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ABSTRACT Research in the field of fault detection has steadily been developing for monitoring the
performance of array antennas in the presence of errors in excitation phases and amplitudes. The presence
of faulty elements degrades significantly the radiation characteristics and performance of antenna arrays.
The measured errors in excitation phases and amplitudes at outputs of elements of the 3D HAAwBE are
characterized by a few sparse non-zero vectors. A regularized l2,1-norm problem is designed to model
errors of faulty elements and noise. In this work, we have implemented the ADMM method under the
joint sparsity setting to solve the regularized l2,1-norm problem for a number of samples of the degraded
radiation pattern of the HAAwBE rather than computing its array factor, which requires significant and
complex mathematical computation. The proposed ADMM technique under the joint sparsity setting allows
for minimizing the cost function of the problem with respect to both model parameters and variable
vectors. We have further increased accuracy and stability of the performance of the HAAwBE in the
two problems of fault detection and DoA estimation by deploying three different optimization methods:
LS-SVM, NN-RBF, and NN-MLP, and compared to each other. Consequently, the superior performance
of the HAAwBE has been numerically verified by the high success rates of 91.83%, 91.24%, and 88.33%,
by performing the LS-SVM, NN-MLP, and NN-RBF optimization methods, respectively, in the presence
of 50% faulty elements. Furthermore, results of DoA estimation by the HAAwBE have represented the
high resolution in recognizing locations of three signal sources with performing the optimization method.

INDEX TERMS Fault detection, neural networks, multilayer perceptron, radial basis function, least squares
support vector machine, direction of arrival estimation, joint group sparsity, alternating direction method
of multipliers.

I. INTRODUCTION

ARRAY signal processing techniques have been steadily
advancing for potential applications in problems of

DoA estimation, fault detection, beamforming, beamsteering
and nullsteering, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25]. The question of how the performance
of array antennas under test, and their involved optimization
methods is degraded in the presence of faulty and non-
radiating elements, is still a challenging issue in the array
signal processing framework.
Insufficient and missing information (or zeros) in the

measured raw data at outputs of 72 elements of our proposed
Hybrid Antenna Array with Bowtie Elements (HAAwBE),

which is also affected by noise, makes it practically hard to
train and retrieve accurate inputs and signal sources. Element
excitations in array antennas are generally degraded due
to the presence of errors in their amplitudes and phases.
Hence, any defects in phases and amplitudes of element
excitations are characterized by errors and non-deterministic
noise. Manufactured imperfections, short circuiting states
in electronic devices, fabrication defects, and drifting tem-
perature in practice provide errors in excitation amplitudes
and yield zero amplitudes. Errors in excitation phases result
from temporary deviations in the power system under test in
two main scenarios: (1) mutual coupling and insertion loss,
which are accompanied by the presence of errors in phases,
and (2) a sudden increase in current and thereby shorted
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circuits in the system under test. Hence, the maximum
phases are somehow associated with the presence of radiating
elements, which denote “ON”. On the other hand, non-
radiating elements are associated with minimum phases that
allow for degrading the radiation pattern and causing “OFF”
states. Consequently, we can categorize all errors in element
excitations into two states: (1) partial errors, and (2) ON-OFF
failures. van den Biggelaar et al. in [1] have verified
that random errors of excitation amplitudes and phases
are significantly correlated in practice, and array elements
possess different radiation patterns. Hence, we have to design
a model that includes variables of sparse representations of
few non-zero vectors of measured radiation patterns resulting
from all faulty and non-faulty elements of the HAAwBE.
Although authors in [2], [3] have shown the high success

rates in recognizing faulty elements; however, massive and
complex mathematical computations should be performed for
estimating array factors of configurations of array antennas
under test. The performance of the proposed algorithms
degrades significantly when antenna arrays under test change
to more complicated configurations of 3D, and additional
evaluations are required to obtain accurate and valid results.
However, in this work, the proposed model is trained with
a limited number of samples of the degraded radiation
pattern, which yields a substantial increase in the speed
of computations and thereby faster recognition of faulty
elements of the HAAwBE.
Our first aim is to define a mathematical framework for

our problem, based on the regularized l2,1-norm problem, as
expressed in Eq. (1).

min
x̃∈S2K+1

1

2μ

∥
∥
∥R̃− Ãx̃

∥
∥
∥

2

2
︸ ︷︷ ︸

Data fidelity

+ τ‖x̃‖ω,2,1
︸ ︷︷ ︸

Signal prior

(1)

The regularized l2,1-norm problem provides several different
advantages for problems of the group sparse reconstruction,
such as a significant reduction in their errors, convex
approximation, and robustness to noise. The regularizer, or
l2,1-norm, provides additional information about whether the
proposed solution to estimate the vector of x̃ are feasible
and plausible for applications of interest or not.
Sparse groups of the regularized lw,2,1-norm problem

overlap together. These dependencies are caused by the
weak performance of sparsity for which all coefficients
of excitation amplitudes and phases are sparsified by an
isotropic decomposition. An alternative way to overcome
this limitation consists of transforming the overlapping group
sparsity regularized lw,2,1-norm problem to its counterpart
problem with non-overlapping group sparsity. The joint
sparsity of phase and amplitude excitations of elements of
the HAAwBE denotes a set of sparse vectors, with common
supports. We have assigned these sparse vectors into rows
of the solution matrix of Ã. Hence, this matrix includes few
non-zero columns, which are not necessarily sparse.
Neural networks and other machine learning approaches

such as Least Squares Support Vector Machine (LS-SVM)

have been increasingly developed for the array signal pro-
cessing by various research groups, [4], [5], [6]. In this work,
we aim to develop two well-established neural networks
including Radial Basis Function (RBF) [4] and Multilayer
Perceptron (MLP) [5], compared with the LS-SVM tech-
nique [6], for solving the problem of Eq. (1). However,
the available algorithms for training neural networks and
LS-SVM are not ideal scenarios for hardware deployments.
These algorithms consist of a significant sequential depen-
dencies. In order to develop our proposed model such
that it becomes more compatible for hardware acceleration,
we have to utilize iterative methods of least squares and
Euclidean distance to avoid matrix inversion computations
during training.
Back propagation and gradient-based algorithms have

been typically utilized for training neural networks. The
main limitation of these neural networks consists of several
matrix multiplications, which in some scenarios results in
vanishing gradients and a consequent slowing down or
stopping of the training procedure. In some other scenarios,
many matrix multiplications of gradient values of neural
network models would cause exploding gradients, which lead
to an unstable training procedure. Another disadvantage of
neural networks is their unscalable features, which result
from the nature of their gradient-based algorithms and their
sequential dependencies. Generally, these neural networks
and LS-SVM models include non-convex and ill-conditioned
problems.
Hence, to overcome all aforementioned restrictions, the

three NN-MLP, NN-RBF, and LS-SVM models have been
trained by the Alternating Direction Method of Multipliers
(ADMM) technique with the joint group sparsity setting.
We have expanded the ADMM technique into the primal
and dual forms of the regularized l2,1-norm problem and
estimated closed form solutions for their sub-problems. The
primal algorithm minimizes Eq. (1) with respect to the
variable vector of x and z. However, the dual algorithm tries
to minimize Eq. (1) with respect to the model parameter
of y, which is accompanied by the supervised training
procedure in the three proposed optimization techniques.
The primal-based problem tries to minimize or maximize
an objective function under a set of given constraints, while
the dual-based problem allows for achieving a best set of
constraints under the given conditions. The joint sparsity
setting for the ADMM technique without non-overlapping
groups allows for minimizing Eq. (1) with respect to both
of the model parameter of y and variable vectors of x
and z.

Consequently, we have implemented the three different
optimization techniques to minimize errors between outputs
of models and an ideal radiation pattern of the HAAwBE
without any faulty elements. Indeed, mapping samples of the
degraded radiation pattern of the HAAwBE to labels within
the training procedure of the three different optimization
techniques is performed by minimizing the cost function of
Eq. (1).
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The major contributions of this work are outlined as
follows,
• We are the first authors to train the LS-SVM, NN-MLP,
and NN-RBF models with the ADMM algorithm for
DoA estimation and fault detection problems. Figure 5
shows the HAAwBE performance enhancement by
deploying the LS-SVM optimization model. Table 10
reports all three optimization models yield success rates
that exceed 88% in identifying the locations of faulty
elements.

• Our proposed three-class classification LS-SVM model
for the 3D HAAwBE with 72 elements has illustrated a
very high resolution in recognizing locations of signal
sources in the presence of 83% faulty elements. DoA
estimation problems allow for retrieving directions of
signal sources from impinging electromagnetic waves in
elements of the hybrid antenna array. We have verified
that without performing any optimization method, the
HAAwBE is not capable of recognizing locations of
sources in the presence of faulty elements. In this
case, the plot of DoA estimation has just represented
a periodic oscillation around its normalized expected
mean value of 0.25. However, we have verified that with
implementing the three-class classification LS-SVM
model, the HAAwBE can recognize locations of three
sources with high resolution [7].

• Effects of faulty elements on the performance of an
HAAwBE have been evaluated. An increase in the
number of non-radiating elements, which is accom-
panied by an increase in failure probability, yields a
significant degradation in the radiation pattern, growth
in sidelobe levels (SLLs), and a reduction in depths of
nulls and shifts in nulls. Fault diagnosis optimization
models bring the merit of detecting and classifying
faulty elements by performing feature extraction and
pattern classification. We have also verified that the
HAAwBE effectiveness in the fault detection problem
varies for the three optimizations models. The supe-
riority of the HAAwBE performance with performing
the NN-RBF, LS-SVM, and MLP optimization models
has been respectively verified for low, medium, and
high percentages of faulty elements. Moreover, the
high success rates of 91.83%, 91.24%, and 88.23%
of the three NN-RBF, NN-MLP, and LS-SVM mod-
els, respectively, can guarantee the superiority of the
HAAwBE performance in discriminating radiating ele-
ments from non-radiating (faulty) elements with high
resolution and accuracy in the presence of 50% faulty
elements.

Finally, in addition to the introduction section, this work
is organized into the four following sections: An outline
and overview of the related studies is concisely presented in
Section II. Section III is devoted to describe the methodology
and background of the involved approaches and techniques.
The HAAwBE performance, by performing the optimization
models for fault detection and DoA estimation problems, is

discussed in Section IV. In Section V, we present the main
conclusions of this research study.

II. LITERATURE REVIEW OF RELATED STUDIES
Fault detection problems include several different practi-
cal implications and limitations, which were debated and
discussed in detail in [1], [2], [3], [4], [5], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18]. Each of
these approaches and techniques has its own advantages and
constraints. In order to further highlight the effectiveness
and strength of our proposed methods for identifying faulty
elements of the 3D HAAwBE, we aim to concisely overview
some of the available techniques and methods of fault
detection.
Techniques for near-field measurements for the fault

detection problems have been developing by various research
groups [19], [20]. The near-field measurements of the
excitation of an antenna array were accomplished by an
infinitesimal tip of a probe in [21]. van Rensburg and
Nearfield in [21] have verified that small changes in
excitation of the array vector can be detected by near-field
measurements. However, any changes in magnitudes of the
excitation of the antenna array may not be determined in
the near field region [21]. Furthermore, antenna arrays have
potential applications in Radars, and wireless communication
channels, which are not accessible to individuals in near field
regions. Hence, near-field measurements of antenna arrays
become practically infeasible [19] in the aforementioned
applications.
Harrou and Sun in [22] have employed the generalized

likelihood ratio technique for overcoming the limitations of
non-parametric maximum likelihood ratio techniques and
other available methods in fault detection problems for the
linear antenna array. The proposed method has been verified
for only 16.16% of the total number of array elements, which
is insufficient for assessing its performance. Moreover, the
proposed method in [22] includes intensive computations
with very slow rates of convergence [23].
Vakula and Sarma in [24] have extended the two

optimization methods of RBF and probabilistic neural
network (PNN) for the 5 × 5 planar antenna array to
identify locations of 12% faulty elements of the total array
elements. Amplitudes and phases of pattern deviations [24]
degrade significantly by increasing the number of defective
elements, implying more irregularities in the actual radiation
patterns of the planar antenna array. This also represents
the strong sensitivity of the antenna performance to the
number of faulty elements, which can cause a substantial
degradation in the performance of the fault detection problem
for array elements by increasing the number of defective
elements.
Boopalan et al. in [20] have verified that the performance

of the PSO optimization method is highly affected by the
arrangement of defective elements in the planar antenna
array. Indeed, a PSO technique is associated with the
successful performance of adjacent elements of the array
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TABLE 1. Comparative table to highlight the innovation of this work.

antenna under test in [20] and [25]. Although they could
rigorously determine locations of elements in the four
different arrangements of 25% defective elements, including
random, row, column, and group [20], an increase in the
numbers of array elements can fail to convergence.
The presented algorithms for the fault detection problem

in [3] are performed by estimating array factors of array
antennas under test, which require time-consuming and
complex computations. Although Rodriguez-Gonzalez et al.
in [18] could significantly improve the performance and
speed of the fault detection problem of the linear array
antenna by processing only samples of the degraded radiation
pattern, the equivalent success rates are not achievable for
complex configurations of array antennas such as 3D array
antennas. Hence, we have increased the computational speed
and accuracy by representing a new framework of the
regularized l2,1-norm problem and implementing the ADMM
reconstruction method for a limited numbers of samples of
the degraded radiation pattern of the 3D HAAwBE with 72
elements. Moreover, to achieve invariance (with respect to
variations in the initialization performance and numbers of
defectiveelements) andaccuracy in the fault detectionproblem,
we have updated hyperparameters and variables of the ADMM
technique within the training procedures of the three different
optimizationmethods of theLS-SVM,NN-RBF, andNN-MLP

compared to each other. Table 1 shows a comparative table
to highlight the innovation of this work.
In the real environment, which requires a maximum rate

of data processing and transfer, the time complexity of
NN-RBF, NN-MLP, and LS-SVM is proportional to the input
size and the number of real and complex multiplications and
additions. The conventional neural networks and machine
learning techniques have been implemented for problems of
DoA estimation and fault detection in the linear array anten-
nas [26], [27] and planar array antennas [28]. Moreover, the
proposed techniques, [29], [30], [31], include computational
complexity for estimating array factors in DoA estimation
problems. The practical challenge of the complexity of
the aforementioned techniques become more dominant in
problems of DoA estimation and fault detection when
configurations of antenna arrays become 3D and more
complex, and the number of array elements increases. To
address the practical challenge of the time complexity of
neural networks and machine learning techniques, we have
randomly selected 35 samples of the degraded radiation
pattern rather than estimating the array factor. We also
enhanced the parallel computing performance of NN-MLP,
NN-RBF, and LS-SVM models using the ADMM rather
than the existing training methods, to maximize the rate of
processing and transferring data. In this work, we assumed
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that the size of the training dataset and the testing dataset is
equal to 56× 67, and the given dataset has been randomly
partitioned into 75% for training and 25% for testing.

III. METHODOLOGICAL TECHNIQUES AND
APPROACHES
As discussed in the introduction, we have chosen a number
of required samples of the degraded radiation pattern of
the HAAwBE to solve the problem of Eq. (1), rather than
involving substantial mathematical computations for estimat-
ing array factors of array antennas under test in the existing
technical literature [32], [33]. We have verified that a number
of required samples from the degraded radiation pattern of
the HAAwBE guarantees high success rates in the fault
detection problem and high resolutions in the DoA estimation
problem. Hence, our proposed techniques can significantly
increase the speed of computations and calculations and
reduce the cost of employing the complex radiation patterns
in the existing technical literature [32], [33].
In this work, we have used the MATLAB programming

platform to generate the raw data. Hence, we have imitated
the raw data by sinusoidal functions, which are affected
by the environmental noise, the coupling effect, and the
wireless communication channel. In this work, the Ricean
fading channel, line of sight (LoS), and equal correlation
matrices have been assumed to model the real environment,
as have been discussed in [34], for conditions of the wireless
communication channel in this work.

A. FRAMEWORK OF THE RESEARCH PROBLEM
In this section, we aim to formulate the research problem
under our proposed assumptions. Let us consider a superposi-
tion of electric fields resulting from all faulty and non-faulty
elements of the HAAwBE in Eq. (2).

E =
K
∑

k=1

ckEk =
K
∑

k=1

ake
−jαk

︸ ︷︷ ︸

ck

Ek, for k = 1, 2, . . . ,K (2)

where a number of elements in the HAAwBE is assumed
to be K = 72. Furthermore, each complex excitation of
elements of ck can be expanded in terms of its amplitude
excitation of ak and its phase excitation of αk in Eq. (2). Ek
denotes the complex electric field coefficient of kth element
of the HAAwBE at the observation point.
Let us compute Eq. (3), given
• a degraded electric field resulting from the HAAwBE
including only defective elements of �E,

• a measured electric field resulting from the HAAwBE
including both faulty and radiating elements of EH , and

• an ideal electric field resulting from the HAAwBE
including only radiating elements of EI ,

�E = EH − EI =
K
∑

k=1

�akEk (3)

where complex degraded excitations of elements of �ak
in Eq. (3) can be expanded in terms of measured complex

excitations of the HAAwBE and ideal complex excitations
of the HAAwBE in Eq. (4).

�ck = aHk e
−jαHk − aIke−jα

I
k

=
[

aHk cos αHk − aIk cos αIk

]

− j
[

aHk sin αHk − aIk sin αIk

]

(4)

Let us consider the original signal of x ∈ S2K+1 measured at
outputs of 72 elements of the HAAwBE, in which 2K denotes
the imaginary and real parts of element excitations. The
measured signals at outputs of the HAAwBE also are affected
by flaws and noise, and x shows a sparse approximation (or
sparse representation) of signals of interest. K and L denote
design parameters: the number of elements of the HAAwBE
equal to 72 and the number of samples from the degraded
radiation pattern equal to 25, respectively, where L� K.
Let us consider a linear operator of Ã ∈ C2L×2K , and a set

of measured radiation patterns of elements of the HAAwBE
with a mathematical relationship of Eq. (5).

R̃ = Ãx̃+ ẽ (5)

The system of Eq. (5) includes the under-determined
problem or an ill-posed inverse problem, in which

coefficients of x̃ are unknown, where R̃ =
[

Re(R)

Im(R)

]

∈

S2L×1, x̃ =
[

Re(x)
Im(x)

]

∈ S2K+1. It is assumed that there is a

matrix of w ∈ C2K×2K orthogonal to x including multiple
zero elements in terms of its dimensionality in the form of
x̃ := wx.

Ã =
[

Re(Ã) −Im(Ã)

Im(Ã) Re(Ã)

]

∈ C2L×2K

where the Alk entry of Ã denotes a product of the electric
field factors of Elk of the kth element at the lth measured
sample.

ẽ =
[

n
e

]

∈ S2L×1

where n and e denote a M× 1 matrix of noise and a M× 1
matrix of zeros, respectively.

B. JOINT GROUP SPARSITY SETTING FOR THE ADMM
TECHNIQUE
The discussion in the previous sub-section has focused on
representing a framework of our problem. In this section,
we aim to recover the signal of interest of x̃ from a
number of samples of the degraded electric field of R̃ in
the system of Eq. (5). Hence, to solve the regularized l2,1-
norm model of Eq. (1) for the system of Eq. (5), we have
proposed the ADMM technique and decomposed it into its
two convex quadratic primal and dual forms [32], [33].
To design the ADMM algorithm for Eq. (1), we outline

the following preliminary information:
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Preliminary 1: The signal ensembles are expressed in
2× K groups in Eq. (6).

xgk =
[

xg1 xg2 . . . xg2k

] ∈ S2K (6)

In the array signal processing framework, the ensemble
of signals in Eq. (6) is expected to possess two types
of joint structures: intra-signal correlation and inter-signal
correlation. The intra-signal correlation is associated with
the measured raw data at each HAAwBE element. In other
words, components in each group of xgk are correlated and
possess intra-signal correlation. In this work, in order to
quantify and alleviate the effect of intra-signal correlation of
measured signals at outputs of HAAwBE elements, we first
produce sparse groups of projections onto a convex set. Then,
a different model for Eq. (1) is trained within each of these
groups using the Euclidean distance norm. The group-wise
sparsity model is estimated by projections in the dual-based
ADMM algorithm. We can also perform the shrinkage (i.e.,
compression along the normal axis of each measured datum)
operation to produce the wise-group sparsity for variables in
the primal-based ADMM algorithm.
Preliminary 2: The overlapping features in the x variable

do not include difficulties in obtaining solutions. However,
a further increase in the stability and reliability of solutions,
we can consider Eq. (7).

x̃ = Gx (7)

where G ∈ C2K×2K possesses 0′s and a single 1 in each of
its rows.
Preliminary 3: The weighted l2,1-regularization in Eq. (1)

contains variables of xgk
′s with overlaps together, which

provides more challenges to solve the problem. Hence, in
order to employ the ADMM technique for the regularized
l2,1-norm problem, we first introduce an auxiliary variable
of z in the group form of zk = xgk for k = 1, 2, .., 2K.
Then, the ADMM algorithms are decomposed into quadratic
convex sub-problems using the variable splitting technique
in the form of f1(x)+ f2(z),

min
x,z

f1(x)+ f2(z)
s.t. z = WGx (8)

where f1 and f2 are assumed to be quadratic and proximal
functions. The deployment of the variable splitting technique
transforms Eq. (1) to its equivalent problem in Eq. (9).

min ‖z̃‖ω,2,1 =
2K
∑

k=1

ωk‖z̃gk‖2

s.t. zj = WGxj, Ãx̃ = b̃

for j = 1, 2, . . . , 2h (9)

Preliminary 4: Components in each group may include
a wide dynamic range. We can significantly alleviate the
effect of differences in scales of components by employing
weights inside every group.

zk =W(2K)xgK k = 1, 2, . . . , 2K

FIGURE 1. The Venn diagram for representing the relationship among a group-wise
sparsity of the signal, a group-wise joint sparsity of the signal, a sparsity of the signal
and a joint sparsity of the signal.

W(2K) ∈ C2K×2K (10)

where z = [zT1 zT2 . . . zT(2K)]
T ∈ S2h GXgk =

[xTg1
xTg2

. . . xTg(2K)
]T ∈ S2h

W :=

⎡

⎢
⎢
⎢
⎣

W(1)

W(2)

. . .

W(2K)

⎤

⎥
⎥
⎥
⎦

Therefore, results will show better stability and accuracy
for both problems of fault detection and DoA estimation.
Preliminary 5: Structures of the overlapping group spar-

sity are caused by the presence of intra-signal correlation.
Hence, to impose a further restriction on intra-signal corre-
lation, and thereby generate non-overlapping group sparsity
structures, a set of sparse solutions shares a common non-
zero support in the same group. This model is called joint
sparsity, as is illustrated in Figure 1.
Let us consider a collection h joint sparse solutions, such

that each row of the solution matrix is devoted to a group.
Therefore, Eq. (9) is re-written for the joint sparsity

structure of non-overlapping groups by the aforementioned
modifications in Eqs. (11) to (14).

Ã := Ih
⊗

A =

⎡

⎢
⎢
⎢
⎣

A1
A2

. . .

A2h

⎤

⎥
⎥
⎥
⎦

,

Aj ∈ Clj×K (

lj < K
)

(11)

Standard notations of
⊗

and vec(.) represent the Kronecker
product and the vectorization of a matrix, respectively. The
identity matrix of Ih ∈ C2h×2h has been employed for
transforming a vector of A to a matrix of Ã.

x̃ := vec(X) =

⎡

⎢
⎢
⎢
⎣

x1
x2
...

x(2h)

⎤

⎥
⎥
⎥
⎦

(12)
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b̃ := vec(B) =

⎡

⎢
⎢
⎢
⎣

b1
b2
...

b(2h)

⎤

⎥
⎥
⎥
⎦

(13)

where the observation vector b̃ is affect by noise. Indeed, the
Basis Pursuit Denoising (BPD) technique of Eq. (9) has been
implemented to decompose the collected signal at outputs
of elements of the HAAwBE into its optimal superpositions.

1) A PRIMAL FORM OF THE ADMM TECHNIQUE BY THE
JOINT SPARSITY SETTING

The ADMM technique by the joint sparsity setting has
synthesized the augmented Lagrangian problem of Eq. (14)
by minimizing the cost function of Eq. (9), with respect to
variables of x and z, where �1 ∈ C2K×1, �2 ∈ C2L×1 denote
multipliers and β1, β2 > 0 refer to penalty parameters.

min
x,z
‖z‖ω,2,1 −�T

1 (z−WGx)+ β1

2
‖z−WGx‖22

−�T
2 (Ax− b)+ β2

2
‖Ax− b‖22 (14)

To minimize the augmented Lagrangian problem of
Eq. (14) with respect to variables of x and z alternating, we
have decomposed the Lagrangian into the x-subproblem and
z-subproblem.
x-subproblem: In Eqs. (15) to (17), we minimize the

augmented Lagrangian problem of Eq. (14) with respect to
the x variable.

min
x

�T
1 (Z−WGX)+ β1

2
‖Z−WGX‖22

−�T
2 (AX− B)+ β2

2
‖AX− B‖22 (15)

min
x

1

2
XT
[

β1(WG)(WG)TI+ β2AAT
]

X

=
(

−�1 + β1(WG)ZAAT
)T

X (16)

X =
[

β1(WG)(WG)TI+ β2ATA
]−1

[

−�1(WG)T + β1(WG)TZ+�2AT + β2ATB
]

(17)

z-subproblem:

min
Z
‖Z‖ω,2,1 −�T

1Z+
β1

2
‖Z−WGX‖22 (18)

min
Z
‖Z‖ω,2,1 −�T

1Z+
β1

2
(Z−WGX)T(Z−WGX) (19)

The closed-form solution to minimize the z-subproblem
consists of the row-wise shrinkage in one dimension in
Eqs. (19) and (20).

zk = max

{∥
∥
∥rk
∥
∥
∥

2
− ωk

β1
, 0

}
rk

∥
∥rk
∥
∥

2,
for k = 1, 2, . . . , 2K

(20)

Algorithm 1: Primal-Based ADMM Scheme for the Joint
Sparsity Setting

1) Initialize:
Z ∈ C2K,�1 ∈ C2K×1,�2 ∈ C2L×1, β1, β2 >

0, γ1, γ2 > 0
Updating variables and parameters

2) X← [β1(WG)(WG)TI+ β2ATA]−1[−�1(WG)T +
β1(WG)TZ+�2AT + β2ATB]

3) Z← shrink(X+ �1
WGβ1

, 1
β1
W)

4) �1← �1 − γ1β1(Z−WGX)

5) �2← �2 − γ2β2(AX− B)

where xk and ωk represent the ith row of the matrix of X
and kth column of the matrix of W, respectively.

rk := (WG)xk + λk1

β1
(21)

Consequently, we have minimized the cost function of
Eq. (14) in both directions of z and x simultaneously at each
iteration, as outlined in 1.

2) A DUAL FORM OF THE ADMM TECHNIQUE BY THE
JOINT SPARSITY SETTING

Here, the ADMM technique by the joint sparsity setting
has built the augmented Lagrangian problem in Eq. (23) by
minimizing the cost function of Eq. (9).

min
y,z
−bTy

s.t. z = ATy,

‖zgk‖2 ≤ wi for k = 1, 2, . . . , 2K (22)

min
y,z
−bTy− xT

(

z−WGATy
)

+ β

2

∥
∥
∥z−WGATy

∥
∥
∥

2

2

s.t. ‖zgk‖2 ≤ wk for k = 1, 2, . . . , 2K (23)

z-subproblem: The group-wise projections on a convex
set have been estimated to solve the z-subproblem of the
ADMM dual algorithm in Eqs. from (25) to (26).

−BTY− XT
(

Z−WGATY
)

+ β

2

∥
∥
∥Z−WGATY

∥
∥
∥

2

2
(24)

zgk = ρpi2

(
1

β
xgk +WGAT

gky

)

for k = 1, 2, . . . ,K (25)

ρpi2
�
{

z ∈ S2K : ‖z‖2 ≤ wk
}

(26)

where β > 0.
y-subproblem: To reduce the computation time, the

proposed solutions for the y-subproblem are limited to the
following two scenarios:

• when A is characterized by an orthonormal matrix: The
gradient descent steps were taken in terms of the y
variable, as a variable of the dual problem, towards a
vector space in which constraints of the dual problem
hold.
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Algorithm 2: Dual-Based ADMM Scheme for the Joint
Sparsity Setting

1) Initialize:
X ∈ S2K,Z ∈ S2K, β > 0, γ > 0
Updating variables and parameters

2) Y ← [β(AAT)(WG)(WG)T ]−1[B− (WG)AX+
βA(WG)TZ]

3) Z← ρp2

(

(WG)ATY+ 1
β
X
)

4) �1← �1 − γ1β1(Z−WGX)

5) �2← �2 − γ2β2(AX− B)

• when A is characterized by a non-orthonormal matrix:
we have employed exact computations including the
A.inVAAT operator and the YALL1 − Group solver, as
represented in Algorithm 2.

max
y

{

min
x

K
∑

k=1

‖xgk‖2 − yT(Ax− b)
}

= max
y

{

bTy +min
x

K
∑

k=1

(

wk‖xgk‖2 − yTAgkxgi
)
}

= max
y

{

bTy :
∥
∥
∥AT

gky
∥
∥
∥

2
≤ wk, for k = 1, 2, . . . , 2K

(27)

where y ∈ S2L, and AT
gk denotes a sub-matrix, which

is composed of columns of A and associated with the kth
group.

min
y
−bTy+WG(Ax)Ty+ β

2

∥
∥
∥z− (WG)ATy

∥
∥
∥

2

2
(28)

β
(

AAT
)

(WG)(WG)TY = B− (WG)AX+ βA(WG)TZ

(29)

Consequently, the ADMM algorithm can reconstruct the
joint sparse signal in the presence of defective elements
of the HAAwBE with high probability and accuracy by
solving Eq. (1) when step sizes satisfy the upper bound for
a theoretical convergence criterion, which is equal to 1.618.

C. OPTIMIZATION MODELS
The discussion in the previous sub-section has focused
on providing quadratic convex solutions for Eq. (1). In
the following, we aim to train the three different models,
LS-SVM, NN-RBF, and NN-MLP, by the parameters, hyper-
parameters, and variables of the proposed ADMM technique
to overcome the limitations of their existing training algo-
rithms. The trained parameters of the ADMM algorithm are
configured for the neural networks and LS-SVM model in
the form of weight matrices along with activation functions.
Activation functions would be expected to represent the non-
linearity of the problem, however the optimal parameters
are linear. Each group of neurons include similar inputs,

however, different weights. Each layer is constructed by a
group of neurons.
It is worth mentioning that the initialization performance

and stability of three of the optimization techniques, dis-
cussed in this sub-section, degrade because the iterative
shrinkage provides additional training variables for them.
However, the initialization strategies and update approaches
of all three proposed optimization methods are able to
manage the minimization of the z-subproblems of the
ADMM technique within the training process. Hence,
in this work, updating hyper-parameters associated with
the shrinkage operation and step sizes are performed
by the three optimization models within their training
procedures.
The presence of extreme data sparseness in the

given dataset collected from 72 outputs of elements
of the HAAwBE results from errors in element excita-
tions. The excitation phases and amplitudes of elements of
the HAAwBE have sparse representations, whose few non-
zero coefficients can be divided in groups. This section has
focused on performing the joint group sparse reconstruction
of high dimensional data from a limited sample set of
HAAwBE degraded radiation patterns.
The main task of the proposed pattern recognition

algorithms for both problems of fault detection and DoA
estimation consists of assigning class labels to measurement
vectors or feature extraction. For instance, in a general
classification algorithm, a set of features is extracted from
a few samples of the degraded radiation pattern of the
HAAwBE, which is capable of being classified and relevant
to the involved problem. Generally, the set of features
for each given HAAwBE radiation pattern is expressed by
vectors.
The three general steps for the fault detection problem

for all three models of LS-SVM, NN-RBF, and NN-MLP
include:
Labeling data: Labeling is performed by the data from

the ideal hybrid antenna array (or the hybrid antenna array
without any faulty elements) that is characterized by the
mask field (MF) in Figures 3.
Classifying data: The optimization methods have been

performed for classifying the data from HAAwBE element
outputs. In this sense, each class is allocated for each
individual array element.
Finding defective array elements: When an error

between the labeled data and classified data is more than
one threshold, the classified data is associated with a faulty
array element.
We have illustrated the 3D configuration of the HAAwBE

in Figure 2. As described in detail in [9], [10], the radiation
characteristics of the HAAwBE consist of several different
advantages including high directivity and gain, deep nulls,
the superior performance and high resolution for the DoA
estimation problem, and uniform 3D spherical coverage,
which make it a potential candidate for beamforming,
beamsteering, and nullsteering applications.
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FIGURE 2. A 3D view of the HAAwBE at an operating frequency of 10 GHz. It consists of one circular antenna array in the xy-plane and one cylindrical antenna array along with
the z-axis [35]. We also have represented the joint group sparsity in the presence of two faulty elements in the HAAwBE.

1) FAULT DETECTION AND DOA ESTIMATION: NEURAL
NETWORKS

Although architectures of MLP neural networks appear to
be similar to RBF neural networks, there are significant
differences between their functionalities. For instance, a
distinct difference, which is noticeable between the two
networks of NN-RBF and NN-MLP, results from their
feeding inputs. Measurements of distances between inputs
and the hidden layer are transferred through the RBF
optimization method rather than raw data. In other words,
RBF models employ Euclidean distances for processing data,
however, MLP models compute inner products, which can
be computationally intensive. Here, we have represented a
similar technique for training models of NN-RBF and NN-
MLP, rather than their conventional training techniques, in
Eq. (30).

X1 = h1(z1)

X2 = h2(z2)
...

X5 = h5(z5) (30)

the activation function hl in each of the five hidden layers is
activated by the variables x and z of the primal form of the
ADMM technique. Moreover, the step size, regularization
parameter, and quadratic penalty parameters are effectively
updated to minimize errors between the mask function of
MF(�m,�n) and FF(�m,�n)s, 3.

2) FAULT DETECTION AND DOA ESTIMATION: LS-SVM
MODEL

Here, we aim to describe how the LS-SVM algorithm can
be trained with the ADMM technique. Although the training
procedure of the LS-SVM model is performed on a convex
optimization problem, the computation of kernel matrices
degrade the LS-SVM performance, especially for large-
scale and non-linear problems. Hence, as represented in

FIGURE 3. A general architecture to illustrate the training procedure of models of
the NN-MLP and NN-RBF based on the proposed ADMM technique. Here, we did not
consider the differences between the interior architectures of NN-MLP and NN-RBF
models. The mask function of MF (�m, �n) denotes an ideal radiation pattern of the
HAAwBE without any defective elements. The far-field function of FF (�m, �n)
represents a sample of the degraded radiation pattern which trained by either the
NN-MLP or NN-RBF.

Eq. (31), the LS-SVM model can be effectively trained by
the estimated parameters, hyper-parameters, and variables of
the ADMM technique.

(ytest)j = sign

[
K
∑

k=1

(z)kK
(

(xtrain)k, (xtest)j
)+ b

]

,

for j = 1, 2, . . . , J (31)

where K and J denote the kernel function, and a number of
data points in the testing dataset. The relationship between
the trained model of Ytrain, which is obtained by the dual
form of the ADMM technique, and the variable z, which
results from the primal form of the ADMM technique, is
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FIGURE 4. The architecture of the three-class DDAG technique, which employs the
one-vs-one multi-class classification algorithm, for the DoA estimation, as described
in detail in [8].

expressed in Eq. (32)

Zy = YtrainZMaxIt (32)

zMaxIt represents a value z in which both variables z and x
were minimized in the primal form of the ADMM technique.
Moreover, the estimated parameter MaxIt by the ADMM
technique allows for enhancing the classification accuracy
and immutability of the proposed approach in both problems
of DoA estimation and fault detection, as discussed in the
next section.

IV. NUMERICAL RESULTS AND DISCUSSION
In this section, we have deployed the three models of
NN-MLP, NN-RBF, and LS-SVM, which we trained by the
ADMM technique, to problems of DoA estimation and fault
detection. The proposed methodology has been described
in the previous section. In response to the question of
which features of an antenna array can be useful for dis-
criminating radiating elements from no-radiating elements,
we have chosen 25 samples of the degraded radiation
pattern of the HAAwBE. Then, we have verified that the
deployment of the three models for the 3D configuration of
the HAAwBE, not only provides significant discrimination
between the amplitudes of faulty and radiating elements,
but also identifies locations of faulty elements. Hence, this
section addresses how deploying the optimization models
enhances the HAAwBE performance in problems of DoA
estimation and fault detection. Then, by estimating success
rates for the three models, we have analogously evaluated
their performance in recognizing locations of sources.

A. DOA ESTIMATION AND FAULT DETECTION
Any modifications and changes in the total far-field radiation
pattern of the HAAwBE can be equivalently extended to all
other far-field problems such as DoA estimation and fault
detection. Without performing any optimization method,
the HAAwBE is not capable of recognizing locations of
sources in the presence of 83% faulty elements. As Figure 5

FIGURE 5. Results of DoA estimation with performing the LS-SVM for the HAAwBE,
consistent with Figure 2, at an operating frequency of 10 GHz. It is assumed that there
are 12 radiating elements, and 60 non-radiating (defective) elements, which is
accompanied by the presence of 83% faulty elements. Also, we took 25 samples from
the degraded radiation pattern of the HAAwBE with 72 elements.

illustrates, the blue plot of DoA estimation includes periodic
variations around its normalized expected mean value of
0.25. However, the HAAwBE with the LS-SVM model has
recognized the locations of three sources at 16◦, 71◦, and
106◦, with the normalized amplitudes of 0.642, 0.664, 0.660,
respectively, with a very high resolution.

B. EFFECTS OF FAULTY ELEMENTS ON THE ANTENNA
ARRAY PERFORMANCE
In this study, fault detection has been fulfilled based on
exploring the far-field radiation pattern and taking 25 sam-
ples of the degraded radiation pattern of the HAAwBE
in the presence of faulty elements. Simulation results in
Figure 6 show that amplitudes of the received energy reduce
in the faulty elements, however, the estimator tool is
not capable of discriminating between amplitudes of non-
radiating and radiating elements. It is evident how received
energies are significantly degraded in the HAAwBE by the
presence of 50% faulty elements in Figure 6 (a). A major
difference in the accuracy and robustness of the performance
of fault detection in the HAAwBE, resulting from higher
received energies, is noticeable by deploying the LS-SVM
technique, Figure 6 (c), compared to the NN-RBF technique,
Figure 6 (b).

Amplitudes have shown in Figures 7 to 9, and Tables 2
to 4 improved performance of the HAAwBE by performing
the NN-RBF model in the presence of faulty elements,
compared to the two other models. Here, it is even more
evident how the HAAwBE performance with the NN-RBF
model degrades when subjected to a higher number of faulty
elements, and is enhanced in the presence of fewer faulty
elements.
Figure 8 and Table 3 reports that the NN-MLP model

could enhance the HAAwBE performance for the fault
detection problem in the presence of faulty elements. It
is evident how deploying the NN-MLP model, despite an
increase in the number of faulty array elements, enhances the
SLLs and makes nulls deeper. Hence, the NN-MLP model
becomes even more efficient when the numbers of faulty
elements increase.
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FIGURE 6. Variations of received energies for all radiating and non-radiating
elements of the HAAwBE, consistent with Figure 2, in the presence of 50% faulty
elements at an operating frequency of 10 GHz: (a) without performing any optimization
methods, (b) with performing the RBF technique, and (c) with performing the LS-SVM
technique. The total number of elements of the HAAwBE is supposed to be 12.
Furthermore, faulty elements are located at positions 2, 3, 7, 8, 11, and 12. Higher
received energies imply better accuracy and robustness of the HAAwBE in fault
detection.

Figure 9 and Table 4 ensure that the HAAwBE
performance with deploying the LS-SVM model is enhanced
when the number of faulty elements remains medium. In
other words, the HAAwBE performance, with the LS-SVM
model in terms of enhancing SLLs and making deeper nulls,
is substantially improved when the number of faulty elements
is equal to five (or a medium number of faulty elements),
compared to the presence of low and high numbers of faulty
elements.
Furthermore, it is noticeable in Figures 7 to 9, where the

number of faulty elements change, locations of mainbeams
shift.
Consequently, we can conclude that the HAAwBE effec-

tiveness and performance by performing each optimization
model vary with respect to changes in the number of faulty
array elements. An increase in the number of non-radiating
elements, despite the HAAwBE and its radiation pattern dete-
rioration, is accompanied by a reduction in computational
complexity and data processing from the lower number of

TABLE 2. Variations in the HAAwBE performance by implementing the RBF model in
the presence of the three different numbers of faulty elements of 1 (as a low number),
5 (as a medium number), and 10 (as a high number) at an operating frequency of
10 GHz and φ = 0◦ . Here, the total number of array elements of the HAAwBE,
consistent with Figure 2, is assumed to be 30.

TABLE 3. Variations in the HAAwBE performance by implementing the NN-MLP
model in the presence of the three different numbers of faulty elements of 1 (as a low
number), 5 (as a medium number), and 10 (as a high number) at an operating
frequency of 10 GHz and φ = 0◦ . Here, the total number of array elements of the
HAAwBE, consistent with Figure 2, is assumed to be 30.

radiating elements in its involved optimization method. In
other words, a higher number of radiating elements may
cause more non-linearity and higher complexities of the data
processing procedure in its involved optimization method.
Hence, since the NN-MLP model is more compatible for

the linearly-separable data, the HAAwBE with the NN-MLP
model shows better performance in the presence of higher
numbers of faulty elements. However, hidden layers in the
RBF model can perform non-linear data processing and
thereby show better performance for the HAAwBE in the
higher numbers of radiating elements.

C. SUCCESS RATE
A metric of success rate denotes how well an antenna
array can discriminate non-radiating elements from radiating
elements and recognize locations of faulty elements. A higher
success rate implies that the antenna array possesses higher
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TABLE 4. Variations in the HAAwBE performance by implementing the LS-SVM
model in the presence of the three different numbers of faulty elements of 1 (as a low
number), 5 (as a medium number), and 10 (as a high number) at an operating
frequency of 10 GHz and φ = 0◦ . Here, the total number of array elements of the
HAAwBE, consistent with Figure 2, is assumed to be 30.

FIGURE 7. We have implemented the RBF technique for determining locations,
including phases and amplitudes, of array elements in the HAAwBE, consistent with
Figure 2, with the presence of one faulty element, five faulty elements, and ten faulty
elements at an operating frequency of 10 GHz and φ = 0◦ . Green, blue, and red graphs
are respectively associated with the presence of 1, 5, and 10 faulty elements in the
HAAwBE: (a) variations of normalized amplitudes of the HAAwBE radiation patterns in
terms of angles of observation, and (b) variations of phase angles of array elements in
terms of angles of observation. Maximum phases denote locations of radiating
elements or “ON” states while minimum phases refer to non-radiating elements or
“OFF” states. It is assumed that the total number of array elements of the HAAwBE is
equal to 30.

resolution and more invariance in the presence of faulty
elements, [36]. An optimization model in any antenna array
with a lower success rate may fail to provide a solution
with high precision. Hence, we have further verified the
immutability and accuracy of the HAAwBE performance
with performing the three optimization models of NN-RBF,
NN-MLP, and LS-SVM in the fault detection problem using
the metric of the success rate of 91.83%, 91.24%, and

FIGURE 8. We have implemented the MLP model for determining locations,
including phases and amplitudes, of array elements in the HAAwBE, consistent with
Figure 2, in the presence of one faulty element, five faulty elements, and ten faulty
elements at an operating frequency of 10 GHz and φ = 0◦ . Green, blue, and red graphs
are respectively associated with the presence of 1, 5, and 10 faulty elements in the
HAAwBE: (a) variations of normalized amplitudes of the HAAwBE radiation patterns in
terms of angles of observation, and (b) variations of phase angles of array elements in
terms of angles of observation. Maximum phases denote locations of radiating
elements or “ON” states while minimum phases refer to non-radiating elements or
“OFF” states. It is assumed that the total number of array elements of the HAAwBE is
equal to 30.

88.23%, respectively, in the presence of 50% faulty elements,
as reported in Figure 10.
Figure 10 has reported that the deployment of all three

optimization models for the HAAwBE possesses high suc-
cess rates for the fault detection problem. These high values
of the success rates can guarantee that the HAAwBE is
capable of recognizing locations of radiating elements from
non-radiating elements with high resolution.

V. CONCLUSION
To conclude, in this research study, some of the current
techniques and solutions for fault detection and DoA esti-
mation have been outlined and reviewed. We have deployed
the three different LS-SVM, NN-MLP, and NN-RBF, for
the HAAwBE to solve the regularized l2,1,w-norm problem
for fault detection and DoA estimation. However, conven-
tional neural networks and LS-SVM models have relied on
gradient-based computation and back-propagation. Hence,
these conventional models possess sequential dependencies
and thereby are not appropriate for hardware accelerations.
Since we have trained the NN-MLP, NN-RBF, and LS-SVM
models with the ADMM method, they do not rely on
gradient-based computation and the back-propagation, and
therefore can be effectively parallelized. This renders our
approach more suitable for hardware implementation.
Moreover, the effectiveness of the three different

optimization models varies in terms of the percentage of
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FIGURE 9. We have implemented the LS-SVM model for determining locations,
including phases and amplitudes, of elements in the HAAwBE in the presence of one
faulty element, five faulty elements, and ten faulty elements at an operating frequency
of 10 GHz and φ = 0◦ . Green, blue, and red graphs are respectively associated with the
presence of 1, 5, and 10 faulty elements in the HAAwBE: (a) variations of normalized
amplitudes of the HAAwBE radiation patterns in terms of angles of observation, and
(b) variations of phase angles of array elements in terms of angles of observation.
Maximum phases denote locations of radiating elements or “ON” states while
minimum phases refer to non-radiating elements or “OFF” states. It is assumed that
the total number of array elements of the HAAwBE is equal to 30.

FIGURE 10. Variations of the success rates of the three different optimization
models of NN-RBF, NN-MLP, and three-class classification LS-SVM. In this sense, the
optimization models have been implemented for the HAAwBE of Figure 2 in the
presence of about 50% faulty elements. The total number of the HAAwBE is supposed
to be 12.

non-radiating array elements in the HAAwBE. Numerical
results have confirmed that the NN-RBF, LS-SVM, and NN-
MLP models yield better performance in the presence of
low, medium, and high percentages of non-radiating array
elements, respectively.
We have verified that it is practically infeasible to

achieve DoA estimation without performing any optimization
methods in the presence of a high number of non-radiating
elements. However, the implementation of the three-class
classification LS-SVM technique for the HAAwBE could
significantly enhance the performance of the DoA estimation
with high resolution.
We also presented that, in practical scenarios, as the

percentage of faulty elements increases, the feasibility rec-
ognizing faulty elements from non-faulty elements becomes

more challenging. However, performing the three-class
classification LS-SVM model for the 3D HAAwBE could
effectively determine the locations of faulty elements.
In addition, the success rates of these three optimization

models in the presence of about 50% faulty elements
(or medium) have verified the much more invariance and
accuracy in the LS-SVM model compared to the two other
neural network models.
In the framework of the array signal processing, we

believe that the concept of fault detection may become of
major interest for all antenna arrays. The recent progress
in optimization methods may soon open up possibilities for
enhancing the performance of antenna arrays in the presence
of a high percentage of faulty elements.
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