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ABSTRACT Radio frequency fingerprinting (RFF) is the concept arising from classification of wireless
emitters due to their unique radio frequency features. RFF has been further extended to applications
including both RF devices classification and wireless signal identification. In this paper, we adopt Gaussian
Mixture Models (GMM) technique as feature extraction approach and firstly apply it to extract RFF of
antennas. 9 classical antennas with 3 different load conditions (open, short, match) were studied in our
experiment. Moreover, we also made a theoretical analysis about the reason scattered signal has the unique
features. Specifically, we adopt the Random Noise Radar (RNR) technique to obtain reflected RF signals
of antenna under test (AUT) and apply the GMM technique to fit RF signals and then extract the RFF
of AUT. A support vector machine (SVM) is proposed to recognize the RFF at different signal-to-noise
ratio (SNR) environment. Compared with the conventional feature extraction approaches, for example,
from variance, skewness and kurtosis (VSK) values, our method demonstrates better performance on large
datasets with classification accuracy above 88% using a SVM classifier. Moreover, the accuracy remains
higher than 75% even when the Signal to Noise Ratio (SNR) is equal to 0dB, indicating that the proposed
approach has the strong capability of noise immunity.

INDEX TERMS Antenna, Gaussian mixture models, radar signal processing, classification algorithm,
machine learning.

I. INTRODUCTION

RADIO frequency fingerprinting (RFF) technique has
widely been applied to enhance the security of wire-

less communications for applications in Internet of Things
(IoT) [1]. The underlying principle is that each wireless
signal possesses its own unique RF characteristics, which
can be used as multi-factor authentication. Over past a few
years, several approaches based on amplitude, frequency, and
phase parameters have been proposed and studied in time-
domain and frequency-domain [2], [3]. Normally, devices
under test (DUT) are deployed in the test scenario, and a set
of receivers is applied to collect scattered signals. By setting
certain data processing workflows, we may obtain unique
features so as to achieve device and signal classification.
With the countless consumption of human and financial

resources in counterfeits detection, the RFF technique has
great market prospects [4]. Moreover, the radio frequency
fingerprinting also has its potential to address physical layer
security concerns by exploiting unique physical mechanisms

of radio propagation [5]–[7], and, therefore, the RFF tech-
nique can effectively prevent intrusion by unauthorized
devices without upper layer identification [8], [9]. Signal
generated from RF devices normally comes from modulated
signals, which can be described from its instantaneous char-
acteristics. In [7], researchers capture ramp-up waveforms
from several different Wi-Fi radios and investigate the instan-
taneous attributes of the signals. From the experiment results,
the authors find the instantaneous amplitudes among differ-
ent devices present distinctive features, which can be used as
the RFF to recognize radios. After reducing the dimension-
ality of raw instantaneous amplitude sequence with principal
component analysis (PCA) [10], all the radios can be classi-
fied with 2% classification error. Besides the instantaneous
amplitude, signal’s instantaneous phase and frequency can
also be applied as the RFF [8]. For the time-domain sequence
of samples, the first step is to calculate the instantaneous
characteristics (amplitude, phase, and frequency) based on
the Hilbert transform. Then each instantaneous sequence
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is divided into NR regions, and the statistical fingerprint
features, standard deviation (σ ), variance (σ 2), skewness
(γ ), and kurtosis () are generated from all subsequences
and the total sequence (NR + 1 regions). Therefore, each
subregion fingerprint can be expressed as a 1×4 vector
FRi = [σRi σ 2

Ri
γRi Ri]1×4

, and the total regional statistical
fingerprint can be concatenated from these subregion fin-

gerprint as Fr = [FR1

... FR2 · · · FRNR+1 ]
1×4(NR+1)

. Finally,
the time-domain fingerprint with instantaneous amplitude
(a), phase (ϕ) and frequency (f ) is formed as F =
[Fa

... Fϕ
... Ff ]1×4(NR+1)×3. This statistical feature extrac-

tion approach can successfully recognize WiMax devices
with above 95% classification accuracy. Similar approaches
based on statistical RFF have also been investigated in the
frequency-domain and wavelet-domain [2].
Associated with RFF is object classification, its devel-

opment has been accelerated with the machine learning
technique, and found many applications in areas, such
as medical diagnosis, sentiment analysis, video surveil-
lance, and authentication. The object classification based on
reflected RF signals has been recently studied [11]. Unlike
capture the transmit signals to recognize these RF devices,
the scattering signal of object is used to detect the shape
classes. In this paper, four different shape families (cone,
cylinder, plate and spheroid) with unknown roll rates, tum-
ble rates, and unknown initial orientations can be classified
based on the noisy monostatic Radar Cross Section (RCS).
Objects can absorb and reflect incident electromagnetic
waves, which can be captured and analyzed by arbitrary
data acquisition systems. Due to the diversity of physical
constructions and material configurations among different
objects, reflected signals always contain unique characteristic
of various objects under the test.
Antenna is a special object, because its scattered sig-

nals consist of two parts: the reflected signals from its
physical construction and the reradiated signals based on
its antenna characteristics [12]. Based on the successful
application of RFF in the RF devices authentication, the
authors in [13] use similar approach in [8] to extracted
the statistical parameters of subregions, i.e., VSK (vari-
ance, skewness and kurtosis) values from scattered signals
of the antenna as its subregion fingerprinting, and con-
catenate them together as the regional RFF. Due to the
regional RFF themselves are strongly correlated with each
other, Multiple Discriminant Analysis (MDA) algorithm is
applied to achieve dimensionality reduction. After reducing
the dimensionality of RFF, it can achieve antenna classi-
fication with a Maximum Likelihood (ML) classifier. In
this experiment, the authors successfully classify two UWB
antennas (Log-periodic and Vivaldi antennas) with different
load conditions (open, short and match) based on the RFF of
scattering signals. Moreover, the authors also extended this
technique to identifying faulty conditions of devices after the
receive antenna [14]. Although the fingerprinting processing
based on VSK values can achieve desirable classification

accuracies in a small database, it is difficult to maintain the
level of accuracy when processing big data.
In this paper, we investigate the application of proba-

bilistic model Gaussian Mixture Models (GMM) to extract
RFF from its scattered signals to identify different antennas
with arbitrary terminations. White Gaussian Noise (WGN)
sequence with stochastic property is generated as the trans-
mitter signals from a Random Noise Radar (RNR) system
to actively interrogate targets. The Gaussian distribution has
excellent effect to describe the signal which is irrelevant
to temporal ordering. Compared with previous research, we
first proposed using the GMM technique to extract RFF
of scattered signal and apply it to antenna classification.
In addition, we also discuss the reasons scattered signal
of AUT can be used as the distinctive features. In com-
parison with the statistical feature extraction approach, the
model-based method provides visible accuracy improvement
in antenna classification. The layout of this paper is arranged
as follows: Section II presents the RFF extraction method-
ology including data acquisition, theoretical analysis and
fingerprinting extraction; Section III compares the classifica-
tion results of VSK approach with GMMs feature extraction
method and provides the classification accuracy vary with
different Signal-to-Noise Ratios (SNRs); Finally, the paper
is concluded in Section IV.

II. METHODOLOGY
For the object classification purposes, the process of clas-
sification can be summarized as follows: data collection,
pre-processing, feature extraction and classification [15].
In this section, we mainly introduce the process of
feature extraction, including 1) data acquisition; 2) the-
oretical analysis; 3) RF fingerprinting (RFF) feature
extraction.

A. DATA ACQUISITION
For collecting RF signals from different antennas, a radar
system is set up in our numerical study. Specifically,
two wideband Log-Periodic Antennas (LPAs) (covering the
frequency band from 250MHz to 800MHz) are applied, one
is used for transmitting, and another is used for receiving.
The antennas under test (AUT) are placed far away from
the Tx and Rx antennas, as depicted in Fig. 1. A long white
noise sequence is used as the incidence to the AUT loaded
with different terminations. Scattered signals from the AUT
will be collected by the Rx antenna. Preprocessing is the first
step after obtaining raw scattered signals. In this experiment,
data filtering with passband between 300MHz and 700MHz
is used to remove the unwanted features from raw signals,
and data normalization is applied to get rid of the influence
of amplitude error and regulate the data. In order to consider
the application in the real environment, the additive white
Gaussian noise model is implemented after data normaliza-
tion. Fig. 2 illustrates the whole demonstration process for
antenna classification.
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FIGURE 1. The experimental scenario for antenna classification. The distance
between transmit antenna and receive antenna d is 0.5m, and the distance between
transmitter and AUT h is 1.25m, with the AUT bore-sighted on the transmit and receive
antennas.

TABLE 1. Antenna types applied in analysis.

FIGURE 2. Overall process for signal collection, SNR addition, Model fitting,
fingerprint generation, and classification.

Overall, we have studied and investigated 9 differ-
ent types of antennas, namely, Dipole, Bowtie, Planar
Elliptical Dipole, Printed Folded Dipole, Planar Inverted F
Antenna (PIFA), Microstrip, Yagi, Log-Periodic, and Vivaldi
Antennas, respectively with 3 different load conditions (open,
short and match) to establish a dataset for all AUTs of
27 samples from numerical simulations. A detail description
of these antennas is presented in Table 1. In this experiment,
we expect to consider the influence of structure and proper-
ties to the classification accuracy. To guarantee the collected

signals are comparable, all antennas are designed to operate
at the lowest frequency of 480MHz.

B. THEORETICAL ANALYSIS
The underlying principle that scattering signals can be classi-
fied for different antennas with different load conditions can
be inferred from [12]. Antennas can be referred to as a spe-
cial electromagnetic wave scatter whose scattering properties
are directly linked to their loads and structures. When the
antenna is matched, the scattering signals are only related
to its structural mode, otherwise, consists of structural mode
scattering and antenna mode scattering. The structural mode
scattering is related to the physical structure of antennas as
those of other passive components, and the antenna mode
scattering is influenced by its electromagnetic characteristics.
The relationship between the two modes is given by [16]:

σ total =
∣
∣
∣

√
σ st + √

σ anejϕ
∣
∣
∣

2
(1)

where σ total is the total radar cross-section (RCS), σ st is the
structural mode RCS, and σ an is the antenna mode RCS. ϕ

is the phase difference between the two modes.
The simplified structural scattering field can be expressed

as follow [17]:

−→
Hs
st = jk

4π r
e−jkr ·

∫∫ [(

2̂n × −→
H

i
)

× r̂

]

· e−jk̂r·−→r′ ds′ (2)

where k is the wavelength,
−→
H

i
is the incident magnetic field,

n̂ is the unit vector normal to structure, r̂ is the direction
of incident wave,

−→
r′ is the integration variable vector from

origin to any surface point.

In this study, the incident magnetic field
−→
H

i
is dependent

on the direction of arrival (DoR) of the incident wave, that is,−→
H

i = Hi(ω, r, θ, ϕ). Moreover, the scattering electric field
of structural mode

−→
E
s

st = Esst(ω, r, φ, ϕ, s′) is dependent
on the bandwidth and direction of incident wave and the
physical structure of antenna.
The scattering electric field of antenna mode can be

expressed as follow:

−→
E
s

an = −→
E
i−→
G

(

ω′, θ ′, ϕ′)λ′μ


4πr
(3)

where G(ω′, θ ′, ϕ′) is the radiation pattern of the scatter-
ing antenna, 
 represents the voltage reflection coefficient
when antenna is mismatched. The scattering electric field of
antenna mode

−→
E
s

an = Esan(ω, r, θ, ϕ, 
,G) is dependent on
the bandwidth and direction of incident wave and the load
condition and radiation pattern of AUT.
In this study, we can classify scattered signals into the

following three parts:

• Leakage signals from the Tx antenna;
• Structural mode scattering;
• Antenna mode scattering.
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Based on (1) - (3), the received electric field can be
expressed as (neglecting the polarization losses):

−→
Er = Ele

(

ω, r, θ ′′, ϕ′′) +
[

Esst
(

ω, r, θ, ϕ, s′
)

+ Esst(ω, r, θ, ϕ, 
,G) · ej∅1
]

· ej∅2

(4)

where Ele(ω, r, θ ′′, ϕ′′) is the leakage electric field from
transmit port, ∅1 is the phase difference between scattering
electric field of structural mode and scattering electric field of
antenna mode, ∅2 is the phase difference between scattering
electric field and leakage electric field.
For the same antenna in different load conditions: the

leakage signals Ele(ω, r, θ ′′, ϕ′′) and structure mode signals−→
E
s

st = Esst(ω, r, φ, ϕ, s′) parts among different load condi-
tions are the same. However, because the reflection coeffi-
cient 
 of AUT is related to the terminations, the generation
of antenna mode signals

−→
E
s

an = Esan(ω, r, θ, ϕ,
,G) vary
with loads. Therefore, antennas with different terminations
can be classified according to the terminations, the generation
of antenna mode signals

−→
E
s

an = Esan(ω, r, θ, ϕ,
,G) vary
with loads. Therefore, antennas with different terminations
can be classified accordingly.
For the different antennas with same load conditions:

the leakage signals Ele(ω, r, θ ′′, ϕ′′) are identical. While the
antenna structure s′ in structure mode Esst(ω, r, φ, ϕ, s′) and
the radiation pattern G in Esan(ω, r, θ, ϕ, 
,G) are different,
which result in the various scattering signals from the AUT.

C. RF FINGERPRINTING FEATURE EXTRACTION
Skewness and kurtosis are the statistical parameters which
have been widely implemented to describe the histogram
of signals. Specifically, the skewness can be regarded as
the degree of distortion from the symmetrical bell curve
in terms of the histogram of a sequence. Positive skew-
ness means the tail on the curve’s right-side is larger than
the tail on the left-side, and negative skewness means the
tail towards on the opposite side. The kurtosis is all about
the tails of the distribution. High kurtosis in a histogram
indicates data has heavy tails or outliers, and low kurtosis
presents light tails. For the signals with only one “peak” in
the distribution of data, they can be fitted well by a single
value of skewness and kurtosis. While for the signals with
more than one “peak”, they will generally generate a poor
fit [18]. In our experiment, although the quasi-white noise
signals in the transmit port can be regarded as the signal
with one “peak” Gaussian distribution, the scattering signals
always present multiple “peaks” properties in the data. To fit
scattering signals appropriately, we introduce the Gaussian
mixture models (GMMs) algorithm in this section.
GMMs is a model-based fitting algorithm to parti-

tion data sequences to pre-defined normal distribution
models [19]. As a probabilistic method for obtain statistical
features of clusters, GMMs is quite suitable to fit data with

characteristics of probability distribution. A Gaussian mix-
ture is an equation that is consist of several normal
distributions, which is defined as (5):

p(x) =
M

∑

m=0

ωmpm(x) =
M

∑

m=0

ωmN (x; um, �m) (5)

where M is the number of mixtures, N (x; um, �m) is a nor-
mal distribution with mean value um and covariance matrix
�m, and ωm is the mixture weight with the constraint
that

∑
ωm = 1. Therefore, the raw scattered signals can be

expressed with solely um, �m, ωm and M parameters in
the GMM.
The number of mixtures M can be selected from the

Bayesian information criterion (BIC), BIC is a criterion for
the model selection among a finite set of models by intro-
ducing a penalty term for the number of parameters in the
model, and it can be defined as:

BIC(θ)= −2logp(x | θ) + klog(n) (6)

where θ is the model, p(x|θ) is the maximized value of the
likelihood function of model θ , k is the number of parameters
in the model θ , and n is the number of observations. This
criterion can evaluate and select suitable number of mixtures
with minimum BIC values from the generated model.
As for other parameters um, �m, and ωm are estimated

using the Expectation-Maximization (EM) algorithm [20].
This iterative method yields a Maximum Likelihood (ML)
estimate, via the estimation formulas:

μ′
m =

∑T
t=1 pm(xt)xt

∑T
t=1 pm(xt)

(7)

′
∑

m

=
∑T

t=1 pm(xt)(xt − μm)T(xt − μm)
∑T

t=1 pm(xt)
(8)

w′
m =

∑T
t=1 pm(xt)

∑T
t=1

∑M
m=1 pm(xt)

(9)

Based on the EM iteration method, signals can be opti-
mized and fitted as several Gaussian models with a certain
mean value um, covariance matrix �m, and mixture weight
ωm. In our experiment, the number of mixtures M is opti-
mized as 5, and the type of covariance matrix is selected as
diagonal matrix to guarantee only the diagonal parameters of
covariance matrix are estimated. Therefore, The RFFs with
15 parameters [ω1, μ1,

∑

1, ω2, μ2,
∑

2, . . . , ω5, μ5,
∑

5, ]
are extracted from GMMs.

III. RESULT AND DISCUSSION
Previous research [2], [7], [12], and [14] mostly apply
Multiple Discriminant Analysis (MDA) algorithm to reduce
features dimension and then use Maximum Likelihood (ML)
approach as the classifier for classification. In their research,
the length of fingerprint sequence corresponding with the
number of sub-regions in the processed signals. Normally,
the length of features extracted in these researches is
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FIGURE 3. Machine Learning classification process with K-fold cross validation.

FIGURE 4. Normalized confusion matrix for VSK features with open termination.

more than several hundreds. With the MDA algorithm, a
n-dimensional space can be projected to a (d-1) dimensional
space, where d is the number of categories. While it is
unnecessary to apply dimensionality reduction of a dataset
with only 15 features. In the result section, three pattern
classification methods have been implemented: support vec-
tor machine (SVM), random forest (RF), and k-nearest
neighbour (KNN) [21], [22].
The traditional SVM classifier is a non-probabilistic binary

linear classifier. With the one-against-one strategy, multi-
class SVM can be achieved [21]. As one of the most popular
strategy for supervised machine learning and classification,
the SVM technique is suitable to analyse small dataset
with good generalization capabilities and stability. In this
experiment, we adopt one-against-one approach with linear

FIGURE 5. Normalized confusion matrix for VSK features with match termination.

FIGURE 6. Normalized confusion matrix for VSK features with short termination.

kernel function which would extend SVM to k(k − 1)/2 sub-
classifiers, where k is the classes. RF is an ensemble learning
approach for classification or regression, which consists of
a large number of individual decision trees [22]. Based on
the bagging algorithm with ensemble learning technique, RF
robust to outliers and non-linear data. A RF classifier with
200 decision trees is applied to our experiment. KNN algo-
rithm is one of the simplest algorithms and it is also one
of widely used approach in classification and quantification
problems. 1-NN classifier is selected to find the label of
single nearest neighbour as the object’s label. In order to
make full use of dataset and reduce variability, K-fold cross
validation technique is applied in our experiment as well.
The process of ML with cross validation is shown in Fig. 3.
The input features are partitioned into K equal sub-regions,
then collect the K-1 folds as the training dataset, and the rest
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FIGURE 7. Normalized confusion matrix for VSK features with fusion termination.

TABLE 2. Classification result in different classifier at different SNR.

one fold as the testing dataset. A machine learning model
can be generated from the K-1 folds training dataset, and
a confusion matrix from the rest one fold testing dataset
can be obtained with this machine learning model. Repeat
this process K iterations until the confusion matrix for each
fold is obtained. Finally, accumulating all the classification
results together to finish the ML process.
Table 2 shows the classification accuracies in three dif-

ferent classifiers at various Signal-to-noise Ratio (SNR). All
the results are shown under arbitrary terminations. It reflects
the great differences that exist between performance of VSK
statistical fingerprint and of GMMs fingerprint. The feature
extraction approach from the VSK statistical fingerprint is
widely used in pervious researchers [2], [7], [13], and [14].
Both SVM and RF classifiers superior to the KNN classifier
in terms of the GMMs features and VSK features. Moreover,
the performance in SVM classifier is slightly better than in
RF classifier. It can be seen from the table that the accuracy
of SVM and RF classifiers is about 56% with VSK features
at SNR=30dB environment. When SNR decrease to 0dB, the
accuracy steady decrease to about 43%. While the GMMs
fingerprint still presents about 80% accuracy at SNR = 0dB.

FIGURE 8. Visualized results from VSK statistical features.

FIGURE 9. Normalized confusion matrix for GMM feature with open termination.

Fig. 4-7 presents the confusion matrix with 3 differ-
ent loads (open, short and match) separately and random
selected terminations based on the approach of statistical
feature extractions, approach a K=10 K-fold cross valida-
tion with SVM classifier. The average classification over
10 replications of SVM ranged from 55.6% (open) to 62.2%
(short). Short load conditions generate slightly better results,
but the difference is not significant. T-distributed Stochastic
Neighbour Embedding (t-SNE) algorithm is a nonlinear
dimensionality reduction algorithm used for visualizing high
dimensional data in low-dimensional 2D or 3D space [23].
Fig. 8 shows the results of our VSK statistical features with
t-SNE plot at SNR = 30dB. The large overlaps among dif-
ferent antenna features also indicates the classification result
is undesirable.
The average classification accuracy based on GMMs

approach with SVM classifier is shown in Fig. 9-12.
As expected, the overall accuracy of prediction com-
pared to the previous approach is largely improved. The
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FIGURE 10. Normalized confusion matrix for GMM feature with match termination.

FIGURE 11. Normalized confusion matrix for GMM feature with short termination.

average accuracy between 81.1% (match) and 91.1%
(fusion), which indicates the GMMs based feature extrac-
tion approach is fairly promising. Fig. 13 presents the
t-SNE plot from GMMs features with fusion termination
at SNR = 30dB. From the visual inspection, it is easy to
identify that GMMs features generate excellent classification
accuracy.
From the results we can infer that the accuracy is slightly

influenced by load conditions in terms of antennas classifica-
tion. In the previous approach based on statistical parameters
feature extraction, the average accuracy of random select
terminations is 56.7%, which is similar to other load con-
ditions. In our approach, although the average accuracy of
mixed loads is the highest among four situations, it is only
1.1% and 2.2% higher than open loads and short respec-
tively. Moreover, almost 20% accuracy is improved from

FIGURE 12. Normalized confusion matrix for GMM feature with fusion termination.

FIGURE 13. Visualized results from GMMs features.

FIGURE 14. Average classification accuracy under different RF fingerprints.

our approach, which also indicates the GMMs outperforms
the solely VSK statistical parameters extraction in terms of
feature extraction process.
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The classification accuracy under different Signal-to-Noise
Ratios (SNR) with SVM classifier are also investigated in
our experiment. Fig. 14 illustrates the results under different
SNRs for antenna classification with arbitrary terminations.
When SNR is below 5dB, the accuracy based on statis-
tical features is less than 50% and begins to decrease
rapidly. Above 20dB, the accuracy remained constant at
56.5%. Whereas for the GMM approach, over the SNR from
20dB to 30dB, the accuracy remained level, and it exhibits
decreased performance at SNR<20dB and achieves about
78% accuracy at SNR = 10dB.

IV. CONCLUSION
In this paper, we have investigated the application of
Gaussian Mixture Models (GMM) approach to extract RF
fingerprinting (RFF) of scattered signals from Random Noise
Radar (RNR) system. The stochastic scattered signals are
robust to noisy environment and are suitable for fitting with
GMM. Mean values, weights and covariances of mixed mod-
els extracted from GMM are then applied to classify antennas
with various terminations. It is demonstrated that the Random
Noise Radar (RNR) transceiver system can be used to clas-
sify antennas with arbitrary terminations based on reflected
signals. Our experiments on the antenna datasets confirm
the effectiveness of our framework and its superiority over
the traditional statistical parameter extraction approach. The
fingerprint generated from the GMMs yields robust results
at SNR below 20dB, with about 78% accuracy obtained
at 10dB.
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