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ABSTRACT Incorporating a truncation of the complex-frequency-shifted perfectly matched layer
(CFS-PML), the direct-splitting- based Crank-Nicolson finite-difference time-domain (CNDS-FDTD) is
developed and applied to the infrared two-dimensional layered material (2DLM) black phosphorous (BP)
metasurface implementations on the all-dielectric nanostructure. To improve extremely low efficiencies
in solving infrared terahertz (THz) problems with the few-atomic-layer thickness of 2DLMs, the CFS-
CNDS-FDTD is proposed in demand due to the fact that it possesses capabilities of implicit FDTD method
and unsplit-field CFS-PML truncation, respectively, in completely conquering the Courant-Friedrich-Levy
condition (CFL) limit and holding good performance. The temporal incremental in the CFS-CNDS-FDTD
can reach 1000 times larger than that in the regular FDTD for infrared nanoscale problems centered at
the 2.5 THz and then keep accurate. Three-dimensional (3D) numerical cases have been carried out to
corroborate the proposed method. The CFS-CNDS- FDTD can not only achieve high accuracies and then
saves several dozen times of CPU time as compared to the regular FDTD, but also pave the way for
designing all-dielectric nanostructures with other 2DLM metasurfaces.

INDEX TERMS Black phosphorous (BP), Crank-Nicolson finite-difference time-domain (CN-FDTD),
complex-frequency-shifted perfectly matched layer (CFS-PML), direct-splitting (DS), metasurface,
two-dimensional layered material (2DLM).

I. INTRODUCTION

THE METALLIC or dielectric metasurfaces [1]–[7] are
composed of arrays of subwavelength-spaced optical

scatters distributed atop the interface whose prime function
is to allow for locally altering the phase of incident light,
which have very recently drawn considerable attention due to
the fact that a unique method can be provided to guide elec-
tromagnetic waves at will, and then possess advanced optical
technology adopted for implementing versatile functionali-
ties in a planar structure [8]–[14]. Therefore, the significant
loss and fabrication difficulty of volumetric metamaterials
can be effectively avoided [2], [15]–[16].

However, as far as we know, most previously elaborated
metasurface designs encounter low coupling efficiency and
are based on metallic resonators, which leads to ohmic loss.
To overcome drawbacks of plasmonic metasurfaces, one

can replace metals with all-dielectric resonators [17], [18].
Dielectric metasurfaces consist of interfaces patterned with
a distribution of high-index dielectric light scattering parti-
cles of size comparable to the wavelength of light [3]. Their
scattering properties were first studied by Faraday [19] and
the effect is also known as Faraday-Tyndall scattering.
Very recently, an efficient design of all-dielectric photonic

structure has been implemented for modeling graphene-based
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optoelectronics devices, which provide a promising method
applied to enhancing light-matter interaction in sub-
nanometer two-dimensional layered materials (2DLMs) [20].
Furthermore, black phosphorous (BP), as another emerging
member of the 2DLMs, has exhibited high carrier mobility,
strong light-matter interaction in the infrared spectrum, and
high degree of band anisotropy [21]–[25]. Besides, fully dif-
ferent from graphene with in-plane isotropy, the BP shows
in-plane anisotropic properties. Therefore, the monolayer 2D
BP with/without subwavelength patterning will be added into
3D all-dielectric nanostructures in this study.
However, the monolayer BP is few-atomic-layer thickness

in size, and hence relatively thin as compared with the reg-
ular 3D geometrical nanostructures, leading to requirements
of massive CPU time and computer memory for regular
finite-difference time-domain (FDTD) simulations [26]–[34]
because of resulting from the Courant-Friedrich-Levy condi-
tion (CFL) limit. The challenge lies in a quite large number
of time steps required by the regular FDTD method for
infrared sub-nanometer problems where high spatial and tem-
poral sampling densities are required. For example, at the
central frequency of 1 terahertz (THz) in the all-dielectric
nanostructure application, spatial and temporal sampling den-
sities in air can be approximately 0.1 million points per
wavelength (PPW) and 0.3 million points per period (PPP),
separately. To circumvent this problem, implicit FDTD meth-
ods [35]–[38] can be well used, which encounter no limit
on time intervals arising from stability considerations.
The Crank-Nicolson FDTD (CN-FDTD) methods, as one

of the most popular implicit formulations, are character-
ized with pretty high numerical accuracies and exhibit
extremely small numerical anisotropy, but their full implicit
discretization leads to a huge sparse matrix that needs to be
inverted [39].
Very recently, to avoid solving very huge sparse matrix

so that the CPU time and memory can be dramatically
decreased, the cycle-sweep-uniform CN-FDTD (CNCSU-
FDTD) is used to solve 3D low frequency subsurface sensing
problems [40], which can be also used for modeling 3D
infrared all-dielectric nanostructures with a 2D BP with
the design of metasurface. However, it should be noted
that the ADE-based CFS-CNCSU -FDTD method is indi-
cated in [40], [41] to be only conditionally stable in certain
situations. Recently, however, the BT-based CNDS-FDTD
method is proposed and applied to solve FDTD problems
in the microwave range, and then further prove that the
CNCSU-FDTD exists the instability in certain cases [42].
In this systematic study, the efficient direct-splitting-

based CN-FDTD (CNDS-FDTD) method with the CFS-PML
scheme is proposed based on the auxiliary differential
equation (ADE) method to model 3D all-dielectric pho-
tonic nanostructures with monolayer BP metasurfaces in
the infrared Terahertz range. The CFS-CNDS-FDTD not
only possess higher efficiency than the alternating-direction-
implicit FDTD (ADI-FDTD) method [43]–[46] due to
owning fewer loops at each time step, but is suitable for

parallel computation [47]–[49] which can be used to further
reduce CPU time [39].
In view of the CFL limit of regular FDTD method need-

ing higher PPW and PPP sampling, the CFS-CNDS-FDTD
method is adopted to overcome extremely low computa-
tional efficiency by using large CFL number (CFLN). For
example, the CFLN = 1000 can be set, and hence sev-
eral dozen times of CPU time as compared with the regular
FDTD method can be saved. Besides, to further corrob-
orate the performance of CFS-CNDS-FDTD, we design
the 3D all-dielectric nanostructures adding the single layer
BP with/without subwavelength patterning for validation.
As a result, 3D numerical simulations have been carried
out to prove that the proposed CFS-CNDS-FDTD not only
saves a large amount of CPU time and then reaches good
accuracies as compared with the conventional FDTD sim-
ulation, but paves the way for fabricating the all-dielectric
nanostructures with BP and other 2DLM metasurfaces.
The main contributions of this work include following: (1)

The unconditionally-stable CNDS-based FDTD formulations
is developed, different from the CNCSU-based FDTD which
is conditionally stable in certain cases; (2) The 3D all-
dielectric nanostructures with BP metasurfaces in the infrared
range are implemented using the CFS-CNDS-FDTD.

II. FORMULATION
In a 3D CFS-PML region, the frequency domain modified
Maxwell’s curl equations can be written as

jωε0εr(ω)E(ω) + σE(ω) = ∇s × H(ω) (1)

jωμ0H(ω) = −∇s × E(ω) (2)

where εr(ω) and μr(ω) are the relative permittivity and per-
meability of an inhomogeneous medium, respectively, and
σ is the electrical conductivity. For the CFS-PML region, the
operator ∇s is expressed as

∇s =
∑

η=x,y,z

∧
η S−1

η ∂η (3)

where ∂x, ∂y and ∂z are partial derivatives with respect to
x, y and z, and Sη is complex stretching coordinate metric
with the CFS scheme, defined as

Sη = κη + ση/
(
αη + jω

)
, (η = x, y, z) (4)

where κη is a scaling factor, and imaginary part ση represents
a loss in PML regions, and αη is assumed to be positive real.
As an example, we now are considering discretization of

the x component of E field in all corners and edges of PML
regions that is parallel to the x direction

jωε0εrEx + σEx = S−1
y

∂Hz
∂y

− S−1
z

∂Hy
∂z

(5)

−jωμ0Hy = S−1
z

∂Ex
∂z

− S−1
x

∂Ez
∂x

(6)

−jωμ0Hz = S−1
x

∂Ey
∂x

− S−1
y

∂Ex
∂y

(7)
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Rewrite S−1
η , (η = x, y, z) as

S−1
η = (

κη

)−1 −
ση

/(
κ2
ηε0

)

jω + (
αη + ση

/
κη

)/
ε0

(8)

Incorporating (8) into (5-7), and we have

jωε0εrEx + σEx = (
κy

)−1 ∂Hz
∂y

− (κz)
−1 ∂Hy

∂z

−
σy/

(
κ2
y ε0

)

jω + (
αy + σy/κy

)
/ε0

∂Hz
∂y

+ σz/
(
κ2
z ε0

)

jω + (αz + σz/κz)/ε0

∂Hy
∂z

(9)

jωμ0Hy = (κx)
−1 ∂Ez

∂x
− (κz)

−1 ∂Ex
∂z

− σx/
(
κ2
x ε0

)

jω + (αx + σx/κx)/ε0

∂Ez
∂x

+ σz/
(
κ2
z ε0

)

jω + (αz + σz/κz)/ε0

∂Ex
∂z

(10)

jωμ0Hz = (
κy

)−1 ∂Ex
∂y

− (κx)
−1 ∂Ey

∂x

−
σy/

(
κ2
y ε0

)

jω + (
αy + σy/κy

)
/ε0

∂Ex
∂y

+ σx/
(
κ2
x ε0

)

jω + (αx + σx/κx)/ε0

∂Ey
∂x

(11)

To simplify (9-11), fxy, fxz, gyx, gyz, gzx, gzyare introduced as
auxiliary variables, shown below

fxy =
σy

/(
κ2
y ε0

)

jω + (
αy + σy

/
κy

)/
ε0

∂Hz
∂y

(12)

fxz = σz
/(

κ2
z ε0

)

jω + (
αz + σz

/
κz

)/
ε0

∂Hy
∂z

(13)

gyx = σx
/(

κ2
x ε0

)

jω + (
αx + σx

/
κx

)/
ε0

∂Ez
∂x

(14)

gyz = σz
/(

κ2
z ε0

)

jω + (
αz + σz

/
κz

)/
ε0

∂Ex
∂z

(15)

gzy =
σy

/(
κ2
y ε0

)

jω + (
αy + σy

/
κy

)/
ε0

∂Ex
∂y

(16)

gzx = σx
/(

κ2
x ε0

)

jω + (
αx + σx

/
κx

)/
ε0

∂Ey
∂x

(17)

Substituting (12-17) into (9-11), and then adopting the
auxiliary differential equation (ADE) technique, we obtain

ε0εr
∂Ex
∂t

+ σEx = (
κy

)−1 ∂Hz
∂y

− (κz)
−1 ∂Hy

∂z
− fxy + fxz (18)

μ0
∂Hy
∂t

= (κx)
−1 ∂Ez

∂x
− (κz)

−1 ∂Ex
∂z

− gyx + gyz (19)

μ0
∂Hz
∂t

= (
κy

)−1 ∂Ex
∂y

− (κx)
−1 ∂Ey

∂x
− gzy + gzx (20)

∂fxy
∂t

+ αy + σy
/
κy

ε0
fxy = σy

κ2
y ε0

∂Hz
∂y

(21)

∂fxz
∂t

+ αz + σz
/
κz

ε0
fxz = σz

κ2
z ε0

∂Hy
∂z

(22)

∂gyx
∂t

+ αx + σx
/
κx

ε0
gyx = σx

κ2
x ε0

∂Ez
∂x

(23)

∂gyz
∂t

+ αz + σz
/
κz

ε0
gyz = σz

κ2
z ε0

∂Ex
∂z

(24)

∂gzy
∂t

+ αy + σy
/
κy

gzy
gzy = σy

κ2
y ε0

∂Ex
∂y

(25)

∂gzx
∂t

+ αx + σx
/
κx

ε0
gzx = σx

κ2
x ε0

∂Ey
∂x

(26)

Subsequently, applying the Crank-Nicolson method
to (18)-(26), and then tidy them up, as in (27), shown at
the bottom of the page, and (28)–(35), shown at the bottom
of the next page.

En+1
x

(
i+ 1

2
, j, k

)

= CexeE
n
x

(
i+ 1

2
, j, k

)

+ Cexhz(j)
1

	y

[
Hn+1
z

(
i+ 1

2
, j+ 1

2
, k

)
− Hn+1

z

(
i+ 1

2
, j− 1

2
, k

)
+ Hn

z

(
i+ 1

2
, j+ 1

2
, k

)
− Hn

z

(
i+ 1

2
, j− 1

2
, k

)]

− Cexhy(k)
1

	z

[
Hn+1
y

(
i+ 1

2
, j, k + 1

2

)
− Hn+1

y

(
i+ 1

2
, j, k − 1

2

)
+ Hn

y

(
i+ 1

2
, j, k + 1

2

)
− Hn

y

(
i+ 1

2
, j, k − 1

2

)]

− Cexf

[
f n+1
xy

(
i+ 1

2
, j, k

)
+ f nxy

(
i+ 1

2
, j, k

)]
+ Cexf

[
f n+1
xz

(
i+ 1

2
, j, k

)
+ f nxz

(
i+ 1

2
, j, k

)]
(27)
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Next, substituting (30)–(35) into (27)–(29), we have
(36)–(38), as shown at the bottom of the next page, where
Dη, (η = x, y, and z) are central difference derivative
approximations [13], and then temporary variables are shown
below

Cexe = 1 − σ	t
2ε0εr

1 + σ	t
2ε0εr

,

Cexhz(j) =
	t

2ε0εr

1 + σ	t
2ε0εr

[
κpml_y(j)

]−1
,

Cexhy(k) =
	t

2ε0εr

1 + σ	t
2ε0εr

[
κpml_z(k)

]−1
,

Cexf =
	t

2ε0εr

1 + σ	t
2ε0εr

,

Chyez

(
i+ 1

2

)
= 	t

2μ0μr

[
κ∗
pml_x

(
i+ 1

2

)]−1

,

Chyex

(
k + 1

2

)
= 	t

2μ0μr

[
κ∗
pml_z

(
k + 1

2

)]−1

,

Hn+1
y

(
i+ 1

2
, j, k + 1

2

)
= Hn

y

(
i+ 1

2
, j, k + 1

2

)

+ Chyez

(
i+ 1

2

)
1

	x

[
En+1
z

(
i+ 1, j, k + 1

2

)
− En+1

z

(
i, j, k + 1

2

)
+ Enz

(
i+ 1, j, k + 1

2

)
− Enz

(
i, j, k + 1

2

)]

− Chyex

(
k + 1

2

)
1

	z

[
En+1
x

(
i+ 1

2
, j, k + 1

)
− En+1

x

(
i+ 1

2
, j, k

)
+ Enx

(
i+ 1

2
, j, k + 1

)
− Enx

(
i+ 1

2
, j, k

)]

− Chyg

[
gn+1
yx

(
i+ 1

2
, j, k + 1

2

)
+ gnyx

(
i+ 1

2
, j, k + 1

2

)]
+ Chyg

[
gn+1
yz

(
i+ 1

2
, j, k + 1

2

)
+ gnyz

(
i+ 1

2
, j, k + 1

2

)]
(28)

Hn+1
z

(
i+ 1

2
, j+ 1

2
, k

)
= Hn

z

(
i+ 1

2
, j+ 1

2
, k

)

+ Chzex

(
j+ 1

2

)
1

	y

[
En+1
x

(
i+ 1

2
, j+ 1, k

)
− En+1

x

(
i+ 1

2
, j, k

)
+ Enx

(
i+ 1

2
, j+ 1, k

)
− Enx

(
i+ 1

2
, j, k

)]

− Chzey

(
i+ 1

2

)
1

	x

[
En+1
y

(
i+ 1, j+ 1

2
, k

)
− En+1

y

(
i, j+ 1

2
, k

)
+ Eny

(
i+ 1, j+ 1

2
, k

)
− Eny

(
i, j+ 1

2
, k

)]

− Chzg

[
gn+1
zy

(
i+ 1

2
, j+ 1

2
, k

)
+ gn+1

zy

(
i+ 1

2
, j+ 1

2
, k

)]
+ Chzg

[
gn+1
zx

(
i+ 1

2
, j+ 1

2
, k

)
+ gn+1

zx

(
i+ 1

2
, j+ 1

2
, k

)]
(29)

f n+1
xy

(
i+ 1

2
, j, k

)
= Cfxyf (j)f

n
xy

(
i+ 1

2
, j, k

)

+ Cfxyhz(j)
1

	y

[
Hn+1
z

(
i+ 1

2
, j+ 1

2
, k

)
− Hn+1

z

(
i+ 1

2
, j− 1

2
, k

)
+ Hn

z

(
i+ 1

2
, j+ 1

2
, k

)
− Hn

z

(
i+ 1

2
, j− 1

2
, k

)]
(30)

f n+1
xz

(
i+ 1

2
, j, k

)
= Cfxzf (k)f

n
xz

(
i+ 1

2
, j, k

)

+ Cfxzhy(k)
1

	z

[
Hn+1
y

(
i+ 1

2
, j, k + 1

2

)
− Hn+1

y

(
i+ 1

2
, j, k − 1

2

)
+ Hn

y

(
i+ 1

2
, j, k + 1

2

)
− Hn

y

(
i+ 1

2
, j, k − 1

2

)]
(31)

gn+1
yx

(
i+ 1

2
, j, k + 1

2

)
= Cgyxg

(
i+ 1

2

)
gnyx

(
i+ 1

2
, j, k + 1

2

)

+ Cgyxez

(
i+ 1

2

)
1

	x

[
En+1
z

(
i+ 1, j, k + 1

2

)
− En+1

z

(
i, j, k + 1

2

)
+ Enz

(
i+ 1, j, k + 1

2

)
− Enz

(
i, j, k + 1

2

)]
(32)

gn+1
yz

(
i+ 1

2
, j, k + 1

2

)
= Cgyzg

(
k + 1

2

)
gnyz

(
i+ 1

2
, j, k + 1

2

)

+ Cgyzex

(
k + 1

2

)
1

	z

[
En+1
x

(
i+ 1

2
, j, k + 1

)
− En+1

x

(
i+ 1

2
, j, k

)
+ Enx

(
i+ 1

2
, j, k + 1

)
− Enx

(
i+ 1

2
, j, k

)]
(33)

gn+1
zy

(
i+ 1

2
, j+ 1

2
, k

)
= Cgzyg

(
j+ 1

2

)
gnzy

(
i+ 1

2
, j+ 1

2
, k

)

+ Cgzyex

(
j+ 1

2

)
1

	y

[
En+1
x

(
i+ 1

2
, j+ 1, k

)
− En+1

x

(
i+ 1

2
, j, k

)
+ Enx

(
i+ 1

2
, j+ 1, k

)
− Enx

(
i+ 1

2
, j, k

)]
(34)

gn+1
zx

(
i+ 1

2
, j+ 1

2
, k

)
= Cgzxg

(
i+ 1

2

)
gnzx

(
i+ 1

2
, j+ 1

2
, k

)

+ Cgzxey

(
i+ 1

2

)
1

	x

[
En+1
y

(
i+ 1, j+ 1

2
, k

)
− En+1

y

(
i, j+ 1

2
, k

)
+ Eny

(
i+ 1, j+ 1

2
, k

)
− Eny

(
i, j+ 1

2
, k

)]
(35)

312 VOLUME 1, 2020



Chyg = 	t

2μ0μr
,

Chzex

(
j+ 1

2

)
= 	t

2μ0μr

[
κ∗
pml_y

(
j+ 1

2

)]−1

,

Chzey

(
i+ 1

2

)
= 	t

2μ0μr

[
κ∗
pml_x

(
i+ 1

2

)]−1

,

Chzg = 	t

2μ0μr
,

Similarly, same operations can be applied to other field
components. Therefore, these all equations can be written
compactly as

(I − D1 − D2)W
n+1 = (U + D1 + D2)W

n + V (39)

Eq. (39) can be factorized and split as

(I − D1)W
∗ = (U + D1 + 2D2)W

n + V (40)

(I − D2)W
n+1 = W∗ − D2W

n (41)

It can be seen that (40)-(41) solve tri-diagonal matrices at
each time step to obtain electric field components, while all
magnetic field components can be found explicitly.

III. NUMERICAL RESULTS
As mentioned above, we have demonstrated and derived
the CFS-CNDS-FDTD formulations, which can be effi-
ciently and accurately utilized to model BP metasurface
implementations in the infrared range. To further elabo-
rate and corroborate advantages and applications of the
CFS-CNDS-FDTD versus the regular FDTD in solving
all-dielectric nanostructures, 3D numerical simulations are
carried out to compare the accuracy and the efficiency
and accuracy between both the CFS-CNDS- FDTD and the
conventional FDTD.
As known to all, the numerical stability of the conventional

FDTD method is determined by the CFL condition, which
requires that the temporal incremental 	t has a specific
bound relative to the lattice 3D-space size {	x, 	y, 	z}.
Therefore, the CFL factor can be defined in the w-direction as

sw = c0	t√
3	w

(w = x, y, z) (42)

where 	w is the grid scale for FDTD. c0 is the light speed
in vacuum. The CFL factor must satisfy sw ≤ 1 in the

En+1
x

(
i+ 1

2
, j, k

)
+ [

Cexhy(k) − Cexf Cfxzhy(k)
]
DzH

n+1
y
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FIGURE 1. (a) Proposed nanostructure with unpatterned BP, where armchair and
zigzag directions are along the x axis and y axis, respectively. (b) Patterned BP. The
symbols α and θ represent the azimuth and elevation angles of incident light,
respectively.

conventional FDTD method, whereas the implicit FDTD can
break through the CFL factor sw due to its unconditional
stability. However, how to choose maximum CFL factor s
will be a vital problem.
In general, FDTD results are affected by spatial sampling

and temporal sampling densities. The spatial sampling den-
sity refers to the number of points per wavelength (PPW)
at the highest frequency in the interested frequency band,
while the temporal sampling density represents the number of
points per period (PPP) at the highest frequency. The spatial
sampling and temporal sampling densities are respectively
expressed by

Qs,w(PPW) = λmin

	w
= c0

fmax	w
(43)

Qt(PPP) = Tmin

	t
= 1

fmax	t
(44)

where minimum wavelength λmin and period Tmin are
restricted by the maximum frequency f max of input impulse.
The design of proposed photonic nanostructures based

on the monolayer BP with/without patterning is shown
in Fig. 1. The structure consists of an alumina (Al2O3),
a substrate, and a monolayer BP with/without patterning,
respectively, shown in Fig. 1(a, b). The whole nanostruc-
ture in size is finished with a 67 nm ×67 nm×50.25 nm
FDTD domain, and its space is discretized with a uni-
form grid with 	x = 	y = 	z = 0.67 nm. The
receiver is placed at (40.2, 40.2, 44.89) nm for all
cases.
In our design, the dielectric layers of Al2O3 (= 33.5 nm

of thickness)and substrate (= 6.7 nm thickness)are assumed
to be nonmagnetic (μ = μ0), and optically lossless with
the refractive index of 1.7 and 1.48, respectively. In addi-
tion, the monolayer BP (=2.68 nm thickness), shown in
Fig. 1(a, b), is depicted by adopting a simple semi-classical
Drude model [21], [22], for both x and y cases, respectively,
defined as

σi = jDi

/(
π

(
ω + jη

�

))
(45)

where i denotes the direction concerned, and Diis the Drude
weight, written below

Di = πe2n/mi (46)

where mi(i = x, y) are the electron effective mass along
x and y directions, and denoted by adopting mcx =
�

2/(2γ 2/ς + ηc) and mcy = �
2/(2υc). Both εx(ω) and εy(ω)

are the dielectric constants of the monolayer BP for both x
and y directions, respectively, written below

εi = εr + jσi
ε0ωa

(47)

Via a series of manipulations of σi and εi(i = x, y), we
obtain

σi = Ai
Bi + jω

(48)

εi = εr − Qi
jω

+ Qi
Bi + jω

(49)

where Ai = −Di/π , Bi = −η/�, and Qi = Ai/(ε0aBi). As
depicted in [22], the parameters of BP are determined by
fitting the known anisotropic mass for x- and y-direction.
For BP, we have

γ = 4a

π
eVm, ς = 2eV, ηc = h2

0.4m0
, υc = h2

1.4m0

In additions, the relaxation rate can be described
via choosing the electronic doping n = 1013cm−2 and
η = 10meV. a is the scale length of the BP, and π/a is
the width of the Brillouin Zone in [21], [22].
As shown in Fig. 1, the source is excited by a bipolar

square wave pulse with the repetition frequency of 2.5 THz.
we here set the window time of 0.16 ps in the horizontal
axis to observe the stability of electric field component in
the x- and y- direction at the receiver point.

We test first case on the 3D nanostructures with monolayer
BP without patterning with the proposed CFS-CNDS-FDTD
method with different temporal discretization density and
use the results by the conventional explicit FDTD method
and the CFS-ADI-FDTD in [46] as the reference.
The Fig. 2 plots simulation results for a receiver for these

three different schemes as obtained with different temporal
sampling densities in terms of number of PPP. Corresponding
to this sampling density, the CFL number is defined as CFLN
= 	t/	tFDTDmax , where 	tFDTDmax is the maximum time interval
under the stability condition of the regular FDTD algorithm.
It should be noted in Fig. 2 that even at such large CFLN
values simulation results of the proposed CFS-CNDS-FDTD
are just as good as those of both the conventional explicit
FDTD and the CFS-ADI-FDTD in [46].
Besides, it is clearly reflected in Table 1 that the proposed

CFS-CNDS-FDTD can save massive CPU time as compared
with that of the conventional FDTD.
Similarly, it can be also observed that the good agreement

can be achieved for the 3D nanostructures with monolayer
BP with patterning among these FDTD methods, shown in
Fig. 3.
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FIGURE 2. Electrical field Ex and Ey evaluated by the conventional FDTD, the
CFS-CNDS-FDTD, and the CFS-ADI-FDTD.

TABLE 1. Computational Time for Different CFLNs

To show absorption abilities of the proposed CNDS-
FDTD, conventional FDTD, and ADI-FDTD based on
CFS-PML. We here provide reflective reflection errors of
these three methods to compare their absorption accuracies
for the case of Fig. 1(a).
It is shown in the above numerical result that the max-

imum relative reflection errors of Conventional FDTD,
CFS-CNDS-FDTD, CFS-ADI-FDTD, are −75.5233 dB,
−64.5135 dB, and −54.9536 dB, respectively. As reflected
in Fig. 4, therefore, the proposed CNDS-FDTD can obtain
better absorption accuracy than the ADI-FDTD.
To further validate the robustness and performance of

the CFS-CNDS-FDTD, we next build up and implement
the 3D all-dielectric nanostructures with a monolayer BP,
which can consist of a BP monolayer (= 2.68 nm of
thickness), a Calcium Fluoride (CaF2) layer (=4.02 nm
of thickness), a transparent substrate (=2.01 nm of thick-
ness), the mirror with a stack of dielectric layers of
alternate Zirconia (ZrO2) (=2.01 nm of thickness) and
Cryolite (Na3AlF6) (=6.03 nm of thickness), and periodic
silica (SiO2) nanoribbons (=3.35 nm of thickness), shown
in Fig. 5.

FIGURE 3. Electrical field (a) Ex and (b) Ey evaluated by the conventional FDTD, the
CFS-CNDS-FDTD, and the CFS-ADI-FDTD.

FIGURE 4. Relative reflection error versus time for Conventional FDTD method,
CFS-CNDS-FDTD (CFLN = 400), CFS-ADI-FDTD (CFLN = 400).

The whole nanostructure domain is done with a 67 nm
× 67 nm × 50.25 nm FDTD domain, and its space is
discretized with a uniform grid with 	x = 	y = 	z =
0.67 nm. In our design, the dielectric layers of CaF2, ZrO2,
SiO2, Na3AlF6 and substrate are assumed to be nonmagnetic,
and optically lossless with the refractive index of 1.45, 2.6,
1.48, 1.33, and 1.48, respectively.
In the same way, we here adopt identical source and

window time to observe and validate the stability and
performance of the CFS-CNDS-FDTD method. The 3D
nanostructures adding a monolayer BP without periodic
SiO2 nanoribbons is studied using the proposed CFS-CNDS-
FDTD method with different PPP, and then compares the
results by the conventional explicit FDTD and CFS-ADI-
FDTD methods in [46], shown in Fig. 5(a).

VOLUME 1, 2020 315



FENG et al.: DIRECT-SPLITTING-BASED CN-FDTD FOR MODELING 2D MATERIAL NANOSTRUCTURE PROBLEMS

FIGURE 5. (a) Proposed nanostructure adding unpatterned BP without a periodic
SiO2, where armchair and zigzag directions are along the x axis and y axis,
respectively. (b) with a periodic SiO2. The symbols α and θ represent the azimuth and
elevation angles of incident light, respectively.

FIGURE 6. Electrical field (a) Ex and (b) Ey evaluated by the conventional FDTD, the
CFS-CNDS-FDTD, and the CFS-ADI-FDTD.

TABLE 2. Computational Time for Different CFLNs

As shown in Fig. 6, the good agreement is obtained
among the conventional explicit FDTD, the CFS-ADI- and
the CFS- CNDS-FDTDs with different CFLNs. Furthermore,
the Table 2 indicates that the proposed CFS-CNDS-FDTD
can occupy substantially less CPU time than that of the
regular FDTD.

FIGURE 7. Electrical field (a) Ex and (b) Ey evaluated by the conventional FDTD, the
CFS-CNDS-FDTD, and the CFS-ADI-FDTD.

Recently, the design of a 3D all-dielectric nanostruc-
ture is presented with periodic SiO2 nanoribbons and 2D
graphene in [18], which can obviously enhance light-matter
interaction. To further analyze and unveil the physics of
periodic structures subsequently, now the periodic SiO2 is
put atop the monolayer BP for validating the accuracy of
CFS-CNDS-FDTD method, shown in Fig. 5(b).
As reflected in Fig. 7, we can again observe good agree-

ment among the implicit CN-FDTD and the explicit FDTD
methods, therefore, the good performance of the CFS-CNDS-
FDTD for modeling all-dielectric nanostructures with BP
metasurface is corroborated.
To show absorption abilities of the proposed CNDS-

FDTD, conventional FDTD, and ADI-FDTD based on
CFS-PML. We here provide reflective reflection errors of
these three methods to compare their absorption accuracies
for the case of Fig. 5(a).
It is shown in the above numerical result that the max-

imum relative reflection errors of Conventional FDTD,
CFS-CNDS- FDTD, CFS-ADI-FDTD, are −70.0159 dB,
−65.0919 dB, and −55.4651 dB, respectively. As reflected
in Fig. 8, therefore, the proposed CNDS-FDTD can obtain
better absorption accuracy than the ADI-FDTD.
As a result, it will become more practical and efficient

if the proposed CFS-CNDS-FDTD method is adopted to
solve the 3D all-dielectric nanostructures with the 2DLM
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FIGURE 8. Relative reflection error versus time for Conventional FDTD method,
CFS-CNDS-FDTD (CFLN = 400), CFS-ADI-FDTD (CFLN = 400).

material in the infrared range instead of the conventional
FDTD method.

IV. CONCLUSION
A CFS-CNDS-FDTD has been developed and presented
for infrared 2DLM metasurface implementation on all-
dielectric nanostructures. The proposed CFS-CNDS-FDTD
can greatly improve the computational efficiency when
solving infrared terahertz problems with few-atomic-layer
thickness of 2DLMs due to possessing capabilities of implicit
FDTD method and unsplit-field CFS-PML. As shown in 3D
numerical cases, the temporal incremental in CFS-CNDS-
FDTD method can reach 1000 times larger than that in
the regular FDTD for infrared problems while keeping pin-
point. As a consequence, the CFS-CNDS-FDTD can not
only achieve high accuracies and saves several dozen times
of CPU time as compared to the regular FDTD, but also
pave the road for high-efficient designs of 3D all-dielectric
nanostructures with 2DLM metasurfaces.
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