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ABSTRACT A rigorous theory for the synthesis of offset dual reflector antennas is presented. The
synthesis problem is posed as a three dimensional vector field which becomes the surface normals to
one of the reflectors. The ray trace which defines the vector field is calculated from the reflection law at
one reflector and a constant path length requirement. Implicit in the definition of the vector field is the
mapping from the input wavefront to the output wavefront. The Pfaffian integrability condition is applied
to the vector field which leads to a partial differential equation (PDE) for the input to output mapping.
Integrating this PDE coupled to the PDE for the shape of the first reflector yields the desired solution.
The method allows for a wide choice of the input to output mapping and combined with a judicious
choice of geometry produces practical designs which outperform traditional conic section designs. The use
of an explicit existence theorem in the problem formulation is innovative and leads to simpler software
which give excellent results. Unlike previous work, much of the algebra is done without reference to
coordinate frames, simplifying the presentation and relegating algebraic details to symbolic software. A
novel method for integrating the coupled PDE’s is introduced.

INDEX TERMS Reflector antennas, optics, ray tracing, shaped beam antennas.

I. INTRODUCTION

THE CONCEPT of designing reflector antennas with
shapes that are not conic sections to improve their

performance goes back to at least the early 1960’s. Classic
dual reflector designs composed of conic sections have a
focus between the two reflectors but that focus serves no pur-
pose. The two reflector surfaces can be “shaped”, changing
the surface profiles in unison to maintain the desired phase
performance while adjusting the amplitude distribution to
improve the efficiency or other performance parameters. A
simple concept but developing the mathematics to actual
accomplish this has been the work of many researchers
over many years. Developments in this area as applied to
microwave antennas slowed down by the 1990’s but more
recently “freeform optics” has become a topic of interest in
traditional optics. This paper is partly intended to bring a
technique developed in the 1990’s, [13], [14], to the optics
arena [17].
Reviewing some of the history of offset, shaped reflectors

serves to introduce the basic concepts involved. This brief
history is only a partial outline. Consulting the bibliogra-
phies of the cited papers leads to many other authors and

papers. The three main concepts underlying the theory and
introduced here are constant path length, differentials on a
surface equated to ray traced normals and the mapping from
the input wavefront coordinates to the output wavefront.
An early example of a shaped reflector is in [3] (also

in [6]) where a subreflector correcting the aberration of a
spherical primary reflector is designed using only a constant
path length criteria. This is a very important insight, that the
reflection law is automatically satisfied if a single reflector is
defined by constant path length. The algebra in [3] is much
simpler than solving the differential equation that results
from requiring the reflection law directly. The conic sections
possess this constant path length property but the concept
applies to all reflectors defined thusly. Some of the earliest
work on dual shaped reflectors is presented in [4] and [5]
(also in [6]) where methods to solve the circularly symmet-
ric case are presented. Both papers utilize the constant path
length criteria and require the reflection law to be satisfied
on both reflectors which is redundant. The reflection law
leads to differential equations for the reflector shapes since
the surface normal to a reflector is given by the derivatives
of the initially unknown shape function. In addition to these
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basic requirements the authors include a requirement on the
mapping from the input spherical wavefront to the output
planar wavefront. This mapping redistributes the intensity
from the illuminating feed to an aperture illumination which
much more uniform, leading to higher efficiency. The con-
cept of a mapping from the input wavefront coordinates to
the output wavefront coordinates is central to all shaping
and controlling it as desired is the goal.
The next phase in the history is extending to offset

systems. A recurring theme which arises in these papers
is whether an exact solution even exists. There is a funda-
mental difference between the symmetric and offset cases. In
the symmetric case the solution is a line curve of one vari-
able which is then rotated around an axis. In the offset case
it is a surface of two variables. In the typical offset system
with a plane of symmetry the solution is a line curve in
the plane but only there. This fundamental difference leads
to partial differential equations (PDE) in two variables for
the offset case versus an ordinary differential equation in
one variable for the symmetric case. In [7], the formulation
includes the reflection law on both reflectors, constant path
length and a specified mapping. In addition, a requirement
that the partial differentials satisfy a total derivative condi-
tion is included. This is an attempt to assure existence but
the authors note errors in the initial solution. The fix for this
is to retain the secondary and recalculate the main reflector
to eliminate the errors. In [8] the formulation is similar but
the reflection law is required on only one reflector. An exact
solution is not attained but relaxing the mapping requirement
gives good engineering results. In [9], the formulation is the
reflection law only once, path length and mapping. Errors
are noted and reduced by adjusting the geometry, producing
acceptable engineering results. There are other examples of
similar shaping techniques in [6]. In [10] the formulation
is similar to [8], [9] with an added feature. A function is
included in the mapping which allows the “spokes” in the
aperture to bend. Ideally, lines of constant azimuth angle
on the input spherical wavefront map to straight, equispaced
spokes in the aperture plane. Previous work had shown this
to be impossible and this was an attempt to accommodate
that reality. The evolution of methods shown in these papers
helped guide the development of the theory here.
There are other formulations to solve the offset shaping

problem. The methods in [12] and [11] both produce good
results but differ in formulation from the above history and
the rest of this paper. In [11] the concept of a “floating
mapping” is introduced, similar to the mapping used in [10].
Reference [21] develops a method for designing three reflec-
tor systems with zero cross polarization utilizing techniques
similar to that in [12].
All of the above work does not directly answer the

question of existence in the offset case. In the circularly
symmetric case the mapping can be specified as desired and
achieved exactly. Is it possible to achieve the same result
in the offset case? If not, what are the limitations on the
design and the resultant mapping? The rest of this paper

formulates the problem in a different manner and utilizes a
mathematical existence theorem to address these questions.
The following sections progressively develop the theory

from an abstract concept to actual designs. Section II defines
a general 3D ray trace traversing two mirrors and applies
the Pfaffian theorem to the surface normals derived from
it. Section III derives a closed form expression for the 3D
vector field which are the normals to the first mirror. The
derivation is done without reference to any coordinate frame
to maintain generality. Section IV expands the Pfaffian con-
dition from Section II in spherical coordinates, leading to a
general PDE for the input to output mapping. A particular
form for the mapping is introduced, similar to the floating
mapping in [10], [11] and a PDE for that form of the map-
ping is derived. The PDE for the shape of the first reflector
is derived at the end of Section IV. Section V introduces a
novel technique to integrate the coupled PDE’s. Section VI
shows two actual designs from this method and references
detailed performance results from the first one.
Note: For notational simplicity in different contexts, the

appearance of �n without a subscript of 1 is identical to �n1.

II. 3D VECTOR FIELD FROM RAY TRACING AND THE
PFAFFIAN THEOREM
All of the cited papers in the Introduction cast the problem as
a differential equation on the unknown surface. The surface
normal is defined by ray tracing and is equated to the surface
normal expressed from differentials of the unknown surface.
This is a 2D viewpoint since the problem is expressed on a
surface. It is an obvious choice since the desired solution is
a surface but there is no known existence theorem for the
problem as posed. A way to recast the problem is suggested
by this standard theorem from vector differential calculus:

If ∇ × �n = 0 ∃ f : ∇f = �n (1)

Setting such an f equal to a constant yields a surface
which is normal to �n. Viewing �n as normals derived from
a ray trace means the surface defined by f equal a constant
is the desired reflector shape. In outline, this is exactly the
kind of existence theorem needed here. Utilizing this the-
orem requires that �n be a 3D function of three variables.
Referring to Fig. 1, �w1, ŝ1 are the position vector and unit
surface normal on the input wavefront which are paramet-
ric in two independent variables. The path length, l1, from
the wavefront to the point �m1 on the unknown surface is
the third independent variable. The rest of the ray trace is
given by the constant path length condition and the implicit
dependence of �w2, ŝ2 on the input parametric variables. The
bisector of the ray trace at �m1 is �n1 which is the 3D normal
vector field.
Although generically of the right form this existence the-

orem is difficult to utilize. Since it is a vector equation it
is really three requirements, one for each vector component.
A basic insight simplifies this equation. The magnitude of
�n is irrelevant, only its direction matters since the require-
ment is to be perpendicular. So the curl requirement can be
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FIGURE 1. Trace of a single ray defining all the nomenclature for the ray algebra.

generalized by multiplying �n by an arbitrary, non-zero scalar
function, α. Doing so, expanding with a vector identity and
dividing by α yields:

(1/α) ∇ × (α �n) = (1/α) ∇α × �n+ ∇ × �n = 0 (2)

This is a curious situation where two terms sum to zero
but one of them involves an arbitrary function. A way to
eliminate the appearance of α is to take the dot product
of this expression with �n. The first term drops out and the
result is:

�n · ∇ × �n = 0 (3)

This expression is more hopeful, first it is scalar. It is
invariant to the magnitude of �n and it is identically zero in
the case where �n lies in a plane. If �n lies in a plane then
the curl is perpendicular to the plane and the dot product is
zero. This property occurs in the rotationally symmetric case
which is known to have exact solutions. Because of these
points, the author used (3) to develop the theory all the way
to actual designs and only later did a literature search reveal
that (3) is the Pfaffian integrability condition, [1], [2], provid-
ing a sound basis for this theory. A recent paper, [17], utilizes
the 3D formulation shown here and applies the Pfaffian con-
dition. In general, (3) is not zero so the authors conclude
that the formulation is not useful for the two reflector case.
As will be seen below, that is not true.

III. DERIVATION OF THE VECTOR FIELD �N
Having introduced the concept of the vector field �n1 and the
Pfaffian integrability condition, (3), this section develops an
expression for �n1. The algebra here will not use any particu-
lar coordinate system or geometry so the result is completely
general. Later in the development particular choices will be
made for the elemental components �w1, �w2, ŝ1, ŝ2 and then

detailed forms for �n1 will be calculated using symbolic alge-
bra software. Figure 1 shows a generic ray traced from the
first wavefront thru two reflections at �m1, �m2 and terminat-
ing on the second wavefront. The vector �n1 is the bisector
of the first reflection and is not normalized to unity. The
magnitude of �n1 is not important, only its direction. The
integrability condition is invariant to the magnitude of �n1 so
this is permissible. This also allows discarding inconvenient
scalar factors in the algebra for �n1.
It is important to clearly identify the independent vari-

ables and the implicit dependence of the output variables on
the input variables. The position vector on the input wave-
front is parametric in two independent variables, �w1[u, v],
and likewise for the matching unit surface normal, ŝ1[u, v].
The third independent variable is the first path length, l1.
For example, if the input wavefront is chosen to be spherical,
l1, u, v become the variables r, θ, φ with corresponding unit
normals. The output wavefront and unit normal are para-
metric in two variables and these are implicitly dependent
on the input variables. Call these variables p[u, v], q[u, v]
with the third variable being the path length l2. If the output
wavefront is chosen to be planar then p, q, l2 become x, y, z.
The mapping p[u, v], q[u, v] controls the intensity distribu-
tion and polarization on the output wavefront. Specifying it
as desired within the constraint of the integrability condition
is the goal of this theory.
To develop an expression for �n1 start with equations (4)

thru (9) which define relationships between the basic
elements shown in Fig. 1.

�m1 = �w1 + l1 ŝ1 (4)

�m2 = �w2 − l2 ŝ2 (5)

ŝ3 = (1/l3)( �m2 − �m1) (6)

�n1 = ŝ3 − ŝ1 (7)

�n2 = ŝ2 − ŝ3 (8)

l1 + l2 + l3 = L (9)

Begin the derivation by substituting (9) in (5), eliminat-
ing l2. Use this result and (4) in (6). Define the shorthand
vector shown in (10) which is comprised of known base ele-
ments and use it to express (6), (7) as shown in (11), (12).
Apply (13) to (11) and solve for l3, resulting in (14).
Substituting this in (12) gives (15).

�v = �w2 − L ŝ2 − �w1 + l1
(
ŝ2 − ŝ1

)
(10)

ŝ3 = (1/l3)
(�v+ l3 ŝ2

)
(11)

�n1 = (
1
/
l3

)�v+ (
ŝ2 − ŝ1

)
(12)

ŝ3 · ŝ3 = 1 (13)

l3 = −�v · �v/(2 �v · ŝ2
)

(14)

�n1 = [−2
(�v · ŝ2

)�v+ (�v · �v)(ŝ2 − ŝ1
)]
/|�v|2 (15)

Introduced as a convenient shorthand, the vector �v has
a simple physical interpretation and leads to an important
insight. Rearranging (11) yields the first part of (16) which
in direction is the surface normal to the second reflector
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�n2. Substituting the last part of (16) into (15) and can-
celling out scalar magnitudes gives the first part of (17)
which is also equal to the right side of (7). Cancelling
a common term and rearranging yields (18) which is the
equation for the reflection law at �m2 where -ŝ2 is the inci-
dent unit vector and -ŝ3 is the reflected unit vector. This
demonstrates the important conclusion that constructing the
algebra with the reflection law at the first reflection plus
constant path length gives the reflection law at the second
reflection.

�v = l3
(
ŝ3 − ŝ2

) = −l3 �n2 = −l3 | �n2 | n̂2 (16)

�n1 = −2
(
n̂2 · ŝ2

)
n̂2 + ŝ2 − ŝ1 = ŝ3 − ŝ1 (17)

ŝ3 = ŝ2 − 2
(
n̂2 · ŝ2

)
n̂2 (18)

The expressions for �n1, �v shown in (15), (10) are com-
prised only of known elements and can be calculated in
detail using symbolic algebra software. Appendix A shows
the code and results for calculating �n1 utilizing spherical
and planar wavefronts. The scalar denominator in (15) is
dropped in that calculation since it is only the direction of
�n1 that matters.
The last step in calculating the reflector system is finding

the point �m2 after finding �m1 and the mapping. This is
accomplished by utilizing the constant path length condition
and the expressions above. Variable l3 is given by (14), l1
is known, giving l2, which can be substituted into (5).

IV. DERIVATION OF THE MAPPING PDE
Previous sections introduced the Pfaffian integrability con-
dition and the normal vector field �n. This section develops
the details of the PDE system that is solved for the first
reflector and input/output mapping. The second reflector is
post calculated using the constant path length condition. The
Pfaffian condition is applied to the vector field �n yielding two
terms. The first is a PDE for the input to output coordinate
mapping and the second term is the integrability condition
with the implicit dependence of the output variables on the
input variables suppressed. This second term is zero which is
shown by direct calculation in symbolic algebra software. To
allow specific calculation, the input wavefront is chosen to
be spherical with the coordinates r, θ, φ. The output wave-
front is planar with cartesian coordinates x[θ, φ], y[θ, φ].
Variable dependence will not be shown in most of the fol-
lowing since it is clear from context. Showing the general
form for �n in spherical coordinates and applying the Pfaffian
formula yields the following:

�n = nr r̂ + nθ θ̂ + nφ φ̂ (19)

�n · ∇ × �n = 0 (20)

e1
∂x

∂θ
+

(
e2

sin [θ ]

)
∂x

∂φ
+ e3

∂y

∂θ
+

(
e4

sin [θ ]

)
∂y

∂φ
= 0 (21)

e1 = −nφ ∂nr
∂x

+ nr
∂nφ
∂x

(22)

e2 = nθ
∂nr
∂x

− nr
∂nθ
∂x

(23)

e3 = −nφ ∂nr
∂y

+ nr
∂nφ
∂y

(24)

e4 = nθ
∂nr
∂y

− nr
∂nθ
∂y

(25)

�n · ∇0 × �n = 0 (26)

A term of 1/r has been multiplied out of the PDE in (21)
which will be called the existence equation. The ei terms
arise from the chain rule applied to the implicit variables in
x,y. The symbol ∇0 in (26) means treating x, y as constants
when applying the differential operator. The fact that the
Pfaffian integrability condition separates into two parts with
the second part being zero is the key point of this entire
paper. At the present state of the theory demonstrating (26)
is done by direct calculation in symbolic algebra software.
It has been shown to be true for input/output wavefronts that
are spherical/plane and spherical/spherical with a completely
general 6 parameter coordinate transform between the input
and output wavefronts. A future improvement to the theory
would be a proof that does not rely on particular coordinate
frames and direct calculation.
The PDE for the mapping, (21), is one equation with

two functions to be determined, leaving room for partially
specifying the form of the mapping. The following choice
for the mapping has been very useful in practical problems.

x[θ, φ] = tp ρ[θ ] cos[φ + ψ(θ, φ)] (27)

y[θ, φ] = tp ρ[θ ] sin[φ + ψ(θ, φ)] (28)

This choice of mapping is similar to that in [10] and is
called a “floating mapping” in [11]. The function ρ[θ ] is user
selected to control how circles of constant θ on the input
wavefront map to circles of constant ρ on the output wave-
front. The final result of integrating the PDE system achieves
ρ[θ ] exactly regardless of geometry. The choice for ρ[θ ] can
be something like the Abbe sine condition or a specification
which implements a desired jacobian between the input and
output wavefronts. See [9] for an example of calculating a
ρ[θ ] to achieve a desired intensity distribution in the aper-
ture. Reference [22] presents an extensive optimization of
ρ[θ ] to maximize the performance of prospective designs
for the Square Kilometer Array (SKA). The determination
of ρ[θ ] to implement a mapping between the input and out-
put wavefronts is a side calculation and is not part of the
basic theory shown here.
The variable tp controls the type of the reflector system,

tp=+1 gives cassegrain optics with no caustic between the
reflectors and tp=−1 gives gregorian optics with a caus-
tic. Variable tp factors out of the existence equation but is
included in the calculation of the ei coefficients.

The function ψ[θ, φ] is a new function to be determined
by the existence PDE. It can be viewed as a necessary error
term to satisfy the Pfaffian integrability condition. It causes
the “spokes” of constant φ mapped to the output wavefront to
bend. Ideally it would be zero and careful choice of geometry
can make it very small. Substituting this mapping into the
existence PDE gives a new PDE in just the one function.
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The mapping is not substituted into the detailed expressions
for �n. Doing so makes the algebra much more complex.
Numerical calculations of �n are done in two steps, variables
θ, φ,ψ are used to calculate x,y and then the components
of �n. The new PDE for the function ψ[θ, φ] is:

c1 ρ[θ ]
∂ψ

∂θ
+ c2

ρ[θ ]

sin [θ ]

(
∂ψ

∂φ
+ 1

)
+ c3

dρ

dθ
= 0 (29)

c1 = e3 cos [φ + ψ] − e1 sin [φ + ψ] (30)

c2 = e4 cos [φ + ψ] − e2 sin [φ + ψ] (31)

c3 = e1 cos [φ + ψ] + e3 sin [φ + ψ] (32)

The other function to be found is the shape of the first
reflector, expressed as r[θ, φ]. The requirement that the sur-
face given by r[θ, φ] be perpendicular to �n allows choosing
the direction of integration. The choice here is to integrate
along paths of constant φ which matches the integration tech-
nique shown in the next section. Defining a direction vector
�d perpendicular to �n and φ̂, then taking an infinitesimal step
δ in that direction gives increments dr, dθ which yields the
differential equation for r in terms of the components of �n.

�d = �n× φ̂ (33)

dr = δ
(
r̂ · �d

)
/ |�d| (34)

r dθ = δ
(
θ̂ · �d

)
/ |�d| (35)

dr

dθ
= r

(
r̂ · �d
θ̂ · �d

)

= −r
(
θ̂ · �n
r̂ · �n

)

(36)

Integrating the coupled pair of differential equations (29)
and (36) yields the solution which implements the chosen
ρ[θ ] exactly and satisfies the existence criteria. If the geom-
etry is rotationally symmetric with ψ = 0 then the existence
criteria is automatically satisfied and the solution is obtained
just from this simple differential equation for r.

V. METHOD OF CIRCLES INTEGRATION TECHNIQUE
Having developed the PDE (29) for the error function
ψ(θ, φ) it remains to develop a method to integrate it along
with the differential equation (36) for the shape of the first
reflector. The method here is for geometries with a plane of
symmetry and will be an initial value method starting at the
central, θ = 0, ray. The existence condition is automatically
satisfied along the symmetry plane so ψ = 0 at the central
ray. Requiring ρ[0] = 0 satisfies (29) at the center since c2
and c3 are both zero with these initial conditions. The basic
integration technique will be first order forward Euler in the
θ direction along “spokes” consisting of equispaced incre-
ments in φ. This is simple for (36) but (29) requires an extra
step. Referring to Fig. 2, taking a single step 	θ on each
spoke advances from one circle to the next. Taking this step
requires the values of ∂ψ/∂φ at each point around the circle.
Given the equispaced φ values the best technique to obtain
the derivative values is to take the discrete fourier transform
(DFT) of the data, multiply by the index numbers and then
take the inverse DFT. Writing out those steps in matrix form

FIGURE 2. Schematic of the circle method showing the increments in θ and the
equally spaced values of φ.

FIGURE 3. A gregorian optics system shaped to maximize G/T. The numbers next to
the reflectors are the diameter, area and area as a fraction of the aperture area. Units
of meters.

and combining them results in a circulant matrix, reminding
that this differentiation is a circular convolution with a real,
anti-symmetric kernel. Since ψ(θ, φ) is a smooth function
only a few fourier terms are required so direct calculation
of the convolution is simple and fast.
This method of circles requires an initial step from the

central ray to the first circle. This is obtained from (29) by
taking a limit as θ → 0. Using symbolic algebra software,
all of the elements in (29) are Taylor expanded to first order
in θ and then solved for ∂ψ/∂θ at the center. The result is a
simple constant times sin [φ] which is used to take the step
from the central ray to the first circle.

VI. EXAMPLE DESIGNS
This is primarily a theoretical paper but two brief exam-
ples of using the theory show the versatility of this shaping
method. Figure 3 shows an offset gregorian called DVA-1
which is a prototype for the SKA radio astronomy array.
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FIGURE 4. An equispaced θ, φ grid mapped to the aperture plane for the design in
Fig. 3 . The bending of the spokes due to the error function ψ is clearly seen. The
variation in radial spacing shows the shaping function. Units of meters.

FIGURE 5. A cross Dragone system implementing the Abbe sine condition. The
secondary is oversized to accommodate approximately +-2◦ of off-axis view. The
numbers next to the reflectors are the diameter, area and area as a fraction of the
aperture area. Units of meters.

The design has very low spillover which leads to very low
noise pick up yet has high efficiency due to the shaping
of the reflectors. The nominal edge taper on the secondary
is -16 db. which is redistributed to a more uniform aper-
ture illumination. Figure 4 shows the distribution of rays
in the aperture. The implemented ρ(θ) can be seen in the
nonuniform spacing of the circles in the aperture. The effect
of ψ(θ, φ) can be seen in the bending of the spokes. The
geometry is optimized to minimize ψ . The tiny bending of
the spokes has no practical effect on the performance. Details

of this design and its measured performance can be found
in [18] and [19].
Figure 5 shows a cross Dragone style design implement-

ing the Abbe sine condition. The secondary is oversized to
accommodate off-axis viewing. The design is similar to [20]
with adjustments to the geometry to minimize the error func-
tion ψ . In this case ψ is small to the point of being almost
negligible, yielding an essentially perfect result. Preliminary
analysis of this design shows excellent off-axis performance.
This example shows that the theory can be used in ways other
than the typical high gain microwave antenna.

VII. CONCLUSION
The shaping theory presented here is both rigorously sound
and simpler than other techniques in the literature. It has been
demonstrated to produce excellent results in actual applica-
tions. The method is extensible to other applications. One
extension is to a tri-reflector situation where the third reflec-
tor is given. For example, the spherical primary at Arecibo
is illuminated with a pair of shaped reflectors that correct
the spherical aberration and control the aperture distribu-
tion, [15], [16]. That design was done with the methods
in [11] but the concepts here can also be used in the follow-
ing way. A plane wave is reflected from the sphere using a
constant path length criteria. This reflected wavefront then
becomes the second wavefront in Fig. 1 and the all of the
following techniques apply in the same way. The only dif-
ference is the algebra for �n is considerably more complex
but that is handled by symbolic software.
There are some possible improvements to the theory

here. The demonstration of (26) can be done with symbolic
software in any given situation but a formal proof that
does not rely on particular coordinate frames and software
would be better. Despite considerable effort, such a proof
has eluded this author.

Another improvement would be a formal proof of the
constant path length criteria leading to a reflector surface.
The derivation leading to (18) falls short of being a formal
proof. The bibliographies in [7], [8] refer to the Levi-Civitas
theorem but this is a difficult reference to locate. The author
is working on such a proof.

APPENDIX
DETAILED EXPRESSIONS FOR �N
The following lines show the Mathematica script to generate
the normal vector field �n which is called np here. The geom-
etry has a plane of symmetry with the y axis perpendicular to
the plane. Note that ŝ1 in the theory is runit here. Executing
the last line calculates the Pfaffian condition excluding the
implicit dependence of x,y on θ, φ. The result is 0 which
confirms the theory for this geometry.

rtn = EulerMatrix[{0,−β, 0}]
w2 = rtn.({x, y, 0} + {xofst, 0, zofst})
s2 = rtn.{0, 0, 1}
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runit = {Sin[θ ]Cos[φ],Sin[θ ]Sin[φ],Cos[θ ]}
θunit = {Cos[θ ]Cos[φ],Cos[θ ]Sin[φ],−Sin[θ ]}
φunit = {−Sin[φ],Cos[φ], 0}
prjct = {runit, θunit, φunit}
v = Expand[w2 − (L0s2)+ r(s2 − runit)]

np = FullSimplify
[
prjct.(−2(s2.v)v + (v.v)(s2 − runit))

]

FullSimplify
[
np.Curl

[
np, prjct, “Spherical”

]]

The following three blocks show the code for the three
spherical vector components of np in fortran format. The
variable names are roughly phonetic for their greek equiva-
lents. These blocks are generated by Mathematica using the
above script and the FortranForm command. The expressions
for the derivatives of np WRT x,y are similar and shorter.

−(x + xofst)**2 − y**2 − (L0 − zofst)**2 +
dcos(tht)*(((x + xofst)**2 + y**2 − (L0 −
zofst)**2)*dcos(beta) + 2*(x + xofst)*(L0 −
zofst)*dsin(beta)) + dcos(phi)*(2*(x + xofst)*(L0 −
zofst)*dcos(beta) − ((x + xofst)**2 + y**2 − (L0 −
zofst)**2)*dsin(beta))*dsin(tht) + 2*y*(L0 −
zofst)*dsin(phi)*dsin(tht)

dcos(phi)*(2*(x + xofst)*(r − (−L0 + r +
zofst)*dcos(beta)*dcos(tht)) − ((x + xofst)**2 + y**2 −
(L0 − zofst)*(L0 − 2*r − zofst))*dcos(tht)*dsin(beta)) +
dcos(beta)*(2*r*y*dsin(phi) + (−(x + xofst)**2 − y**2
+ (L0 − zofst)*(L0 − 2*r − zofst))*dsin(tht)) + 2*(L0 −
r − zofst)*(y*dcos(tht)*dsin(phi) − (x +
xofst)*dsin(beta)*dsin(tht))

2*y*dcos(phi)*(L0 − r − zofst + r*dcos(beta)*dcos(tht))
− 2*(x + xofst)*((L0 − r − zofst)*dcos(beta) +
r*dcos(tht))*dsin(phi) + dsin(beta)*(((x + xofst)**2 +
y**2 − (L0 − zofst)*(L0 − 2*r − zofst))*dsin(phi) −
2*r*y*dsin(tht)).
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