be too smooth to detect the tumor. The
relative error of Model 3 is in Table 4, showing improvement
of imaging.

V. CONCLUSION
In the present work, one has proposed a regularization
term to incorporate US information into microwave imaging.
The regularizer tries to smoothen the dielectric properties
between two adjacent pixels when none is on the tissue
boundaries indicated by the US information, thus there is no
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TABLE 4. Relative error with Model 3.

need to segment US images to decide whether or not two
pixels belong to the same tissue region, only tissue bound-
aries where reflection occurs in US imaging are used. Thus,
it is easier to implement. One concludes that with microwave
data only, it is quite difficult to image a small tumor inside
the breast.
Adding high resolution information enables to well esti-

mate its location and shape. One has also tested the
robustness of the algorithm. Since the algorithm is imposed
on pixels not on boundaries, this has more influence on the
result when some boundaries are missing. If the interface
of a small tumor and normal tissue is not detected by US
imaging, it is hard to find it by microwave imaging. One
has also shown that to retrieve real and imaginary parts in
separate fashion can improve the results. Now, further atten-
tion should be on presentation of the boundary information
from US imaging and attempting to find a way for a better
exploitation.
As for joint (fused) inversion of electromagnetic and

acoustic data for breast imaging, it is of good potential.
Edge-preserving regularization [39] can be performed by
introducing auxiliary variables indicating whether or not a
pixel is on an edge. Edge markers could be obtained from
the last parameter profile and guide the next optimization
as regularization term. Alternate minimization would be
used to update acoustic contrast, edge markers and dielec-
tric contrast. Also, increasingly popular convolutional neural
netwoks (CNN), now involving a two-stream CNN [40],
combining feature maps at a certain level, should produce
tissue types, the last CNN layer being a classifier (this is
expected to be easier than outputting EM and US parameters
at each pixel).
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