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ABSTRACT Estimating parameters of stochastic radio channel models based on new measurement data
is an arduous task usually involving multiple steps such as multipath extraction and clustering. We propose
two different machine learning methods, one based on approximate Bayesian computation (ABC) and the
other on deep learning, for fitting stochastic channel models to data directly. The proposed methods make
use of easy-to-compute summary statistics of measured data instead of relying on extracted multipath
components. Moreover, the need for post-processing of the extracted multipath components is omitted.
Taking the polarimetric propagation graph model as an example stochastic model, we present relevant
summaries and evaluate the performance of the proposed methods on simulated and measured data. We
find that the methods are able to learn the parameters of the model accurately in simulations. Applying
the methods on 60 GHz indoor measurement data yields parameter estimates that generate averaged power
delay profile from the model that fits the data.

INDEX TERMS Machine learning, Monte Carlo methods, deep learning, Bayesian inference, radio channel
modeling, approximate Bayesian computation, summary statistics, propagation graph, parameter estimation,

(Senior Member, IEEE),

likelihood.

I. INTRODUCTION

TOCHASTIC models of the radio channel are indispens-

able tools in the design and analysis of communication
and localization systems. Stochastic radio channel models
are used for characterizing and simulating realizations of the
channel in different environments. However, for the model
to generate data similar to what is observed in the mea-
surements, its parameters need to be learned from the data.
The process of learning or estimating the parameters of a
model from new measurements is termed as calibration.
Calibration could be obtained by deriving the parameters
theoretically, e.g., in room electromagnetics or in ray trac-
ing. In fact, some parameters such as speed of light or room
geometry are set not using the data. Standard calibration
technique using data would be to either maximize the likeli-
hood function of the data with respect to the parameters, or
to characterize the posterior distribution of the parameters in
a Bayesian sense. However, most stochastic channel mod-
els suffer from intractability of the likelihood function, and

therefore, calibrating them given a new set of measurement
data is challenging [1].

Typically, stochastic multipath radio channel models are
calibrated in steps, as described in Fig. 1(a). This calibra-
tion methodology has been followed since the early works
of Turin et al. [2] and Saleh and Valenzuela [3] till more
recent stochastic channel models [4]-[8]. First, the data is
reduced to a set of multipath components, each having their
own gain, delay, etc., by applying high-resolution algorithms
such as SAGE (Space Alternating Generalized Expectation-
maximization) [9], MUSIC (MUltiple SIgnal Classification),
ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques), and RiMAX [10], among others. The
extracted multipath components are then used to estimate the
model parameters. In case of cluster-based channel models,
an additional clustering step can be applied. Alternatively,
the presence of clusters, or other multipath effects, can be
included in the derivation of the high-resolution estimator,
as in [11]-[13], to obtain the cluster parameters directly. In
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FIGURE 1. State-of-the-art calibration methodology (a), versus the proposed
method (b).

a final step, the model parameters are estimated from the
extracted multipath components and clusters.

Even though such multi-step calibration approaches are
widely used, they suffer from a range of issues. It can be
cumbersome and labor-intensive to derive, implement, and
test sophisticated multipath extraction and clustering algo-
rithms that require a number of heuristic choices to be made.
Moreover, the estimation of the multipath components is
prone to errors due to censoring [14]. Therefore, the overall
estimation accuracy of the model parameters is difficult to
determine due to this step-by-step calibration approach.

There may exist statistics other than the multipath com-
ponents that are easier to obtain, and still hold enough
information to be able to learn the model parameters.
Potentially, the parameters of the channel models can be
estimated without the multipath extraction step by relying
on these easy-to-compute summary statistics. Such an esti-
mator for the Saleh and Valenzuela model [3] was proposed
in [15] where the estimation problem was framed as an
optimization problem that fitted summary statistics of the
data with approximate analytical expressions. More recently,
multipath extraction-free calibration methods based on sam-
pling [16] and method of moments [17] have been developed
and applied to the Turin model. These methods summarize
the data into certain statistics, and rely on explicit deriva-
tion of equations linking their means and covariances to the
model parameters. Drawback of these methods is that such
equations need to be derived for every stochastic channel
model, which is either non-trivial or oftentimes not possible.

In the present contribution, we further advance the idea
of using other summaries than the multipath parameters for
model calibration. This leads to the calibration methodol-
ogy outlined in Fig. 1(b) where the data is first summarized
into a set of statistics from which the model parameters
are obtained. We extend our previous work on learning
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parameters of stochastic channel models using approxi-
mate Bayesian computation (ABC) [18] and deep learning
(DL) [19], where we had applied the methods on the
cluster-based model of Saleh and Valenzuela [3].

ABC is a framework for performing likelihood-free infer-
ence on generative models with intractable likelihoods [20],
[21], as is the case for stochastic channel models. It relies on
sampling parameter values from a prior distribution, simulat-
ing data from the model, and comparing the simulated sum-
maries to those obtained from the measurements. Parameter
values that yield summaries similar to the observed ones
are used to approximate the posterior distribution. Initially
developed in the field of population genetics [22], ABC has
since been applied in various other fields of research such
as ecology [23], astrophysics [24], and structural dynam-
ics [25], to name a few. To the best of our knowledge, ABC
has not been applied in wireless communications except for
our previous conference paper [18].

The DL method utilizes a neural network (NN) to estab-
lish a functional relationship between the summaries and
the parameters, and uses the trained NN to estimate the
parameters given the observed summaries. Neural networks
have been proven to exhibit capability for universal approx-
imation of any continuous real-valued function [26]. These
networks have been successfully applied in fields such as
computer vision and image processing over the last several
years. Recently, the wireless communications community
has also explored avenues for application of DL. While
efforts have been directed towards DL-enabled physical layer
design, only a few applications to radio channel modeling
and calibration have been proposed. In [27], the authors
utilized Deep Neural Network for uplink-downlink channel
calibration in massive MIMO. Similar network is utilized for
predicting path-loss exponent from millimeter wave chan-
nel measurements in [28]. The DL method proposed here
is a generalization of the framework introduced in [19]
where a single layer neural network is applied to esti-
mate parameters of propagation models. Similar DL-based
likelihood-free inference framework has been applied in
population genetics [29].

In this paper, we present two machine learning meth-
ods based on ABC and DL to calibrate stochastic radio
channel models without multipath extraction. We show the
applicability of the methods by calibrating the polarimetric
propagation graph (PG) model [30] as an example, since
multipath extraction cannot be directly applied to calibrate
it. We also present a number of summary statistics for repre-
senting channel measurements that are used as input for the
learning methods. The chosen statistics are qualified via sim-
ulation study of the PG model. Simulation results illustrate
the capability of the proposed learning methods to accu-
rately estimate the model parameters. The methods are also
applied to calibrate the PG model using real indoor channel
measurements. Reasonable fits of the averaged power delay
profile were seen between the measurements and the model,
thus validating the proposed learning methods.
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The remainder of the article is organized as follows. We
describe the ABC and DL calibration methods in Section II.
The description of the polarimetric PG model is given in
Section III, along with the choice of summary statistics. In
Section IV, we apply the ABC and DL methods on the PG
model and show the results. The discussion regarding the
proposed methods is presented in Section V, and Section VI
provides our concluding remarks.

Il. SUMMARY-BASED CALIBRATION METHODS

Consider a stochastic generative model, M (@), which is easy
to simulate from given any value of the parameter, #. Each
time the model is called for a given parameter vector, it gen-
erates independent realizations of simulated data, Y. Here,
Y could be a vector or a matrix. Let Yops be a set of
measurement data obtained experimentally. The calibration
problem then involves estimating @ such that the model,
M(8), fits to the measured data, Yons. However, the likeli-
hood function of Y given 6 is intractable, and so standard
estimation techniques are not applicable. Typically, Y is a
high-dimensional data matrix, as is the case with radio chan-
nel transfer function or impulse response measurements for
multiple independent realizations of the channel. Therefore,
we use a function, S(-), that summarizes Y into a set of ¢
statistics, s € R%, such that s = S(Y). We then use these
statistics as data in our calibration methods to estimate 6
given the observations sobs = S(Yobs). Ideal choice for s
would be sufficient statistics of Y, but those are unavailable
in most practical cases.

A. APPROXIMATE BAYESIAN COMPUTATION
ABC is a likelihood-free inference method that samples from
the approximate posterior distribution of the parameters by
finding values that lead to simulated datasets from the model
that are similar to the observed data. The method involves
sampling from the prior distribution of the parameters, p(),
and then generating datasets from the model. These sim-
ulated datasets are then compared to the observed set of
measurements in some distance metric, p(-, -), and the values
of @ that yield a distance smaller than a pre-defined tolerance
threshold, €, form samples from the approximate posterior
distribution. These samples can then be used to approximate
standard point estimates of # such as the minimum mean
square error (MMSE) or the maximum a posteriori estimate.
The basic rejection-ABC algorithm can be summarized as
follows:

1) Sample from prior, * ~ p(6)

2) Simulate Y* ~ M(6%*)

3) Compute summary statistics s* = S(Y™*)

4) Accept 6% if p(s*, Sops) < €

The approximation here arises on account of summarizing
the data into a set of statistics, and accepting samples within
a tolerance threshold. Choosing sufficient statistics to be used
in ABC mitigates the former approximation, however, find-
ing sufficient statistics is typically not feasible. Choosing a
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small € improves the posterior approximation but increases
the rejection rate significantly, whereas a large € leads to
sampling from almost the prior. Therefore, the distance met-
ric, the tolerance threshold, and the summary statistics are
the necessary ingredients required to implement an ABC
algorithm.

The choice of appropriate summary statistics is crucial to
the quality of approximation [31], and it depends upon the
application and the model at hand. Given a pool of sum-
mary statistics, there exist statistical methods to, e.g., select
best subset among them, or construct a much smaller set of
highly informative statistics through projection techniques,
among others [32]. However, domain knowledge is vital for
constructing appropriate summaries that are not only infor-
mative about the model parameters, but also relevant from
an application perspective. Thus, domain experts can choose
meaningful summaries that they wish to fit to the model.
The specific statistics used in this paper will be addressed
in Section III-D with regards to a specific example radio
channel model.

Typically, the Euclidean distance between the observed
and the simulated statistics is used as the distance metric
in summary-based ABC methods, i.e., p(-,-) = || - ||. Other
distance metrics can also be used, however, the Euclidean
distance seems appropriate in the context of summary-based
ABC methods for the application at hand. In cases where a
set of statistics are used that differ in their units and order
of magnitude, it is important to normalize them before com-
puting the distance [33]. The normalization aims to bring all
the individual distances to the same scale, such that the total
distance will be their sum. In this paper, we take p(-, -) to
be the Euclidean distance between the normalized statistics,
but still denote it as ||s — Sops||, with the normalization of
the statistics assumed to be implicit.

Specifying an appropriate value of € in terms of the dis-
tance may prove to be difficult. Setting € too low leads to
unknown run time of the algorithm to get a certain number
of accepted samples. Therefore, it is usual to employ a k-
nearest neighbor approach and specify € as a percentile of
the total simulated samples. That is, out of M samples of
0 from the prior, we accept the first M = €M samples
leading to the smallest ||s — Sobs]|-

The basic ABC method is simple but can be rather
slow. Instead, we propose to use a sequential sampling
method, specifically the Population Monte Carlo ABC
(PMC-ABC) [34], and supplement it by employing the
local-linear regression adjustment method proposed in [31].
The resulting algorithm, named PMC-ABC with regression
adjustment, is detailed in Alg. 2. A block diagram sum-
marizing the proposed method is shown in Fig. 2. In the
following, we describe the two ABC techniques.

1) REGRESSION ABC

We supplement the rejection-ABC algorithm by employ-
ing the local-linear regression adjustment method proposed
in [31]. The regression adjustment improves the posterior
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FIGURE 2. Block diagram depicting data flow in the proposed PMC-ABC algorithm with regression adjustment.

approximation by 1) weighting the accepted parameter
samples according to their corresponding distance value
and 2) adjusting them using a linear regression model
applied locally in the vicinity of sops. For 6; being the
j™ accepted parameter sample and s; the corresponding

simulated statistics vector, the linear model reads
T .
0=+ (Sj—sobs) B+ej, j=1,....M, (D

where & € R? and B € R?*? are the intercept and regression
coefficients, respectively, and €1, ..., &y, are uncorrelated
noise variables with zero mean. The least-squares estimate
of @ and B are obtained by solving the optimization problem

M 2
argrir;inZ[Bj —a = (5= Sabs) B Ke(lls; — sansll). @)
o, i—1

The Epanechnikov kernel, K. (-), depends on the maximum
accepted distance based on the chosen €, and ensures that
the regression model is applied locally. The samples are then
adjusted as

éjzaj—(sj_sobs)T/}v j=1.... M, 3)

thus improving the approximation to the posterior distri-
bution. Note that the adjustment is applied on each entry
of the parameter vector independently. This regression-ABC
algorithm is described in Alg. 1.

The adjustment in (3) is done disregarding the prior range
of the parameters. Therefore, the regression method may
adjust the samples to fall outside the support of the prior.
This issue can be addressed by transforming the parameters
before adjustment [31]. A log transformation can be used for
positive parameters, and a logit transformation for parameters
with bounded priors [35].

2) POPULATION MONTE CARLO ABC

In cases where the parameter vector is high-dimensional,
rejection-ABC method needs a large number of simulations
of the model to reasonably explore the parameter space.
Therefore, more advanced ABC methods have been intro-
duced that rely on Markov chain Monte Carlo and Sequential
Monte Carlo techniques that sample the parameter space
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Algorithm 1 Regression ABC Algorithm
Input: Parameter values (1, ..., 37) and corresponding simulated

statistics (sy, ..., Spz), observed statistics Sqps, number of accepted
samples M,

Accept (0%, ...,

03 ~ {6}, with the smallest [|s; — Sops |

M
Solve optimisation problem (2) with {Qj*}_ 61 and corresponding
* M. 2 ”
S t t
{57],o et B
. Me | ~ 1 Me
Adjust accepted samples {OJ*} . using (3) to get [0]‘}‘ )
J= J=

Output: Samples @,..., 6~?M€) from approximate posterior

efficiently. One such sequential technique is the Population
Monte Carlo (PMC)-ABC method [34] that iteratively
converges towards the approximate posterior distribution.

In the initialization of PMC-ABC, M, closest parame-
ter samples out of (6q,...,80)) are retained, similar to
rejection-ABC. These accepted samples, {0j}j}4:‘1, form an
approximation to the posterior distribution. A new popula-
tion of M parameter samples is then drawn from the density
kernel

M
0:(60) = Zw;t—l)lct<0(t)|0;t—l); o'%t—l))’ 4)
=1

(1=1)

where t is the iteration index, W; is the importance sam-

pling weight associated with the accepted sample 0}’_1), and
a%t_ 1 is a variance vector with each entry associated with
a kernel K;. Note that w; and o2 are vectors of the same
dimension as @, and the new population for each parameter is
drawn independently from the kernel with the corresponding
variance. Typical choice for X; is a Gaussian kernel, although
other distributions may also be useful. A good choice for the
variance of K; is shown to be twice the empirical variance
of the accepted samples [34]. Data and statistics are again
simulated from the newly generated population, and the M,
closest parameter samples are accepted and assigned weights
w® o p(0)/¢:(0), where the division is taken entry-wise.
This sequence of steps is repeated for T iterations, till the
approximate posterior distributions converge.
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Algorithm 2 PMC-ABC With Regression Adjustment

Input: Prior p(#), model M (0), observed statistics Sqpg, Me, M, T
Initialization: r = 1,

fori=1to 11\4 do
Sample 05 ) ~ p(@)

Simulate Yl(.l) ~ M(GEI)) and compute sgl) = S(Y,(.l))
end for
Perform regressmn adjustment by applying Algorithm 1 on

{( M 0(1))}1'—1 to obtain { ( >}j—1

Set weights

(1) =1/Me, j=1,...,M¢, and variance

‘7(1) = 2Var<{9](l)}j4_:>

for t=2to T do
for i=1,...,M do "
Sample 0* ~ {5071)}. El =1
j=
Generate 0() ~ K (0|0 (z 1))

with probabilities w;
Simulate Ygt) ~ M( l@) and compute sl(.t) = S(Yp)
end for

Perform regression adjustment by applying Algorithm 1 on

[(s2.6)] " 1o obtain {8}
Set wei ght;_ =
W o ()

J (=1 (), 70— 1) o2 ’
S wi VK (68160

1 <j<Me

and variance ”%z) = ZVEr({éJQ) }j=EI>
end for
(T)

~(T . .
Output: Samples (01 e 9,(‘/16)) from the approximate posterior

To improve the posterior approximation and speed up the
convergence, we combine the aforementioned two meth-
ods by applying the regression adjustment step on the
accepted parameters after each iteration of PMC-ABC. The
samg)le mean of the accepted samples after T! iteration,

(01 - 0 M. ) gives the approximate MMSE estimate.

B. DEEP LEARNING

Given a set of summary statistics and corresponding
model parameters, {(s;, 6;)}ie{1,....m}, the calibration problem
described above can be expressed as a mapping from s to 6.
Denoting f as the mapping function, the model parameters
can be expressed as

0, =f(Gs)+¢e i=1,...,M, (®))

where ¢; denotes the approximation error. Given the expres-
sion in (5), the calibration problem is equivalent to finding
a representation of f such that &; is minimized for all s;.
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The function f can, e.g., be defined as a linear or polyno-
mial function of s which can be obtained via a least square
fit to the simulated data, {s,-}f.‘i . It may however be dif-
ficult to find such functions for the multi-dimensional and
potentially complex relationship between the statistics and
the model parameters. We, therefore, propose using a deep
neural network architecture which has been shown to exhibit
universal approximation property [26].

The DL based calibration method is illustrated in Fig. 3.
We approximate f using a deep NN architecture illustrated in
Fig. 4. The deep NN model can be defined using a hypothe-
sis, f‘ (-; @), with parameter ®. For a network with R hidden
layers, E, neurons in the the 1 hidden layer, and p neurons
in the output layer (since § € RP”), the DL hypothesis for
the it statistic can be expressed as [26]

hr(si) Zah(wrhr—l(si)+br)» r=1,...,R
f(si; ®) = dou(Wouhr(s:) + bour) (6)

where h,(-) is the output of the b layer, W, € REr<Er—i

and Wyy € RP*ER denote the weights matrix for con-
nections terminating at the r™ hidden layer and output
layer, respectively, with b, € RE and by, € R” being
the corresponding bias terms. The activation function at
the nodes of each intermediate layer is aj, and that at the
output layer is aqy. Note that hg(s;) = s;, with the num-
ber of neurons in the input layer being the dimensionality
of s. The DL hypothesis in (6) is parameterized by the set

= {{(W,, br)}R 1> (Wout, bou)}. The network parameters
are estimated by training the network using the simulated
data-set, {(s;, 0;)}ic(1,....m, from the model. Typically, the
training is done by minimizing a loss function, L(®),
defined as

M
L®) = - EW@, si) = 0illa. (7)
=
Minimization of the loss function is typically performed via
stochastic gradient descent with back propagation of the error
gradients viz:

(I)n = q’nfl - §v£(¢n71)a (8)

where ¢ denotes the step-size (also referred to as the learn-
ing rate) and V is the gradient operator. Due to its fast
convergence and good generalization for small data-sets, we
utilize the Levenberg — Marquardt algorithm [36], [37] for
network training in this paper. The network parameters are
thus updated as

-1
(I)n = <I)n—l - [JTJ + )uI:I JT»C(q)n—l)a (9)

where J is the Jacobian matrix with J,,y = §(f(®,s,) —
0,,)/8P¢, Iis an identity matrix and X is the adaptive damp-
ing factor. The damping factor controls the learning rate and
is increased by Ajn. or decreased by Agec With increasing
or decreasing error, respectively. This procedure is repeated
until a termination criterion is achieved. Implementation of
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such a NN architecture can be achieved through standard
toolboxes available in MATLAB, R, or Python.
Denoting the trained network parameters as ®, the
calibration is done by applying the trained network on Sgps as
6 =7 (s00s: ). (10)
The accuracy of the estimated model parameter, 0, is affected
by how well the trained hypothesis approximates the rela-
tionship between the summary statistics and the model
parameters. This is dependent upon a number of factors such
as the selected network structure, activation functions, and
training method. Therefore, adequate care has to be taken
in selecting the NN model in order to obtain reasonable
estimates.

lll. CALIBRATION OF POLARIMETRIC PROPAGATION
GRAPH MODEL

The proposed ABC and DL methods are applied for esti-
mating parameters of a polarimetric propagation graph (PG)
model [30], [38], [39]. First proposed in [40], the PG offers
a simple and efficient approach for modeling propagation
channels that account for both specular and dense multipath
components. The model also has the ability to capture rever-
beration effects. Several studies have applied or modified
the PG model in indoor [41], outdoor-to-indoor [42], high-
speed railway [43], [44], indoor-to-indoor [45], [46] and
millimetre-wave systems [47], [48]. Despite the growing
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interest in the PG model, study on its calibration based on
measurements is severely limited. A vast majority of works
utilizing the PG model are either based on the stochas-
tic generation procedure in [49] or in combination with
a map of the environment. The polarimetric PG model
in [30] was calibrated with measurements using method
of moments. However, the method requires manually fix-
ing one parameter due to identifiability issues. Moreover,
the measurement noise variance is not estimated, necessi-
tating manual truncation of the power delay profile (PDP)
prior to fitting.

A. MODEL DESCRIPTION
Consider a time-invariant radio channel in a multi-input,
multi-output (MIMO) set-up with N, and N, output ports
at the transmit and receive antennas, respectively. In the
PG framework , the radio channel is modeled as a directed
graph G = (V, £) [49]. The vertex set V =V, UV, UV is a
union of a set V; of N; transmitters, a set V), of N, receivers,
and a set V; of Ny scatterers in the environment. The edges
E =& U&UE UE model the wave propagation between
the vertices, where & is a set of direct edges, & is a set
of transmitter to scatterer edges, & is a set of scatterer to
scatterer edges and &; is a set of scatterer to receiver edges.

To each vertex v we associate a position r, € R3. From
these positions, the length of an edge (v, w) is ||r, — ryl|.
This results in a propagation delay from v to w of t, =
|(ry — 1)l /c, where ¢ is the speed of light in vacuum and
|| - || denotes the Euclidean norm. Accordingly, the direction
of propagation is specified by a unit vector €2, associated
with edge e, pointing in the direction of propagation.

The transfer function matrix at a particular frequency,
H(f), of the polarimetric PG is given as

H() =D() + R(N[I-B(] T, (1)

where D(f) € CM*M is the transmitter to receiver, T(f) €
C2NsxNi ig the transmitter to scatterer, R(f) € CMNex2Ns ig the
scatterer to receiver, and B(f) € C2¥s*2Ns s the scatterer to
scatterer edge transfer function sub-matrix. Then, the transfer

function sub-matrices are given as:
D(f) = X/ Q)X (Q)Ge(f). e€&q
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T(f) = XL QML ()G (f), e€ &
B(f) = MI(2.)G.(f), e€&
R(f) = X:(Q)Ge(f), e€&

Here, X((2.) and A;(€2,.) are the 2 x 1 transmit and receive
polarimetric antenna array response vectors, respectively, and
I'(€2,) is the 2x 2 rotation matrix. The 2 x 2 scattering matrix,
M, represents the coupling between the two polarization
states. Assuming it is equal for all the scatterers, M reads

1
L)
I+yly 1

where y € (0,1) is the polarization power coupling
ratio. Finally, G.(f) is the scalar that captures polarization-
independent propagation characteristics, and is expressed as

Ge(f) = ge(f) expli(We — 2w 7ef)].
where v, is the phase. The edge gain, g.(f) is calculated as:

(12)

13)

1 .
@nft) e
/4 EsE ‘<8
ge(f) = { VeSS E (14)
odie) > e €&
+; ec gl‘
VA ENS(E)

Here, g € (0, 1) is the reflection gain, odi(e) denotes the
number of outgoing edges from the n" scatterer, and

1
mm=E7§u,&@=§ﬁf,&c&
Al ece,

et

with | - | denoting set cardinality.

To draw a random graph and simulate transfer function
from the model, the positions of the transmit and receive
antennas need to be specified. An edge between V; and V;
is drawn with probability Pgi;. Note that for line-of-sight
case, Pgir = 1, while for non-line-of-sight (NLOS) case
Pgir = 0. Edges between V; and Vg, Vs and Vg, or Vs and
V; are drawn with probability Pis. The phase ¥, is drawn
uniformly between 0 and 2.

B. CALIBRATION PROBLEM FORMULATION

To calibrate the PG model based on measured data, Yps, we
need to estimate the parameters of the model such that the
model fits the data. We consider measurements conducted
in NLOS conditions, resulting in Pgi; = 0. Apart from the
model parameters, we would also like to estimate the noise
variance. The parameter vector to be estimated from Ypg
thus becomes 6 = [g, N;, Pyis, ¥, 01\2]]T.

C. MEASUREMENT DATA DESCRIPTION

Let the MIMO channel transfer function be measured at
K equidistant points in the bandwidth B, giving a frequency
separation of Af = B/(K—1). The resulting measured signal
matrix at each frequency point, Y; € CN*N: | reads

Y. =H(f) + % k=01,....,K—1 (15)
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where H(fy) is the sampled transfer matrix, and 4% is the
measurement noise. Assuming independent and identically
distributed (iid) noise at each measurement point and for
each transmitter-receiver link, we model it as iid zero-mean
complex Gaussian variables with variance aﬁ,. The entire
polarized observed data-set, denoted as Yops, thus becomes
an N, x N; x K matrix. Let Y;(J be the measurement for
the k™ frequency sample between the i receiver and the
jth transmitter. The received signal in time-domain, yij (1), is
computed as

K-1
) 1 i .
V() = X kE_O Y, exp(2mkAft).

16)

D. SUMMARY STATISTICS
Implementation of the ABC and the DL learning method
necessitates a choice of appropriate summary statistics
of observed data that are informative about the model
parameters. The first three temporal moments, computed as
. /af
M=/ IOP, 1=0,1,2, (17)
0

have been used previously for calibration of stochastic radio
channel models and found to be informative about model

parameters [16]-[19]. Here, we compute the sample mean
of the /™ temporal moment as

1 Ny N ..
- 1j
m; = mj, 18
RN L 1
i=1 j=1
and the sample covariance between /M and o temporal

moment as
cov (m}. m}
| N, N
A E Tt -a) o
= m; —my )|\ m; —my ).
MM_LZ}X, ) (ml — ). (19)
i=1 j=1
Additionally, we separate the temporal moments according
to their polarization, i.e., vertical-vertical (vv), vertical-

horizontal (vh), horizontal-vertical (hv), and horizontal-
horizontal (hh), to compute the cross-polarization ratio,

XPR, as
1 |:m0 n'10h:|
XPR:E — T = | (20)
My Mg
The summary statistics vector, s, therefore has ten entries:
the XPR, the three means my, and, and six covariances
cov(m}', mp) for ,I' =0,1,2.

To verify that the chosen summary statistics are informa-
tive about the model parameters, we conduct a simulation
experiment. One parameter at a time is sampled 100 times
from its uniform prior distribution (given in Tab. 1), while
the other parameters are held fixed. Data is simulated from

the polarimetric PG model for such a parameter vector and
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FIGURE 5. Summary statistics versus model parameters. Each plot is generated by
varying one parameter while the others are held fixed to the values in Tab. 1.

the statistics are computed. Each of the ten statistics are then
plotted versus the five parameters in Fig. 5.

We observe that XPR and the means of the temporal
moments are informative about almost all the parameters.
The covariances become informative for higher values of g
and P.js and lower values of y. We see a clear functional
relationship devoid of any jitter between XPR and y, and
my and 01\2,. This indicates from the outset that y and 01\2,
should be estimated very accurately. In contrast, the sum-
maries seem the least informative about g, suggesting that
the estimate of g would be the most uncertain. In princi-
ple, a subset of these statistics could also be used in the
calibration methods. However, we observed a degradation in
performance on leaving out the covariances, and therefore
include all ten statistics.

IV. PERFORMANCE EVALUATION

We apply the ABC and DL methods to calibrate the polari-
metric PG model using the summary statistics described
in the previous section. First, we evaluate the performance
of the two calibration methods via simulations, and later
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validate it using millimetre-wave NLOS measurements
from [50]. The measurements were taken in a room of dimen-
sions 3 x 4 x 3 m? in the bandwidth range of 58 GHz
to 62 GHz, sampled at K = 801 equidistant points. The
frequency separation of Af = 5 MHz results in a signal
observation interval of 200 ns in the time domain. A 5 x 5
virtual planar array of dual polarized antennas with 5 mm
inter-element spacing, was used at both the receiver and the
transmitter. This gives Ny = N, = 50.

For the simulation experiment, we set the parameters of
the model to some “true” value, say @y, and generate
data from the model that we consider as observed data. We
then apply the proposed methods on this simulated data to
estimate the parameters. We use the same settings for simu-
lations as in the measurements [50]. The antennas in the PG
model implementation are assumed to be omni-directional
with perfect cross-polar isolation at both the receiver and the
transmitter. The scatterers are distributed uniformly across
the floor of the room.

For the simulation experiment, the observed statistics, Sobs,
that corresponds to 6, needs to be set. For a fixed 6y,
the stochastic model generates samples (s, ..., s?)) from
p(8]|0ue). Running the estimator Z times with each real-
ization of the statistics vector as Sops results in Z parameter
estimates, giving the error distribution around . However,
as shown in the Appendix, this is equivalent to taking Sops as
the sample mean of (s(l), el s(Z)) and running the estimator
once. Here, we adopt the latter computationally convenient
approach and compute Sops from @yye using Z = 200. It
should be noted that a similar approach is only possible in
general for measured data if Z independent measurements
can be obtained.

A. APPROXIMATE BAYESIAN COMPUTATION
The ABC method is applied with M = 2000 samples sim-
ulated for each iteration. For the first iteration, the samples
are taken from a uniform prior distribution of the parameters
with ranges given in Tab. 1. Note that the prior for N; is
uniform integers in the specified range. A Gaussian kernel
truncated to the prior range is used to generate populations
of subsequent iterations. We set the tolerance threshold to
€ = 5%, giving M, = 100 accepted samples, and the total
number of iterations to 7 = 10. The summary statistics are
normalized by the estimate of their median absolute devia-
tion before applying ABC. A logit transformation is applied
to the parameters before regression adjustment to keep the
adjusted samples within the prior boundary. The estimated
marginal posterior distributions are shown in Fig. 6 and
Fig. 7 for simulated and measured data, respectively. The
obtained point estimates and the sample standard deviation
of the accepted samples after 7 = 10 iterations are reported
in Tab. 1.

We observe in Fig. 6 that the samples obtained from
approximate posteriors lie around the true value for all the
parameters, and that the MMSE estimates are fairly accurate
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TABLE 1. Summary of the par i obtai

of the approximate posterior for ABC and of the estimate distribution for DL.

d from ABC and DL for simulated and measured data. Note that the sample standard deviation reported in parenthesis is

Estimate (standard deviation)

Parameter Prior range Simulated Data Measured Data
0 p(9) True value ABC DL ABC DL MoM [30]
Reflection gain, g [0,1] 0.6 0.59 (0.11) 0.58 (0.04) 0.54 (0.03) 0.56 (0.05) 0.64
Number of scatterers, N [5, 50] 15 15 (1.56) 15 (0.92) 14 (1.25) 16 (6.5) 11
Probability of visibility, Pyig [0,1] 0.6 0.58 (0.04) 0.60 (0.014) 0.99 (0.006) 0.96 (0.03) 0.9
Polarization ratio, y [0,1] 0.5 0.51 (0.02) 0.50 (0.01) 0.09 (0.005) 0.09 (0.05) 0.06
. . 9.98 x 1071 9.96 x 1071 4.3 x 1071 4.3 x 1071
2 —-10 -9 -9 i
Noise variance, o7y, [2x 107, 2 x 1077 10 (2.86 x 10712)  (8.8x10712) (2.11x10711) (2.8 x 10~
2 Note that this value 1s not estimated but set in [30].
Iteration: 1 2 5 6 10
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FIGURE 6. Kernel density estimates of the marginal approximate posteriors of the parameters obtained by applying ABC on simulated data, plotted in the prior range for each
parameter. The posteriors are shown after each iteration of the algorithm, with the parameter estimate marked in red. The true value of the parameter is shown in green.

even after the first iteration. As the iterations go on, the pos-
teriors shrink and converge for each parameter, albeit some
faster than others. For example, the posteriors for Ng, Pyis,
y and 01%, barely change after the second iteration, while
that of g seem to converge after around five iterations with
the MMSE estimate getting better with further iterations.
Similarly, the posterior for g is the widest, while that of the
other parameters are quite narrow. This uncertainty in the
estimates of different parameters reflects their relationship
with the summary statistics shown in Fig. 5. Parameters that
have a distinct functional relationship with, at least, a few
statistics are easier to estimate than others.

Similar behavior is observed in Fig. 7 for measurements
as was seen for the simulation experiment. The approxi-
mate posteriors for Pyis, ¥, and 01\2, are very narrow, and
seem to have converged since the first iteration. However,
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the posteriors for g and Ny takes approximately four iter-
ations to converge. The width of posterior for g and P.js
is narrower in comparison to those in simulation. This is
attributed to the fact that for a high value of Pyi, as is
the case in measurements, almost all the statistics become
informative, see Fig. 5. The averaged power delay profile
(APDP) generated from the model using the point estimates
obtained for the measurements is shown in Fig. 11. The cal-
ibrated model fits both the co- and cross-polarized APDP of
the measurements well.

B. DEEP LEARNING

We determine the structure of the NN for the calibration
problem via a guided search procedure. First, we limit the
number of hidden layers to R = 2 and assume that there
are equal number of neurons in each layer, i.e., E, = E.
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FIGURE 7. Kernel density estimates of the marginal approximate posteriors of the parameters obtained by applying ABC on measured data. The posteriors are shown after
each iteration of the algorithm. The density is plotted in the prior range for each parameter. The sample mean is marked in red.

A single hidden layer architecture is excluded due to its
poor performance during our preliminary experiments. The
number of neurons in each layer is varied from 2 to 28. We
then divide the data set into two equal subsets for training
and cross-validation. The mean and standard deviation of
squared error on the training and validation subsets are shown
in Fig. 8. We observe that the error stabilizes after around
12 neurons, and so we set £ = 20 as this is sufficient. This
results in a 10-20-20-5 network architecture which is used for
evaluating the DL calibration method. We use the hyperbolic
tangent sigmoid and linear activation functions [26] for the
hidden and output layers, respectively.

The NN is trained using the same M = 2000 samples
of s; and corresponding €; as used in the initialization of
the ABC method. In principle, the training data could be as
extensive as possible, thus leading to a better approximation
of the summary-parameter function. In order to eliminate the
sensitivity of network to the range of values in the summary
statistics, the entire data-set is normalized using the standard
Z-score scaling prior to network training. The data-set is ran-
domly partitioned into training, test, and validation subsets
in the ratio 0.70, 0.15 and 0.15, respectively. We utilized the
LM algorithm with damping parameters: A = 0.1, Aj,c = 10
and Agec = 0.1 for training the NN. The training procedure
is terminated when the number of epochs reaches 1000 or
the gradient is below 1077,

Once the termination criterion is achieved, we apply the
trained network on Sops from simulated and measured data
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to get point estimate of the parameter vector. This process
is repeated 200 times to estimate the distribution of the
parameter estimates, which is shown in Fig. 9 and Fig. 10 for
simulated and measured data, respectively. The sample mean
of the estimates and their standard deviations are reported
in Tab. 1. We observe in Fig. 9 that the DL method is
able to estimate the model parameters accurately and with
reasonable precision. The uncertainty in the estimates is
fairly small. As was the case with the ABC method, the
estimate of g has the largest standard deviation out of all
the parameters, corroborating our conjecture based on Fig. 5.
The method performs similarly on measured data, as seen
in Fig. 10, although with slightly larger standard deviations.
The APDP generated from the parameter estimates fits the
measurements, see Fig. 11, thus validating the methodology.

V. DISCUSSION

In our example, we see that the calibration approach based on
summaries is effective. However, as experienced during the
development of the algorithms, the choice of summaries is
important for obtaining a good calibration. Ideally, sufficient
statistics should be considered, but such are rarely available
or practical to extract in the context of radio channel models.
Although the simulation method of checking summaries has
proved useful for the example problem considered here, it
only gives an indication of how informative the summaries
are, and does not guarantee that the algorithms will work.
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FIGURE 8. Learning curve for selecting NN size. The mean and standard deviation
of the squared error at each number of neurons per layer is computed from 200
repeated network training.
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FIGURE 9. Parameter estimates obtained by applying the DL method on simulated
data. Kernel density estimates of the distribution obtained after 200 estimator runs.

The summary statistics used in this paper appear to be infor-
mative about the different aspects of the channel, and could
be useful in calibrating other stochastic channel models as
well. In the case of calibrating a directional model, the sum-
maries possibly have to be chosen differently. The method
for checking the summaries described here would be useful
for this selection.

Although based on the summary statistics of the data,
the two proposed methods are complementary to each other
as they approach the same problem in distinct ways. To
highlight this fact, we have intentionally avoided compar-
ing the two methods with each other. ABC infers on the
parameters in a Bayesian sense by learning the distribution
of the parameters given the data. On the other hand, the
DL method fits a function between the summaries and the
parameters and provides point estimates of the parameters
given the data in a frequentist manner without considering

VOLUME 1, 2020

05 1 10 20 30 40 50
Reflection gain, g Number of scatterer, N

1 1
0 05 10 0.5 1
Probability of visibility, P Polarization ratio, ~
PDF
= == Mean Estimate
0.5 1 1.5 2
Noise variance, c® x107

FIGURE 10. Parameter estimates obtained by applying the DL method on measured
data. Kernel density estimates of the distribution obtained after 200 estimator runs.
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FIGURE 11. Averaged power delay profile from the measurements versus those
obtained from the polarimetric PG model after calibration using ABC, DL and the
method of moments approach from [30]. The parameter estimates for all three
methods are reported in Tab. 1.

any prior information. Despite their differences, both meth-
ods are able to learn the parameters of the model such that,
qualitatively, it is not apparent in Fig. 11 which APDP fits
the measurements better.
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The choice of prior naturally affects the posterior distribu-
tion of the ABC method. In this paper, we used uninformative
(flat) priors in order to rely solely on the data to estimate the
parameters. The ranges of these priors are chosen conserva-
tively, i.e., to be very wide. Choosing more informative priors
instead would lead to faster convergence of the approximate
posterior in the ABC method, thus reducing run-time. In
general, if the data is large enough, the effect of the prior
distribution on the posterior becomes irrelevant.

Since the ABC method relies on simulations from the
model, the computational complexity primarily depends on
the complexity of the model. The computationally expensive
step in the DL method is the training of the NN, which
depends on the size of the training data and the chosen NN
architecture. While the two layer architecture was found to be
sufficient for the example model in the paper, more complex
models may require deeper networks. However, the network
needs to be trained just once, and parameter estimates can be
obtained for different measurement data instantly. In contrast,
the sequential nature of the ABC algorithm requires running
the iterations again for new observed statistics.

The computation time for the proposed methods depends
on the particular implementation and the available hardware.
The methods are lightweight enough to be run on standard
laptops with reasonable run-time. As an indication of the
required run-time of the proposed methods, our implemen-
tation of the proposed ABC method was able to complete
ten iterations within a day on a Lenovo ThinkPad with Intel
Core i7 processor having 24 GB RAM. Training the NN took
less than 2 hours on a Lenovo ThinkPad with Intel Core i7
processor and 16 GB RAM. Due to the different choices
of high-resolution and clustering algorithms that are avail-
able, their comparison with the proposed methods in terms
of computational complexity is not feasible. We remark that
in all the cases, the specific run-time depends not only on
the choice of algorithms and hardware, but is significantly
impacted by the particular implementation and choice of
settings in the respective algorithms.

We experience that the ABC method is not very sensi-
tive to the particular settings of the algorithm due to its
iterative nature. Increasing the number of simulated sam-
ples per iteration, M, increases simulation time from the
model, but leads to lower e if M, is kept constant. Thus,
the algorithm would converge in fewer iterations. Similarly,
increasing € would mean accepting samples that are further
away from sqps, and therefore, would require more itera-
tions to converge to a stable approximate posterior. Overall,
changes in one setting is compensated by another, and the
method performs similarly. This means that the performance
primarily relies on the choice of statistics. In contrast, for the
DL method the particular NN architecture should be cho-
sen carefully since generalization accuracy is sensitive to
the network size, particularly with small number of training
samples.

In principle, the entire channel impulse response mea-
surements could be used as input data instead of a set
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of summary statistics. However, the ABC method is then
hit by the curse of dimensionality [35]. That is, the dis-
tances become very large due to the high-dimensional data,
thus increasing the rejection rate significantly. For the DL
method, this would increase the number of input layers,
thereby increasing the computational complexity, along with
complicating the training procedure.

An appealing feature of the summary-based approach is
that it is specified exactly which criteria are used to fit the
model to the data. In this sense, we obtain the best fitting
model in the eyes of the summary statistics. This is very
different from what is obtained by the multi-step methods
relying on ad hocery and possibly conflicting assumptions
in the individual steps, e.g., assuming “well-separated” paths
in multipath extraction, followed by application of clustering
algorithms. Statistical techniques to construct a more infor-
mative subset of summaries [32] to be used in ABC can be
explored. However, by doing so we lose the transparency
as to which summaries are being fitted. Both the proposed
machine learning methods are also simpler to implement than
the classical state-of-the-art approach of multipath extrac-
tion, with fewer settings of the algorithm. Moreover, since
the proposed methods are integrated, their performance is
easy to investigate by simulation studies. This is again a
great advantage compared to multi-step approaches where the
performance of each step is evaluated separately, thus mak-
ing it difficult to judge the accuracy of the overall parameter
estimates.

Additionally, the ABC and DL methods are able to esti-
mate all model parameters, including the noise variance.
Thus it is not necessary to provide side information to the
algorithm (as is often done by separately estimating, e.g.,
noise variance) or to post-process the data by setting the
noise threshold. This advantage is clearly seen when com-
paring with the method of moments (MoM) approach of
calibrating polarimetric PG models [30] where noise is not
estimated (see Fig. 11).

VI. CONCLUSION

The proposed machine learning methods based on ABC
and deep learning are able to accurately calibrate stochas-
tic radio channel models. The model fit is obtained in light
of the explicitly chosen summaries. The proposed methods
demonstrate that stochastic channel models, in particular
the PG model, can be calibrated without access to likeli-
hoods. The methods also by-pass any intermediate step of
extracting the multipath components. We observed that the
choice of summaries is crucial in learning the parameters,
and the uncertainty in parameter estimates decreases with
informative summaries. The summaries used in this paper
are general purpose, and we conjecture that they can work
for other models as well. The methodology to qualify the
summaries through simulation study is useful in the design
of the algorithm, although it does not provide any guarantees.
Availability of pseudocodes and libraries make the proposed
methods easy to implement, compared to the state-of-the-art
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approach. The performance of the proposed methods is easy
to evaluate, as opposed to the multi-step approach. Moreover,
no additional information or post-processing is required to
calibrate the model.

APPENDIX
We want to show that setting sops as one realization out
of p(s|@yye) and running the estimator Z times gives the
same estimate of @y in mean as taking Sops as the sample
mean of Z such realizations out of p(s|@ye) and running
the estimator once.

Let Sgps be the zf sample, s®, from the distribution

p(s|@ue), and the corresponding MMSE estimate be é(Z).
Then, the sample mean for Z such estimates is

Z
~ 1 A (2)
buvg = - 2;0 U~ Elfls = Elslfiell. (D)
=
The mean of @(Z) then reads
A(2) A(2)
E[07] = / 6 p(s/8ue)ds = Oire. (22)

Assuming (s(l), e S(Z)) are independent samples, the
expected value of 8,y can be computed as:

1 Z
= Z 0true = otrue

~(2) ~ .
Therefore, both  ~ and 0,,, converge to Oyye in mean
and thus, are unbiased estimates. The variance of 0,y is,
however, reduced by a factor of 1/Z.
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