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ABSTRACT This article proposes a reconfigurable low-profile monopolar antenna with triple-band inde-
pendent tuning capability. The antenna is based on the concept of a center-fed patch with shortings to
achieve omnidirectional radiation patterns. Instead of using vias, varactor-loaded stubs are utilized to
create reconfigurable equivalent shorting points. The triple bands can be achieved by using three sets
of stubs. This configuration results in three magnetic current loops that spatially overlap at different
independently tunable frequencies. Measurement results show that the design obtains three independent
tunable frequencies centered at 2.51, 3.56, and 4.62 GHz with −10 dB relative tuning ranges of 22.8%,
22.8%, and 16.7%, respectively. The antenna radiates omnidirectionally with vertical polarization in the
three sweeping bands. The proposed concept can be extended to a larger number of bands by adding sets
of stubs with considerations of coupling and impedance matching.

INDEX TERMS Triple-band, frequency-reconfigurable, low-profile, monopole, patch antennas.

I. INTRODUCTION

IN RECENT decades, the demand in wireless com-
munications has risen significantly. This has brought

upon increasing congestion of the available radio spec-
trum. Therefore, it is desirable to have antennas that can
cover several allocated frequency bands simultaneously. To
accomplish the goal, wideband antennas with a low-profile
monopole structure are often desired due to their omni-
directionality, low-cost, and fabrication simplicity [1]–[5].
Another solution is to use frequency-agile antennas that
have been widely developed recently. Compared to wideband
antennas, a frequency-reconfigurable antenna can mitigate
undesirable interference from unused bands, thus ease
requirements on additional RF filters in the system.
Frequency-reconfigurability can be obtained by modify-

ing the antennas electrical properties with the assistance
of active elements such as PIN diodes [6]–[8], RF-MEMS
switches [9]–[11], varactor diodes [12]–[16], or their combi-
nations [17], [18]. In [6], PIN diodes were used in the slot of

a planar monopole ground plane to switch the antenna states
into a single-band, dual-band, or ultrawideband, whereas
in [9], an RF-MEMS switch was utilized in the slot of a patch
antenna to switch the operation frequency. In varactor-loaded
antennas, varying the bias voltage leads to a progressive vari-
ation in the diode capacitance that can create a continuous
frequency tuning. Because of this feature, adopting varactors
to create frequency-reconfigurable antennas is beneficial, in
particular for applications that require a large number of
operating bands with continuous tunability.
Numerous concepts of antennas with continuous frequency

tunability have been previously proposed in the lit-
erature. The structures used for the antennas were
shorted patches [13], [15], [16], slotted patches [12],
[19]–[25], dipoles [26]–[28], planar inverted-F antennas
(PIFA) [29], half-mode substrate integrated waveguides
(HMSIW) [30], [31], multi radiators [17], [18], and low-
profile monopoles [14], [32]–[34]. Nonetheless, only a few
of those proposed antenna designs are able to cover more
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FIGURE 1. Basic geometry of a single-band low-profile monopole antenna with
stubs for shorting. The figure shows the top view, where the ground plane is hidden.

than one band at the same time [12], [14], [21], [22],
[24], [25], [34]. In the case of multi-band reconfigurable
antennas, the independency of frequency sweeping is one
desirable feature. Behdad and Sarabandi [12] demonstrated
a broadside-pattern dual-band reconfigurable antenna with
independent tuning of the bands. This was obtained by load-
ing varactors onto a bent slot antenna. Recently, an antenna
with tri-band independent tuning capability was presented by
Bai et al. [25]. In this case, the design was specific for radio
receivers with broadside radiation patterns and only −6 dB
reflection coefficient. For low-profile monopole antennas, the
independent tunability of two frequencies was reported by
Nguyen-Trong et al. [14]. For that dual-band design, sta-
ble omnidirectional patterns were achieved in all sweeping
frequencies with relative tuning ranges of 31% and 22% in
the first and the second bands.
In this paper, a triple-band frequency-reconfigurable low-

profile monopolar antenna is proposed based on the concept
of independent magnetic current loops sharing a common thin
aperture. The antenna is composed of a center-fed circular
patchwith three groups of stubs located on the patch edge. Each
set of stubs functions as equivalent shortings at a particular
frequency to define a magnetic current loop at the perimeter of
the patch [35], [36]. To achieve a continuous frequency recon-
figurability, varactor diodes are placed between the patch and
the stubs.Thesevaractors are biasedwith threeDCcontrol volt-
ages to tune the three frequencies independently. Monopolar
radiation patterns with reasonable azimuthal variations are
obtained across the three tuning ranges.
This article will begin with an explanation on the oper-

ation principle of the antenna. In particular this includes
an illustration of magnetic current loops that will play an
important role in the multi-band radiation. Then, the con-
cept of reconfigurability will be validated with a triple-band
reconfigurable design, followed by concluding remarks.

II. OPERATION PRINCIPLE
As shown in Fig. 1, the basic geometry of the single-band
low-profile monopole antenna consists of a center-fed cir-
cular patch on a substrate with a ground plane underneath.
The patch is surrounded by three stubs on its edge with 120◦

FIGURE 2. Operation principle of the proposed low-profile monopole antenna based
on magnetic current loop. (a) Electric current and (b) its equivalent magnetic current
loop, (c) discretization of magnetic currents, (d) realization in a center-fed patch with
vias, and (e) with quarter-wave open stubs.

angular separation. The radiation principle of the antenna is
based on the magnetic current loop formed by a low-profile
shorted monopole antenna, as discussed in [35]. As shown
in Fig. 2(a), we begin with a vertical electric current with
density J that is equivalent to a magnetic current loop with
constant density distribution M depicted in Fig. 2(b), both
placed over a ground plane. The magnetic current loop M
can be established with three in-phase magnetic current ele-
ments as shown in Fig. 2(c), which in theory can be realized
from thin slots in a metallic cavity. For a substrate inte-
grated design, such a slot aperture can be created between
two adjacent vias shunting the top patch with the ground,
as shown in Fig. 2(d). The substrate thickness should be
sufficiently small so that a purely transverse electric field E
is present in the slots. On resonance, each of these slots can
be considered as a λ/2 transmission line (slot line) that is
shorted at its two ends. As a result, three slot apertures are
formed between three shorts, with the highest E-field mag-
nitude occuring in the middle of the slots. Furthermore, as
has been demonstrated in [36], [37], vias can be replaced by
quarter-wavelength stubs as shown in Fig. 2(e). It is noted
that for this antenna configuration, the slot and the stub
lengths influence the effective size of the cavity and thus
the resonance frequency [36].
To open a second band, an additional set of three short-

ing stubs with a specific length determined by the targeted
frequency can be interlaced with the original set. This
basically defines two sets of slots that radiate at differ-
ent frequencies. A preliminary simulation of this concept
has been carried out in CST Microwave Studio with the
results shown in Fig. 3. The base antenna is designed with
a diameter of 36 mm, whereas the lengths of the longer and
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FIGURE 3. Dual-band low-profile monopole with stub shortings. (a) Antenna
geometry, (b) reflection coefficient of the antenna when l1 = 18, 20, and 22 mm, and
(c,d) instantaneous E-field in the substrate at resonance frequencies of f1 and f2.

shorter stubs are l1 = 20 mm and l2 = 16 mm, respectively.
Dual-band performance is then observed in the frequencies
of around f1 = 2.8 GHz and f2 = 3.9 GHz. The longer
stubs are responsible for the lower operation frequency f1
as indicated in the E-field simulation shown in Fig. 3(c). In
contrast, the three shorter stubs are responsible for the res-
onance at the higher frequency f2 as illustrated in Fig. 3(d).
It is important to note that in this structure, the two sets of
magnetic current elements M1 and M2 work independently.
This concept is further supported by the parametric simula-
tion depicted in Fig. 3(b). In this scenario, the variation of
the stub length l1 shifts the resonance frequency f1 while
f2 remains nearly unchanged. This scenario also implies
that the center frequency of the bands can be adapted to
specifications by changing the corresponding stub lengths.
Furthermore, the concept is generic and can potentially be
extended to more bands by adding additional sets of stubs. In
this article, the extension of the principle into a triple-band
device will be demonstrated.
Instead of varying the stub length, the resonance

frequencies of the multi-band antenna can be tuned inde-
pendently by varying the stub impedance, which can be
implemented by integration of varactor diodes [31]. Separate
sets of varactors are placed between the patch edge and the
stubs to control the current flows. As a result, changing the
capacitance of one set of varactors can shift the frequency in
one band while the other band remains unaffected. In addi-
tion, it is worth mentioning that the monopolar radiation
pattern with vertical polarization is expected to be main-
tained in all bands as the magnetic current slots remain the
predominant radiating sources.

III. TRIPLE-BAND RECONFIGURABLE DESIGN
A. ANTENNA GEOMETRY
The design and the photographs of the fabricated antenna are
depicted in Fig. 4 and Fig. 5. This triple-band reconfigurable

FIGURE 4. Triple-band reconfigurable antenna design. (a) Top, (b) cross-sectional,
and (c) bottom views. Dark grey color is the 5880LZ substrate, light grey color is the
FR-4 substrate, light brown color is copper on 5880LZ substrate, and dark brown color
is copper on FR-4 substrate. The dimensions (mm) are: l1 = 32, l2 = 20, l3 = 11,
s1 = 6, s2 = 3, s3 = 3, w = 1, d = 8, rp = 23, g = 0.1, gv = 0.66, gs = 0.25, dv = 0.9,
dh = 1.8, h1 = 4.32, and h2 = 1.6.

design is created on Rogers Duroid 5880LZ substrate with a
relative permittivity of εr = 2.0 and a loss tangent of tan δ =
0.0027. The thickness of the substrate h1 is chosen to be
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FIGURE 5. Fabricated antenna. (a) Top and (b) bottom views.

4.32 mm (or about 0.032λmin). A thick substrate is required
to attain good impedance matching in each of the three bands
and to improve the radiation efficiency. Nine stubs divided
into three sets of different lengths are utilized to introduce
three shorting conditions at three particular frequencies. The
width of these stubs should be sufficiently narrow so that the
stubs do not radiate. For that reason, a stub width w = 1 mm
is used in the design. The center pin as a probe feeding is
created from a 50-� SMA connector through the ground
plane. The ground plane is circular for symmetry with a
diameter of 150 mm. The bias network is implemented on
another layer below the full RF ground plane using an FR-4
substrate with a thickness h2 of 1.6 mm. Separating the DC
circuitry from the RF board avoids the effect of bias lines
that can disturb the radiation pattern of the antenna.
Based on our investigation, a larger number of stubs is

found to increase mutual coupling effects, which in turn
affect the tuning independence. The coupling is not only
between adjacent stubs but also between the inactive stubs
and the active radiating slots. It is known from a typical slot
antenna that the highest amplitude of the E-field occurs in
the middle of the slot when it resonates in its fundamental
mode. Because of this, it is advisable to avoid placing inac-
tive stubs close to the middle of an active radiating slot. A
parametric optimization of the design has been carried out
to balance trade-offs between stub-to-stub and stub-to-slot
coupling, as illustrated in Fig. 6. Figure 6(a), (b), and (c)
show the reflection coefficients of the antenna at the first
and the second bands with adjacent stub angles α of 10◦,
15◦, and 20◦, respectively. In these scenarios, the voltage of
the first band is fixed at 18 V and the voltage of the second
band is tuned to the minimum and the maximum of 0 V
and 18 V. It can be seen from Fig. 6(a) and (c) that there
is a slight frequency shift of approximately 0.9% and 0.5%
for the first band when α is set to be 10◦ and 20◦, respec-
tively. Meanwhile, it can be said that there is no frequency
shift when α = 15◦, as illustrated in Fig. 6(b). Therefore,

FIGURE 6. Reflection coefficients of the antenna at the first and the second bands
with consecutive stub angles α of (a) 10◦ , (b) 15◦ , and (c) 20◦ . The voltage of the first
band V1 is fixed at 18 V and the voltage of the second band V2 is tuned to the
minimum and the maximum of 0 V and 18 V.

an optimal angle between the consecutive stubs is found to
be 15◦.

For impedance matching purpose, the capacitive gap
around the probe and the recesses around the stubs are
created and optimized. The probe cap with a diameter of
d can be seen as a radial inductor whereas the circular
ring gap g adds the capacitance as explained in [1]. The
recess configuration for the stubs is adopted from the well-
known impedance matching technique for patch antenna
feeding [38]. The depths of the recesses are shown in Fig. 4
as s1, s2, and s3.

B. BIAS CIRCUIT
The varactors used in the design are MA46H120 from
MACOM Technical Solutions. The capacitance of this type
of varactor ranges from 1.30 to 0.15 pF when reverse-
biased at 0 to 18 V [31]. The varactor internal resistance
is approximately Rv = 2 �, and varies with the bias volt-
ages as explained in [39]. These varactors are divided into
three sets, one for each group of same-length stubs. These
three varactor sets are biased separately by DC voltages
V1, V2, and V3 which are applied from the bottom layer
through vias. A 1 M� resistor followed by an inductor is
located after each stub as the RF choke. The inductors are
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FIGURE 7. Measured (solid lines) and simulated (dotted lines) reflection coefficients
of the triple-band reconfigurable low-profile monopole design for (a) varying the first
band (V1), (b) varying the second band (V2), and (c) varying the third band (V3). The
unit for the voltages is Volt.

Lb = 100 nH for the shortest and the longest stub and
Lb = 24 nH for the middle-length stubs. The value of
inductors for the middle-length stubs is empirically cho-
sen to suppress a spurious resonance. These two inductors
are found appropriate taking into account their self resonant
frequency (SRF). In addition to impedance matching, the
capacitive gap at the feed blocks the DC current from flow-
ing to the probe. A single via together with an RF choke
Lc = 100 nH is used to DC-ground the circular patch. A full
RF ground plane is used between the two substrates. The
DC and RF-grounds are connected with a soldered pin as
shown in Fig. 4(b) and (c). To allow the vias connecting the
patch to the biasing network layer, circular holes with diam-
eter dh = 1.8 mm (about 0.013λmin) are created on the RF
ground plane. The size of these holes is set to be sufficiently
small to avoid a detrimental effect on the radiation patterns of
the antenna.

C. REFLECTION COEFFICIENT
Measured and simulated reflection coefficients with different
bias voltages V1, V2, and V3 agree well, as shown in Fig. 7.
The three bands are centered at 2.51, 3.56, and 4.62 GHz.

FIGURE 8. Reflection coefficients when the tuned resonances are close to each
other. (a) First band is tuned with the maximum bias V1 = 18 V and second band is
tuned with the minimum bias V2 = 0 V. (b) Second band is tuned with maximum bias
V2 = 18 V and third band is tuned with the minimum bias V3 = 0 V.

In each scenario, only one band is tuned while the other two
are fixed. It can be seen from all the scenarios that the tuning
of one band does not affect the operation frequencies of the
other two, with only a small effect on the impedance match-
ing. Hence, the independence of frequency tuning is achieved
for this triple-band antenna design. The measured −10 dB
tuning ranges are 22.8% for the first band (2.22–2.79 GHz),
22.8% for the second band (3.15–3.96 GHz), and 16.7% for
the third band (4.23–5.00 GHz). It is observed that additional
out-of-band resonances occur at above 5 GHz. These reso-
nances are related to the SRF of the RLC components for the
RF blocker. An instantaneous impedance bandwidth of about
1% is obtained in the first band, 1% to 2% in the second
band, and around 4% in the third band. This narrow-band
feature is typical for multi-band reconfigurable antennas [12],
[14], [21], [22], [24], [25], [34]. Nevertheless, with the wide
and continuous frequency tuning capability, this antenna
can cover a large operation bandwidth with an excellent
frequency selectivity and remains low-profile owing to the
narrow-band feature. This characteristic is highly desirable
for applications such as cognitive radio.
Figure 8 shows two scenarios when the tuned resonances

are close to each other. In the first scenario, the first band
is tuned to the maximum bias voltage V1 = 18 V and the
second band is tuned to the minimum voltage V2 = 0 V.
For the second scenario, the second band is at the highest
tuning voltage V2 = 18 V and the third band at the lowest
tuning voltage V3 = 0 V. It is observed from the two scenar-
ios that the antenna still maintains a satisfactory impedance
matching with reflection coefficient below −10 dB. It is also
noticed that there are separations of 360 MHz and 270 MHz
between the first-second bands and the second-third bands,
respectively. In these two scenarios of Fig. 8, the predom-
inant radiating sources are still the magnetic current slots.
Therefore, the antenna radiates omnidirectionally and is not
compromised by the coupling. We note that it would be
possible to design a seamless tuning without gaps between
consecutive bands, although with trade-offs in the tuning
independence between adjacent bands.
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FIGURE 9. Simulated surface current distribution when frequency of the first band
f1 tuned to the (a) minimum and (b) maximum. (c, d) Normalized surface current
density along the length of the stub for the case shown in (a, b), respectively. The blue
and red solid lines illustrate the simulated surface current density when the
capacitance of the varactors are tuned to the minimum and maximum, respectively.
The dotted lines depict the simulated surface current density when the varactors are
substituted with short circuit (blue) and open circuit (red) for comparison.

D. SURFACE CURRENT DISTRIBUTION
Figure 9 shows two examples of surface current distributions
of the active tuning stub at the lowest band. In Fig. 9(a) the
varactor on the longest stub is biased with the minimum
tuning voltage V1 = 0, resulting in a capacitance of 1.30 pF.
At this minimum tuning frequency f1 = 2.23 GHz, the cur-
rent density in the stub is depicted in Fig. 9(c) with the
maximum approximately at the beginning of the stub (patch
edge) and the minimum at its end. This suggests that the
stub works equivalently as an opened λ/4 transmission line
which effectively creates a short near the edge of the circular
patch. On the other hand, for the case when f1 is tuned to
the maximum of 2.75 GHz with the varactor capacitance set
to 0.15 pF, the current density is shown in Fig. 9(b) and
Fig. 9(d). In this condition, the location where the stub has
the maximum current density is shifted toward the center,
indicating that the impedance at the beginning of the stub is
increased due to the smaller varactor capacitance. The varac-
tor can be considered as a loaded impedance at the antenna
aperture as explained in [31]. The variation of the impedance
affects the fringing field and thus the resonance frequency is
shifted. Simulated surface current distributions with a short
and an open circuits are included as dotted lines in Fig. 9(c)
and Fig. 9(d). They are added to show comparisons with the
two varactors extreme scenarios.

E. RADIATION PATTERNS
The normalized simulated and measured radiation patterns
at the minimum and maximum tuning frequencies for each
of the three bands are depicted in Fig. 10. A good qualitative
agreement is observed between simulation and measurement.
In the azimuth xy-plane, monopole-like radiation patterns are
obtained at all sweeping frequencies, whereas in the elevation

FIGURE 10. Normalized radiation patterns of the triple-band reconfigurable
low-profile monopole antenna at the minimum and maximum tuning frequencies for
the first, second, and third bands.

yz-plane, the radiation patterns are conical as a result of
the finite ground plane similarly as monopole antennas that
were proposed in [1], [3]–[5], [40]. The omni-directional
radiation patterns are required for applications where a large
coverage in the azimuthal plane is needed. It is emphasized
that the co- and cross-polarizations in the omnidirectional
xy-plane patterns are measured at the horizon, i.e., θ = 90◦.
Despite that the maximum of the conical patterns occurs
above the horizon, the measurement in this azimuthal plane
provides a good indication of the omnidirectionality of the
antenna. It is observed that at the highest tuning frequency
in the second and the third bands, the patterns in the xy-
plane become more directive towards the active shorting
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FIGURE 11. Gain and efficiency of the antenna. (a) Realized gain of the triple-band
reconfigurable antenna across the three tuning ranges. (b) Simulated total efficiency
of the triple-band reconfigurable antenna across the three tuning ranges.

stubs. Ideally, from image theory it is known that the electric
current flows over the stubs is canceled out by the reflected
image from the ground plane. As a result there should be no
substantial net radiation from the stubs. However, for these
two particular tuning conditions, the separation between the
antenna and the ground plane is becoming sufficiently large.
As a result, parasitic radiations originating from the stubs can
be observed. The stubs then can be seen as electric dipoles
at a non-negligible distance above the ground plane, and
together with the slots they contribute to the total radiation
pattern. This pattern degradation should be considered and
might set a limitation of the proposed design concept for
further extension into a higher number of bands.

F. ANTENNA EFFICIENCY AND GAIN
The measured and simulated realized gain profiles are com-
pared in Fig. 11(a). The gain is generally increasing with
frequency. For the first band, the measured gain is between
0.93 and 4.62 dBi, whereas the second one is between 2.42
and 6.00 dBi, and the third one spans from 4.77 to 8.50 dBi.
At higher frequencies, the patterns become more conical
because the ground plane is electrically larger and this leads
to a higher gain. The simulated radiation efficiency of the
antenna is displayed in Fig. 11(b). In the first band, the effi-
ciency ranges from 40% to 70%, for the second band the
efficiency is between 50% to 87%, and increases from 77%
to 96% in the third band. The lower antenna efficiency is
mostly because of the higher loss in the internal resistances
of the varactors. In the lowest frequency, a higher current

flows through the varactors when the capacitance is at the
highest value (1.30 pF). The capacitance drops by one order
of magnitude to 0.15 pF at the highest tuning. This condition
resembles closely as an open circuit, resulting in almost no
current flowing through the varactors. Due to the limitation
of our facility, the efficiency cannot be measured directly.
However, the actual radiation efficiency of the antenna is
expected to be close to the simulated one, considering the
general agreement between the simulated and measured real-
ized gains. Nevertheless, it is noted that discrepancies of up
to 1 dB observed in the measured and simulated gains are due
to the imperfect measurement as well as the non-ideal cham-
ber conditions. The efficiency can be increased by choosing
varactors with a lower intrinsic resistance. However, this may
come with a trade-off of a limited tuning range.

G. COMPARISON WITH EXISTING DESIGNS
Table 1 shows a comparison on the performance of some
typical reported antennas with frequency reconfigurability in
multi-bands where λmin is the free-space wavelength at the
minimum operation frequency of each antenna. The antenna
reported in [21] offered the largest number of independent
tunable bands among the others. However, the highest band
has a very small tuning range of 3%. In addition, the design
did not consider the stability and nature of the radiation
patterns. The shape of the patterns was undefined. Among
the published designs with broadside patterns [12], [22],
[24], [25], the antenna in [25] featured the highest number
of tunable bands. They proposed three independent tuning
frequencies and the tuning ranges were measured for more
than 34% for each band. Nonetheless, these ranges were cal-
culated based on minimum −6 dB bandwidth. The proposed
design is more suitable to be compared with antennas that
also radiate omnidirectionally as in [14] and [34]. Between
these two dual-band antennas, only the antenna in [14] can be
tuned independently. Compared to these designs, the antenna
in this paper demonstrates a larger number of tunable bands
with a higher measured maximum gain. In terms of size, this
proposed antenna is among the largest in the list. However,
the antenna is low-profile with only 4.32 mm (0.032 λmin) of
height and can be easily integrated onto a flat surface such
as rooftop or cartop for future applications. The number of
diodes used in this proposed antenna is comparable to [14].
In that work, two sets of four varactors were used to create
a dual-band reconfigurable antenna. Meanwhile, this works
uses three sets of three varactors to create three operation
bands. It is understandable that these relatively large number
of components can increase the antenna cost. Nonetheless,
in view of the achieved advanced antenna features such as
independent tunability, the number of varactors might not
be a critical problem for the design. It is also noted that
several published designs have utilized stub-loaded antenna
structures [31], [41], [42]. Nevertheless, none of these works
uses a concept of multi-length shorting stubs to create dif-
ferent magnetic current sources, which is the core of the
monopolar multi-band antenna proposed in this article.

VOLUME 1, 2020 53



PARAMAYUDHA et al.: TRIPLE-BAND RECONFIGURABLE LOW-PROFILE MONOPOLAR ANTENNA WITH INDEPENDENT TUNABILITY

TABLE 1. Performance comparison between presented design and published frequency reconfigurable multi-band antennas.

IV. CONCLUSION
In this article, a frequency-reconfigurable low-profile
monopolar antenna with independently tunable bands has
been presented. The multi-band antenna is based on the
concept of a center-fed patch with shortings to create
independent magnetic current loops sharing the same thin
aperture. Groups of quarter-wavelength stubs are located
at the patch edge with each set of stubs functioning as
equivalent shortings at a particular frequency. Frequency-
reconfigurability is achieved by placing sets of varactor
diodes between the patch and the stubs. The implementation
of the principle into a triple-band design demonstrates cen-
ter operation frequencies at 2.51, 3.56, and 4.62 GHz with
−10 dB independent tuning ranges of 22.8%, 22.8%, and
16.7%, respectively. The number of bands is limited by the
stub-stub and stub-slot couplings, and the electrical separa-
tion between the patch and ground plane. For the radiation
patterns, the antenna radiates omnidirectionally with vertical
polarization across the tuning ranges, indicating that the mag-
netic current slots remain the predominant radiating sources.
All these results suggest that the proposed antenna design is
promising for advanced applications that require independent
reconfigurability in multi-band operation, such as software-
defined radio or carrier aggregation systems. The advantages
include simple antenna geometry, ease of fabrication, and
low profile.
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