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ABSTRACT A novel stable, accurate and fast numerical method based on triangular meshing and space
transformations for electrodynamics problems with arbitrary boundaries is developed. Using transformation
optics it is possible to convert non uniform domains into uniform rectangular ones allowing Maxwell’s
Equations to be solved quickly and simply using a modified finite difference time domain (FDTD)
algorithm. A novel averaging method is presented to ensure the stability and accuracy of our algorithm when
dealing with anisotropic and inhomogeneous materials in the transformed space. Finally we demonstrate
the advantages of the present technique compared with conventional FDTD and transformation optics
FDTD through a couple of scattering problems. These show that this method is more than one thousand
times faster than classical FDTD in the presence of curved boundaries.

INDEX TERMS Numerical analysis, computational optics, FDTD.

I. INTRODUCTION

THE FINITE-DIFFERENCE time-domain (FDTD) [1]–
[4] algorithm is a widely used numerical method for

modelling a wide range of electromagnetic problems. It is
often used to model optical systems due to its time-domain
approach making it ideal for finding the frequency response
and for investigating the non-linear behaviour of different
systems. Despite its relatively easier implementation com-
pared to another numerical method such as the finite element
method, it suffers from numerical instability and relatively
larger numerical errors since it is a second-order centred
finite difference method in time and space.
The conventional FDTD algorithm solves Maxwell’s equa-

tions by using a second-order centred finite difference
approximation of the field’s derivatives which requires a uni-
form rectangular grid over the entire simulation window with
a typical grid spacing of λ/10 to ensure convergence and
accuracy. This meshing uniformity and high density becomes
very problematic especially when we are dealing with iso-
lated subwavelength geometrical details in a relatively large
computational domain as it forces the whole meshing grid

to be small enough to take the small details into the account.
Similarly a uniform mesh results in a geometrical discretiza-
tion error when dealing with curved boundaries or interfaces
between materials. Various algorithms such as sub-gridding
FDTD and adaptive mesh refinement (AMR) [5]–[14] try to
address these problems by considering a local area with
smaller grid sizes but this can lead to the well known
late time instability [13]–[17] due to its spatial and tem-
poral interpolations and such approaches usually cannot
avoid the geometric discretization error. Another problem of
these approaches is higher amount of error when the ratio
of spatial steps becomes large. The Huygens sub-griding
method [13], [14] solves this issue but it still suffers from
late-time instability.
Recently space transformations have been widely used

to handle meshing problems in finite difference and finite
element numerical approaches. Quadrilateral gridding for
solving partial differential equations [18]–[20], curvilinear
FDTD [21], [22] and nonorthogonal grid FDTD [23], [24]
are methods that applied space transformation to deal with
geometrical discontinuity and uniformity of finite difference
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meshing. However, these transformations change their target
partial differential equations (Maxwell’s equations in case of
FDTD). Therefore, some consequences such as nonphysical,
non-divergence-free and late-time unstable solutions have
been encountered [25].
It is however possible to ensure that the solutions of

the transformed equations map one to one onto the solu-
tions of the real physical system provided that in addition
to transforming the spatial grid the material parameters are
also changed appropriately [26]–[30]. This approach takes
concepts from transformation optics [31] and uses them to
solve Maxwell’s Equations over an arbitrary domain and
such methods are known as TO-FDTD. The idea is to find a
set of transformations for both space and the local material
properties that leave Maxwell’s equations invariant so that a
solution in the transformed space is easy to find numerically
(or analytically) and then this solution can be transformed
using the inverse transformation back into real space. While
in principle this method (TO-FDTD) can solve all of the
above issues with FDTD it brings its own set of problems
relating to the highly non-uniform and anisotropic material
parameters (ε and μ) in the transformed system.
Anisotropic materials can lead to numerical instability

in classical FDTD algorithms depending on the chosen
grid and interpolation procedure. However methods have
been developed that can avoid these instabilities by cor-
rectly averaging the material across different cells [32]–[34].
Moreover, the small relative permittivity and permeability
can also create numerical instability for an explicit FDTD
algorithm, as the speed of wave propagation increases with
decreased relative permittivity and permeability. In fact, a
wave must not propagate further than a single unit cell per
time step in explicit discrete-time simulations. This constraint
is known as Courant-Friedrichs-Lewy stability condition [35]
for hyperbolic partial differential equations. In [26]–[30]
dispersive materials were used to ensure numerical stabil-
ity. However, using such dispersive materials add unwanted
frequency dependencies to the simulation making it harder
to simulate conditions across a broad frequency range.
In addition to all of the previously mentioned problems

for transformation optics FDTD methods, these methods typ-
ically involve extra analytical or numerical effort to find the
optimal transformations. These transformations are finely
tuned based on the given problems’ geometry so if we
want to change any geometrical parameters we need start
again at the very beginning of the process. This lack of
robustness makes current transformation optics FDTD algo-
rithms impractical for optimization problems where we want
to find the best geometry for example. Moreover, none
of the transformation optics FDTD methods consider their
transformation in the sense of avoiding staircase error [36].
In this work, we present a novel triangular FDTD meshing

scheme that firstly minimises the discretization error from all
the internal and external boundaries and secondly provides
us with total freedom over the mesh density in the vicin-
ity of any number arbitrary points or area of the simulation

FIGURE 1. (a) Allocating an equal number of points on the edges (one and two) and
(three and four). (b) drawing a line between the first and last points of edges one and
two of (a) and dividing it by the equal number of points on edges three and four.
(c) calculation of displacement vectors. (d) calculation of effective displacement
vectors based on the location of internal meshing points.

window. Then, based on these obtained meshes, a new vir-
tual space will be generated with a uniform grid. Then we
present a new method for the implementation of an uncondi-
tionally stable explicit FDTD for inhomogeneous anisotropic
materials without adding unwanted frequency dependency
for the proposed triangular meshing scheme. After solving
the problem in transformed uniform space we bring back the
results into our initial space. Finally the superiority of the
present method against classical FDTD and transformation
optic FDTD is shown using a couple of examples.

II. METHODOLOGY
Our ultimate aim is to find a transformation that converts
an arbitrary shaped region of the plane into a rectangle on
which we can solve Maxwell’s equations quickly and effi-
ciently using the FDTD algorithm (the extension to a fully
3D simulation is relatively straightforward but computation-
ally much more extensive so is not considered here). Since
we are dealing with a numerical approach we need only
consider the transformation at the desired grid points which
can be chosen to avoid both staircase errors and late time
instabilities or inaccuracies. Whilst in the literature there is a
significant body of work on algorithmically generating grid
points most of this is concerned with triangular meshes suit-
able for finite element simulations and to the best of our
knowledge no algorithm for generating grid points suitable
for use in transformation optics has been explicitly presented
before. Thus we first present our gridding algorithm before
discussing its applicability in FDTD simulations.

A. MESHING METHOD
We firstly have to generate a mesh based on the given inte-
rior and exterior boundaries of the scenario. For the sake
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FIGURE 2. Meshing example using the proposed method.

of simplicity, consider a system with only exterior bound-
aries as illustrated in Fig. 1(a) with the grid points on the
boundary are indicated by the solid dots. These points must
be chosen such that there are N points along the top and
bottom boundaries while there can be M points along the
left and right edges (with the ultimate aim of producing a
uniform rectangular N ×M grid in the transformed space).

The next step is to start with two vertical lines connect-
ing the left and right sides of the boundaries as shown in
Fig. 1(b). Along each vertical line we add at M arbitrary
locations grid points (shown in red). The location of these
points will be chosen to maximise the grid density where
needed. We can then define two functions fl and fr that map
the ith vertical grid point to the ith grid point of the curved
boundary as shown in Fig. 1(c). Using these functions we
can define the displacement vectors δvli and δvri by

δvli = fl(vi) − vi and δvri = fr(v′
i) − v′

i (1)

Then we wish to choose interior grid points such that
the resulting grid lines smoothly map from one boundary
to another. We start by drawing a straight line between the
ith grid point along the top boundary and the ith grid point
along the bottom boundary. And we add in M grid points
along this line as shown in Fig. 1(d). The j grid point on
this line vi,j is then displaced by the weighted sum of the
displacement vectors δvli and δvri , i.e.,

vei,j = vi,j +
iδvrj + (N − i)δvlj

N
(2)

Note that Eq. (2) can shift interior points outside the
boundary in which case, we must change the location of the

FIGURE 3. Increasing the number of meshing cells in the center (a) using changing
the distribution of meshing points in the boundary (b) by changing the effective vector.

initial points [i.e., either the edge points or the points that
we assigned on the lines between the edge points Fig. 1(d)]
to make sure that the transformed point lies in the interior.
Examples of generated meshes based on the above technique
for different exterior boundaries are presented in Fig. 2. (a),
(b), (c) and (d). For all of these examples, all the assigned
points on all edges and generated lines chose to be uniformly
distributed. As can be seen in these figures, the geometrical
behaviour of exterior boundaries has been kept in all of the
meshes.
Using this approach there is still considerable freedom to

chose the meshing function that allows us to alter the density
of the mesh in specific regions (we will need this to deal with
curved boundaries and small scale features when solving
Maxwell’s equations). We can propose two ways that let us
chose the density of the meshing points in the specific area
within the meshing domain. The first way, shown in Fig. 3(a),
is to change the distribution of the assigned points in the
edges and the second approach is changing the distribution of
the interior points along specific lines as shown in Fig. 3(b).
In the first approach, we can see there are more distortions
in meshing grids than the second approach. We thus adopt
the second approach in this work since it leads to better
results for our FDTD simulations.

1) MORE COMPLEX GEOMETRIES

The method outlined above handles simple geometries very
easily but fails for more complicated shapes or for waveg-
uides with internal boundaries such as the one shown in
Fig. 4(a). To handle the internal boundary for meshing using
the proposed method this structure should be divided into
three sections which are the two blue and the one red section
in Fig. 4(a). Then, each part can be meshed independently
as shown in Fig. 4(b), using the original method. The only
constraint for the meshing in each section is that the dis-
tribution and the location of the meshing points on each
internal boundaries must be the same for the adjacent sec-
tions. This is essential as the whole mesh must eventually be
transformed into a uniform grid. Similarly more complicated
geometries can all be split into simple regions and meshed
accordingly.

VOLUME 1, 2020 389



KAZEMZADEH et al.: NOVEL TIME-DOMAIN ELECTROMAGNETIC SIMULATION USING TRIANGULAR MESHES BY APPLYING SPACE CURVATURE

FIGURE 4. (a) arbitrary geometry with internal boundaries. (b) resulted mesh.

B. CALCULATION OF MATERIAL PROPERTIES OF EACH
MESHING CELL
Solving Maxwell’s equations using the FDTD method, works
best in terms of numerical stability and accuracy when done
on a uniform grid [26], [30]. For this reason, we want to
transform our more general meshing scheme to a uniform
rectangular grid then we can solve the problem in the trans-
formed space using FDTD. To achieve this we can find a
transformation for each meshing cell and find the appropriate
change of material property based on the obtained transfor-
mation. Consider a general three-dimensional transformation
T : R

3 ⇒ R
3. This transformation must be locally invert-

ible so we will be able to transform the solution back into
the initial space. Furthermore as each meshing cell must be
chosen to be significantly smaller than the local wavelength
(typically smaller than 1/10 of wavelength), we can approx-
imate T as a linear transformation valid over each cell. Such
an approximation is necessary for the FDTD algorithm since
we need to specify the material properties at each grid point.
Therefore, we can rewrite our general transformation as:

T(x0 + δx) = T(x0) + �δx (3)

in which � is the Jacobean matrix of the transformation. x0
and δx are an arbitrary point and small deviation from it,
respectively. In our case T is defined by the requirement that
a grid point xi,j in real space gets transformed to the regular
grid point (i�x′, j�y′), in which �x′ and �y′ represent the
width and height of each cell in virtual space grid, in the
transformed space and furthermore the tangent vectors to
the grid lines in real space become orthogonal at each grid
point in the transformed space. Note that in general T and �

will vary from point to point and as we will see this causes
issues with the stability of the FDTD algorithm as discussed
below.
Given the transformation T defined locally by Eq. (3) we

can find a solution to Maxwell’s equations in the transformed
space that is completely equivalent to the real space solution
provided that the optical path length between any two points
remains the same. It can be shown that if distances are altered
via Eq. (3) then this requires that the relative permittivity
and permeability transform as:

εtr = �ε�T

det(�)
(4a)

μtr = �μ�T

det(�)
(4b)

FIGURE 5. Standard Yee cell and the location of the points where the electric and
magnetic fields are calculated.

FIGURE 6. (a) and (b) arbitrary meshing cell in initial and transformed space. (c) and
(d) deviation of meshing cell into two triangles in initial and transformed space.

in which ε, μ, εtr, and μtr are permittivity and permeability
in initial and transformed space, respectively. Note that εtr

and μtr are now anisotropic and are also spatially varying
even if the original material was uniform. Both of these
raise issues with the standard FDTD algorithm due to the
non hermitian nature of the standard discretization of space.
This is illustrated in Fig. 5 which shows the standard Yee
cell for the FDTD algorithm. As can be seen the electric and
magnetic fields are evaluated at different points in space and
thus εtr and μtr will also be evaluated at different spatial
points. Numerically this means that the difference equations
approximating Maxwell’s equations are non-hermitian and
thus exponentially increasing solutions can occur leading to
the onset of late time instabilities. In the next section we
show how this can be avoided and then demonstrate this
using some examples.
To see how these anisotropies arise we consider in detail

the transformation of a single mesh cell in real space to a
rectangle in the transformed space. This is shown in Fig. 6
(a) and (b). Note that as a rectangle has 4 corners while a
linear transformation in 2D has only two degrees of freedom
it is not possible to find a linear transformation that does
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FIGURE 7. (a1), (b1) and (c1) triangular meshing. (a2), (b2) and (c2) εtr
zz distribution

corresponding to the lower triangle in each mesh cell of (a1), (b1) and (c1),
respectively. (a3), (b3) and (c3) differences between the value of εtr

zz for upper and
lower triangle related to meshes in (a1), (b1) and (c1), respectively.

such a mapping. Instead we need two linear transformations,
one for each of the triangles in Fig. 6 (c). So by Eq. (4)
the material properties are different in the upper and lower
half of each grid cell. In particular note that in the FDTD
algorithm Ez is calculated in the middle of each grid cell
which is where εtr is discontinuous and thus we need to
modify the FDTD algorithm to take this into account.
Finally as an explicit example of how the material prop-

erties change with the gridding we show in Fig. 7 three
different meshes [(a1), (b1), (c1)] for the same shape. Mesh
(a1) has the greatest density of cells near the edges while
mesh (b1) has more cells in the middle of both the verti-
cal and horizontal directions while mesh (c1) has the most
mesh cells in the centre. In all cases the original value of
ε = 1 corresponding to empty space. Figs. 7(a2),(b2),(c2)
show the calculated εtr for the lower half cells in the trans-
formed uniform grid according to Eq. (4). Note that where
the mesh points are further away, the speed of light in the
transformed space decreases, (εtr) increases, while where the
density of points increases the speed of light in transformed
space increases, (εtr) decreases, so when going back to the
real space light travels at the same speed everywhere. Finally
the difference between εtr in the upper and lower triangles
for each grid cell is shown in Figs. 7(a3),(b3),(c3). In all
cases although the difference is small it is enough to cause
instabilities in the FDTD algorithm as discussed below.

C. IMPLEMENTATION OF A STABLE FDTD ALGORITHM
FOR ANISOTROPIC MEDIA USING A TRIANGULAR MESH
As we want to solve Maxwell’s equations in the transformed
space, we need to focus on the numerical solution for a

uniform grid. Let’s first find the stability condition for FDTD
in the presence of anisotropic media. The relevant Maxwell
equations are as:

∇ × E = −μtr ∂H
∂t

(5a)

∇ × H = εtr
∂E
∂t

(5b)

in which E and H are electric and magnetic fields, respec-
tively. We can combine these equations into a single
one as:

∇ ×
(
εtr

−1∇ × H
)

= −μtr ∂
2H

∂ t2
(6)

For non-magnetic materials the relative permeability is unity
so inserting Eq. (4b) in Eq. (6) gives

∇ ×
(
εtr

−1∇ × H
)

= − ��T

det(�)

∂2H
∂ t2

(7)

Since � is not a function of time we can rewrite Eq. (7) as

�−1∇ × εtr
−1∇ × �T−1

(
�TH

)
= − 1

det(�)

∂2

∂t2

(
�TH

)
(8)

Eq. (8) is a eigenvalue equation for the new variable �TH
which is an eigenvector of the operator O = �−1∇ ×
εtr

−1∇ × �T−1
. It can be shown that the operator O is

Hermitian since all of the operators involved are, includ-
ing εtr

−1
which is the only non-trivial case. From Eq. (4a)

we can see that εtr is Hermitian since ε is symmetric (assum-
ing lossless media) and thus so is εtr

−1
since the inverse of

a Hermitian matrix is also Hermitian. Returning to Eq. (8)
we see that all of the eigenvalues of O are real and so the
solutions are complex exponentials and hence as expected
no solutions will grow exponentially in time.
In order to construct an unconditionally stable numeri-

cal algorithm we thus need to find a discrete Hermitian
counterpart to O that is defined using the standard Yee
cells. Previously Werner and Cary proposed a stable FDTD
algorithm for solving Maxwell’s equations involving non-
diagional and anisotropic dielectrics [32] and this approach
can be easily extended to our case. The key to their approach
came from recognising that the standard FDTD algorithm
evaluates the electric and magnetic fields at different points
in space [see Fig. 5] and an interpolation procedure is needed
to create second order accurate centred difference approx-
imations to the material parameters. This procedure results
in the discretised eigenvalue equation

�−1[∇+×]
εtr

−1[∇−×]
�T−1

(
�TH

)
= − 1

det(�)

∂2�TH
∂t2

(9)

where the forward and backward curl operators (∇±) are
defined in [32, eq. (13)]. Eq. (9) is still an eigenvalue equa-
tion but for the discrete operator Od. Importantly Od is
Hermitian as long as the discrete version of (εtr)−1 is sym-
metric. If this is the case then the eigenvalues of Od are
purely real and our numerical scheme will not suffer from
late time instabilities.
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FIGURE 8. Yee cell and location of electric and magnetic displacement fields in the
presence of triangular mesh.

D. SYMMETRIC IMPLEMENTATION OF εTR−1
IN YEE

CELL FOR A TRIANGULAR MESH
Eq. (9) and [32] shows that to create a stable FDTD algo-
rithm we must find a Hermitian matrix that approximates
(to second order) εtr and μtr. Consider, a two dimensional
Yee cell, is shown in Fig. 8, for the transverse electric (TE)
case. Here the red points indicate where the FDTD algorithm
calculates the electric or magnetic fields and so indicates
the points were we need approximations for the material
parameters. Comparing Fig. 8 and Fig. 6 we can see that
our transformation T is discontinuous at precisely the points
where we need to calculate the fields and so some care is
needed to properly symmetrise the relevant tenors. Therefore,
our approach is to average over areas 1 and 2 of Fig. 8 for
εzz. For the permeability, it should be averaged over 4 and
1 for μxx, 2 and 5 for μyy and finally 1, 2, 4 and 5 for
both μxy and μyx. With this procedure the material tensors
remain symmetric and we can thus avoid spurious instabil-
ities in our simulations. To demonstrate this we turn to a
couple of examples which also demonstrate the improvement
in speed and accuracy of our method.

E. CFL STABILITY CONDITION
As the resulted relative permittivity and permeability in the
transformed space may be smaller than unity, the speed of
wave propagation can increase beyond the speed of light. In
such a case, the wave can propagate more than one spatial
step during a temporal step and this will lead into a numerical
instability. This constraint is known as Courant-Friedrichs-
Lewy (CFL) condition. In the previous researches [26]–[30],
they have used dispersive materials to overcome this issue by
the cost of adding unwanted frequency dependency on the
simulation. However, an additional homogeneous anisotropic
contraction of coordinate system in the transformed space
can increase the amount of transformed permittivity and
permeability in a way to satisfy the CFL condition [37].

III. RESULTS AND DISCUSSION
In order to demonstrate the superiority and implementation
of our method we discuss here a couple of simple examples
and compare the results of our method with a traditional
FDTD algorithm, a simple transform optics based approach

FIGURE 9. (a) and (b) meshing scheme for FDTD and the proposed method. (c), (d),
(e) and (f) distribution of εxx tr , εxy tr , εyy tr and εzz tr for the lower section of each
mesh cell in the proposed method, respectively.

and finally a finite element approach using the commercial
software package COMSOL.
Consider a waveguide with a discontinuity which is shown

in Fig. 10(a). Edges 1 and 2 are chosen to be a perfect electri-
cal conductor and the waveguide is terminated with a perfect
match layer (PML) at both ends. To ensure that the amount of
reflection caused by the PML is less than −80dB of the inci-
dent wave which reaches the PML boundaries, we applied
a fine tuned impedance matched lossy anisotropic dielectric
magnetic materials similar to Uni-axial Perfect Match Layer
(UPML) [38]. The conventional FDTD and proposed method
mesh, for this example, are showing in Fig. 9 (a) and (b),
respectively, and the PEC boundaries are indicated by the red
lines. As it can bee seen in Fig. 9 (a) the straight PEC bound-
aries in discontinuity are replaced by stairs shape boundaries
due to the limitation of classical FDTD method. However the
present method can easily follow the slope of discontinuity.
The εxx

tr, εxy
tr, εyy

tr and εzz
tr distribution corresponding to

lower triangles in each meshing cell of the proposed method
are shown in Fig. 9 (c), (d), (e) and (f), respectively. It is
noticeable that as the length of boundary discontinuity is
larger than its corresponding straight lines in the proposed
method we increase the number of meshing in this area by
the method of Fig. 3 (a). This example can be considered as
a very fair scenario for the classical and TO FDTD as we
only have a stationery discontinuity in one of the exterior
boundaries. However, the proposed method provides more
accurate results.
We used TE1 mode to excite this structure and calculated

S11 using the following formula:

S1n(f ) = F{∫ (
E⊥
total − E⊥

incident

)
E⊥
n dl

}

F{∫
E⊥
incidentE

⊥
n dl

} (10)

in which, E⊥
total , E

⊥
incident and E

⊥
n are the perpendicular com-

ponents of the total, incident and nth modal electric fields
respectively. Both integrations are done along the source
plane (line) which is indicated by the blue line in Fig. 10
(a) and F represents the Fourier transformation. The inci-
dent electric field is taken to be a summation of couple of
Gaussian pulses with overall FWHM = 150MHz and so by
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FIGURE 10. (a) geometry of waveguide. (b) S11 obtained from FDTD vs COMSOL.
(c) calculated S11 using the proposed method vs COMSOL. (d) relative error.

taking the Fourier transform we can calculate the amount of
reflected light in each mode at a particular frequency.
We calculated the S parameter for the proposed method,

classical FDTD, TO FDTD and finally FEM via commercial
software COMSOL. S11 obtained from classical FDTD vs
COMSOL and proposed method vs COMSOL for the dif-
ferent number of meshing cells per unit length (MPU) is
shown in Fig. 10. (b) and (c), respectively. We measure the
accuracy of each method by integrating the error between it
and the FEM solution over the upper and lower simulations’
frequencies (f1 and f2), i.e.,

error = 10 log

⎛
⎝

∫ f2
f1

(
S11
comsol − S11

)2
df

f2 − f1

⎞
⎠ (11)

This measure for each method is shown in Fig. 10(d).
As can be seen the proposed method is superior and results
in almost an order of magnitude improvement compared to
previous FDTD algorithms.

FIGURE 11. Spatial integral of scattered electric field over (a) 4500 time-steps (b)
1000000 time-steps obtained for the waveguide shown in Fig. 10 (a).

FIGURE 12. (a) Geometry of the waveguide. (b) approximated boundaries using
uniform grid of classical FDTD. (c), (d), (e) and (f) εxx tr , εxy tr , εyy tr and εzz tr

distribution.

To represent the results in the time domain, the numer-
ator of the Eq. (10) (

∫
(E⊥

total−E⊥
incident)E

⊥
n dl) for 4500 and

1000000 time-steps is illustrated in Fig. 11(a) and (b), respec-
tively. As it can be seen the simulation remains stable even
after more than 1000 times of wave round trip over the
waveguide structure.
The second example is waveguide with the internal and

external boundaries discontinuities as shown in Fig. 12 (a).
The area marked by the red colour in Fig. 12 is filled by a
dielectric with permittivity equal to 2 in all range of simula-
tion’s frequency while the upper and lower edge are chosen
to be PEC and the waveguide is terminated using PML at
both ends. As before we excite the TE1 mode using a short
pulse and the S11 coefficient is calculated to investigate its
behaviour. The meshing using our proposed method for the
colored sections is shown in Fig. 4(b) while the approx-
imated internal and external boundaries using a classical
FDTD meshing scheme is shown in Fig. 12 (b). It is obvi-
ous that the conventional meshing scheme fails for both the
internal and external boundaries and so the FDTD result
will not be accurate when small MPU are chosen. Finally
the purpose of the added white sections in Fig. 12 (a) is to
relax the proposed mesh for the source and PML realization.
The calculated εxx

tr, εxy
tr, εyy

tr and εzz
tr distribution in the

transformed space based on the meshing scheme of Fig. 4(b)
are shown in Fig. 12 (c), (d), (e) and (f), respectively. Please
notice, as the curved external boundaries in the red section
has a greater length than its corresponding straight line in the
transformed space, like the previous example, we increased
the number of meshing points on them, Fig. 4 (b).
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FIGURE 13. S11 (a) FDTD (b) proposed method.

FIGURE 14. (a) MPU vs relative error for FDTD and proposed method. (b) the
relative error vs run time for FDTD and the proposed method.

The resulted S11 from classical FDTD vs COMSOL and
proposed method vs COMSOL is shown in Fig. 13(a)
and (b), respectively. The detailed information about the total
number of mesh cells and run times for each of the results
using different MPU are shown in table (1), FDTD, and

FIGURE 15. Spatial integral of scattered electric field over (a) 4500 time-steps (b)
1000000 time-steps for the waveguide illustrated in Fig. 12(a).

TABLE 1. Total number of mesh, error and run time for FDTD.

TABLE 2. Total number of mesh, error and run time for the proposed method.

table (2), proposed method. Results from the conventional
FDTD using a MPU of 20 are not shown since it is too
inaccurate while for our new method it falls in acceptable
limits. Remarkably it can be seen that the proposed method
gives more accurate results compared to the FDTD with
eight times higher MPU. From Tables (1) and (2) two, this
means around 1000 times faster computation when a specific
amount of error is desired. The relative error vs MPU and
the run time vs relative error for the proposed method and
FDTD are shown in Fig. 14 (a) and (b), respectively.
The time domain results of the numerator of the

Eq. (10) for 4500 and 1000000 time-steps is shown in
Fig. 15(a) and (b), respectively. There is no sign of late-
time instability even after more than 1000 wave round trips
in the waveguide structure.

IV. CONCLUSION
A novel stable and accurate time-domain simulation tech-
nique based on a triangular meshing scheme and space
curvature is developed. Firstly, a triangular gridding algo-
rithm with the ability to follow any curved internal or
external boundaries suitable for finite difference time domain
(FDTD) methods is presented. Then we show that this new
meshing can be transformed to a uniform grid using a
local diffeomorphism. To keep the solutions of Maxwell’s
equations invariant under our transformation, we introduce
anisotropic inhomogeneous material parameters and show
how they can be calculated and used. Importantly our
approach avoids inaccurate, nonphysical or late-time unstable
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solutions present in other approaches. Finally we compare
our present method against conventional FDTD and transfor-
mation optics FDTD algorithms using a couple of waveguide
problems. We find that our method is at least one thousand
times faster for the same level of accuracy when the prob-
lems deals with curved internal or external boundaries in a
two dimensional simulation.

REFERENCES
[1] K. Yee, “Numerical solution of initial boundary value problems involv-

ing Maxwell’s equations in isotropic media,” IEEE Trans. Antennas
Propag., vol. 14, no. 3, pp. 302–307, May 1966.

[2] A. Taflove and M. E. Brodwin, “Numerical solution of steady-
state electromagnetic scattering problems using the time-dependent
Maxwell’s equations,” IEEE Trans. Microw. Theory Techn., vol. 23,
no. 8, pp. 623–630, Aug. 1975.

[3] A. Taflove, “Application of the finite-difference time-domain method
to sinusoidal steady-state electromagnetic-penetration problems,”
IEEE Trans. Electromagn. Compat., vol. EMC-22, no. 3, pp. 191–202,
Aug. 1980.

[4] A. Taflove and S. C. Hagness, Computational Electrodynamics: The
Finite-Difference Time-Domain Method. Boston, MA, USA: Artech
House, 2005.

[5] I. S. Kim and W. J. Hoefer, “A local mesh refinement algorithm
for the time domain-finite difference method using Maxwell’s Curl
equations,” IEEE Trans. Microw. Theory Techn., vol. 38, no. 6,
pp. 812–815, Jun. 1990.

[6] D. T. Prescott and N. Shuley, “A method for incorporating different
sized cells into the finite-difference time-domain analysis technique,”
IEEE Microw. Guided Wave Lett., vol. 2, no. 11, pp. 434–436,
Nov. 1992.

[7] W. Yu and R. Mittra, “A new subgridding method for the finite-
difference time-domain (FDTD) algorithm,” Microw. Opt. Technol.
Lett., vol. 21, no. 5, pp. 330–333, 1999.

[8] S. Wang, F. L. Teixeira, R. Lee, and J.-F. Lee, “Optimization of
subgridding schemes for FDTD,” IEEE Microw. Wireless Compon.
Lett., vol. 12, no. 6, pp. 223–225, Jun. 2002.

[9] I. Ahmed and Z. Chen, “A hybrid adi-FDTD subgridding scheme
for efficient electromagnetic computation,” Int. J. Numer. Modell.
Electron. Netw. Devices Fields, vol. 17, no. 3, pp. 237–249, 2004.

[10] N. Marrone and R. Mittra, “A new stable hybrid three-dimensional
finite difference time domain (FDTD) algorithm for analyzing complex
structures,” in Proc. IEEE Antennas Propag. Soc. Symp., vol. 2, 2004,
pp. 1680–1683.

[11] B. Donderici and F. L. Teixeira, “Improved FDTD subgridding algo-
rithms via digital filtering and domain overriding,” IEEE Trans.
Antennas Propag., vol. 53, no. 9, pp. 2938–2951, Sep. 2005.

[12] N. V. Venkatarayalu, R. Lee, Y.-B. Gan, and L.-W. Li, “A stable
FDTD subgridding method based on finite element formulation with
hanging variables,” IEEE Trans. Antennas Propag., vol. 55, no. 3,
pp. 907–915, Mar. 2007.

[13] J.-P. Brenger, “A huygens subgridding for the FDTD method,” IEEE
Trans. Antennas Propag., vol. 54, no. 12, pp. 3797–3804, Dec. 2006.

[14] J.-P. Bérenger, “The huygens subgridding for the numerical solu-
tion of the Maxwell equations,” J. Comput. Phys., vol. 230, no. 14,
pp. 5635–5659, 2011.

[15] A. Zakharian, M. Brio, and J. V. Moloney, “FDTD based second-order
accurate local mesh refinement method for Maxwell’s equations in two
space dimensions,” Commun. Math. Sci., vol. 2, no. 3, pp. 497–513,
2004.

[16] A. Zakharian, M. Brio, C. Dineen, and J. Moloney, “Stability of
2d FDTD algorithms with local mesh refinement for Maxwell’s
equations,” Commun. Math. Sci., vol. 4, no. 2, pp. 345–374, 2006.

[17] A.-T. Hayder, J.-P. Bérenger, and F. Costen, “Singularity problem
with the one-sheet huygens subgridding method,” IEEE Trans.
Electromagn. Compat., vol. 59, no. 3, pp. 992–995, Jun. 2017.

[18] J. M. Hyman, S. Li, P. Knupp, and M. Shashkov, “An algorithm for
aligning a quadrilateral grid with internal boundaries,” J. Comput.
Phys., vol. 163, no. 1, pp. 133–149, 2000.

[19] S. K. Khattri, “An adaptive quadrilateral mesh in curved domains,”
Serdica J. Comput., vol. 3, no. 3, pp. 249–268, 2009.

[20] S. E. B. Boret and O. J. Jiménez. (2017). Quadrilateral Grid
Generation Supported on Complex Internal Boundaries Using Spectral
Methods. [Online]. Available: https://arxiv.org/abs/1712.07007

[21] R. Holland, “Finite-difference solution of Maxwell’s equations in gen-
eralized nonorthogonal coordinates,” IEEE Trans. Nucl. Sci., vol. 30,
no. 6, pp. 4589–4591, Dec. 1983.

[22] Z. Xie, C.-H. Chan, and B. Zhang, “An explicit fourth-order orthogonal
curvilinear staggered-grid FDTD method for Maxwell’s equations,” J.
Comput. Phys., vol. 175, no. 2, pp. 739–763, 2002.

[23] Jin-fa-Lee, R. Palandech, and R. Mittra, “Modeling three-dimensional
discontinuities in waveguides using nonorthogonal FDTD algorithm,”
IEEE Trans. Microw. Theory Techn., vol. 40, no. 2, pp. 346–352,
Feb. 1992.

[24] N. K. Madsen, “Divergence preserving discrete surface integral meth-
ods for Maxwell’s curl equations using non-orthogonal unstructured
grids,” J. Comput. Phys., vol. 119, no. 1, pp. 34–45, 1995.

[25] S. D. Gedney and J. A. Roden, “Numerical stability of nonorthogo-
nal FDTD methods,” IEEE Trans. Antennas Propag., vol. 48, no. 2,
pp. 231–239, Feb. 2000.

[26] J. Liu, M. Brio, and J. V. Moloney, “Transformation optics based local
mesh refinement for solving Maxwell’s equations,” J. Comput. Phys.,
vol. 258, pp. 359–370, Feb. 2014.

[27] R. Chen, L. Kuang, Z. Zheng, and Q. H. Liu, “Transformation
optics-based finite difference time domain algorithm for scatter-
ing from object with thin dielectric coating,” IEEE Access, vol. 7,
pp. 150060–150071, 2019.

[28] J.-S. Hong, W.-M. Cheng, M.-C. Yang, R.-C. Shiu, Y.-C. Lan, and
K.-R. Chen, “Enhancing efficiency of electromagnetic simulation in
time domain with transformation optics,” Appl. Sci., vol. 8, no. 7,
p. 1133, 2018.

[29] R. Chen, L. Kuang, P. Ren, and Q. H. Liu, “Modified transfor-
mation optics based FDTD for local mesh refinement,” in Proc.
IEEE Progr. Electromag. Res. Symp. (PIERS), Toyama, Japan, 2018,
pp. 1138–1140.

[30] R. Chen, L. Kuang, Z. Zheng, and Q. H. Liu, “A novel trans-
formation optics-based FDTD algorithm for fast electromagnetic
analysis of small structures in a large scope,” IEEE Access, vol. 7,
pp. 124750–124758, 2019.

[31] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling elec-
tromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782,
2006.

[32] G. R. Werner and J. R. Cary, “A stable FDTD algorithm for non-
diagonal, anisotropic dielectrics,” J. Comput. Phys., vol. 226, no. 1,
pp. 1085–1101, 2007.

[33] A. F. Oskooi, C. Kottke, and S. G. Johnson, “Accurate finite-difference
time-domain simulation of anisotropic media by subpixel smoothing,”
Opt. Lett., vol. 34, no. 18, pp. 2778–2780, 2009.

[34] G. R. Werner, C. A. Bauer, and J. R. Cary, “A more accurate, stable,
FDTD algorithm for electromagnetics in anisotropic dielectrics,” J.
Comput. Phys., vol. 255, pp. 436–455, Dec. 2013.

[35] R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen differen-
zengleichungen der mathematischen physik,” Mathematische Annalen,
vol. 100, no. 1, pp. 32–74, 1928.

[36] A. C. Cangellaris and D. B. Wright, “Analysis of the numerical error
caused by the stair-stepped approximation of a conducting boundary
in FDTD simulations of electromagnetic phenomena,” IEEE Trans.
Antennas Propag., vol. 39, no. 10, pp. 1518–1525, Oct. 1991.

[37] M. Kazemzadeh, W. Xu, and N. G. R. Broderick, “Faster
and more accurate time domain electromagnetic simulation using
space transformation,” IEEE Photon. J., vol. 12, no. 4, pp. 1–13,
Aug. 2020.

[38] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing
medium for the truncation of FDTD lattices,” IEEE Trans. Antennas
Propag., vol. 44, no. 12, pp. 1630–1639, Dec. 1996.

VOLUME 1, 2020 395



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


