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ABSTRACT The application of lenses combined with array antennas (also known as dome arrays or
dome antennas) to the next generation of terrestrial and satellite communication systems brings a wide
range of advantages in terms of improved radiation performance, reconfigurability in the use case, and
reduction in power consumption. To facilitate the industrial implementation of dome antennas, highly
efficient simulation tools are required. In this paper, we present a streamlined implementation of ray
tracing for fast and efficient numerical analysis of the far-field radiation performance of 2D multilayer
dielectric lenses combined with phased arrays. Unlike commercial physical-optical methods, our proposed
ray-tracing method is capable of computing the effects of internal reflections in the dome in a multilayer
configuration. In addition, the method estimates the absorption losses as a result of the Joule effect.
To demonstrate the effectiveness of the proposed approach, we provide comparisons of the simulated
radiation patterns using our proposed ray tracing with the results obtained from commercial full-wave
simulation tools.

INDEX TERMS Array antenna, absorption loss, dielectric lens, dome, matching layers, lens array, ray
tracing, radiation pattern, reflection losses, scanning, 6G.

I. INTRODUCTION

THE INTRODUCTION of the sixth generation (6G) [1]
mobile communications is anticipated for 2030, and it

is expected to have a much greater effect on our society
than 5G. Examples of 6G use cases include sensorial expe-
riences (Internet of Senses), machine-type communication,
augmented reality and virtual reality (AR/VR), and joint
communication and sensing (JCAS). To meet the needs of
an increasing number of connected devices and users, 6G
must allocate additional spectrum that has not been used
before, as well as address critical technological issues related
to hardware and antenna solutions [2].
Phased array antennas (PAA) constitute an interesting

antenna solution for 5G/6G terrestrial communications [3],

[4], [5] and satellite systems [6] due to their simplicity of
design and beam steering capability, which can be achieved
without physically moving the antenna. However, the
performance of electronically scanned PAA is compromised
when steering toward extreme angles due to a reduction
in the projected antenna aperture size in the scanning
direction, resulting in increased scanning losses [7], [8].
Antennas capable of achieving wide beam scanning without
performance degradation are highly desirable for some
applications, such as radars systems [9], aircraft-satellite
communications systems [10], [11], and modern wireless
communication systems [12], [13]. An attractive solution
is the combination of phased arrays with quasi-optical
systems, which provides good matching performance and
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high gain for large scanning angles. Well-known solu-
tions include pillbox antennas [14], [15], [16], Rotman
lenses [17], [18], [19], Luneburg lenses (which can be imple-
mented in a fully metallic form with metasurfaces [20] or
geodesic surfaces [21]), shaped parallel plate lenses [22], and
homogeneous dielectric lenses [23], [24], [25], [26], [27].
The combination of dielectric lenses and arrays, known

as dielectric dome antennas, is a promising antenna solution
for the next generation of radio access systems and satellite
communications [27], [28], [29], [30], [31], [32], [33].
These antennas can be used to enhance certain properties
of phased arrays, such as their field of view [7], [26],
to modify their radiating performance to suit different
scenarios[34], or to reduce the power consumption of power
amplifiers to achieve a specific Equivalent Isotropic Radiated
Power (EIRP) value [35]. When the goal is to increase
the operating scanning range, the dome introduces the
phase variation required to deflect the beam in the desired
direction [36], and due to the vertical dimension of the lens,
the effective aperture will increase. A dome antenna could
be implemented with metasurfaces [37], but this would lead
to a narrow operating bandwidth caused by the narrowband
behavior of the employed metasurface. The most practical
approach is the dome implementation based on homogeneous
dielectrics, because of its simplicity of design and cost-
effectiveness. Furthermore, by choosing the lens material in a
suitable way, the dome may also act as a radome. In this way,
we add lensing functionality to the radome, which allows
us to improve the scanning performance of the array while
providing mechanical protection from the environment. The
lens curvature is then selected to manipulate the wavefront
and obtain the desired focusing properties for each specific
application. Therefore, the shape of the dome could be
optimized by modifying its geometry for different use
cases according to the required specifications, as previously
introduced in [34]. Additional dielectric layers, known as
matching layers, can be introduced to reduce the number of
reflections occurring at the air/dome boundaries.
The optimization of lens/radome shapes using commercial

full-wave simulators is computationally intensive and time-
consuming. To address this issue, ray-tracing techniques have
been developed to evaluate the far-field performance of large
objects with reduced time and computational resources [38],
[39], [40], [41], [42], [43], [44], [45], [46], [47], [48],
[49], [50], [51]. Additionally, there are commercial software
packages available for this purpose [52], [53]. Recently, a
numerical method based on ray tracing to evaluate the far
field of generalized geodesic lenses was proposed in [54].
Although the general area of ray-tracing techniques can

be considered mature (mainly due to its extensive use in
computer graphic tools), the opportunity for advancement
still remains in specific cases; for example, in the study
of dome antennas, where simplifications can be made
to significantly reduce simulation time. If we are only
interested in ray-tracing for a particular purpose rather
than using a generalized commercial ray-tracing software,

there are a number of open source libraries available
(e.g., [55], [56], [57]), as well as the ray-tracing tool
specifically proposed in [7], to evaluate the effect of
homogeneous dielectric lenses in dome antennas without
considering reflection or absorption losses. This paper
presents an extended but still simplified and efficient ray-
tracing tool to evaluate the radiation characteristics of
two-dimensional (2D) multilayer dielectric dome antennas,
taking into account reflection and absorption losses. The
simplified 2D model also allows us to investigate the
effect of matching layers to mitigate reflection losses. As
previously mentioned in [32], 2D models can give us a good
understanding of the performance of a three-dimensional
(3D) dome array antenna. In contrast to [32], the H-plane
radiation pattern of the dome array is computed here
using the straightforward Kirchhoff diffraction formula that
was already used in [54]. The numerical effectiveness and
accuracy of the radiation patterns computed with the reported
simplified method have been demonstrated and compared
with the COMSOL Multiphysics software for the 2D case
and with the CST Microwave Studio for the 3D case.
This tool can be used as a primary step for the design
of 3D lenses and domes for 5G/6G communication, as it
provides a good initial qualitative and quantitative insight
into the lens performance. The proposed method is especially
advantageous when different dome structures are needed
to adjust the radiating performance of an array antenna
to different use cases, as described in [34], thus meeting
the customer’s requirements in a timely manner, since the
array can be reused and only the dome design needs to be
modified.

II. RAY-TRACING MODEL
In this section, we discuss several aspects of the numeri-
cal implementation of the simplified ray-tracing technique
proposed to analyze dielectric dome antennas. Rather than
using some of the more comprehensive and rigorous
asymptotic methods already reported in the literature [27],
[39], [42], [43], [46], [51], the straightforward implemented
method has been inspired by the one reported in [54],
although it has been adapted to handle multilayer dielectric
2D lenses combined with an array. The ray-tracing approach
is based on three underlying theories: 1) geometrical optics
(GO), used to determine the trajectories of the rays,
2) conservation of ray tube power, applied to calculate
the amplitude distribution at the lens aperture, and 3) the
Kirchhoff diffraction formula, employed to obtain the far-
field pattern.
To test our ray-tracing approach, we used a dome reference

model from [7]. The geometry of the dome is shown in Fig. 1,
and is characterized by its dielectric constant, εr, with inner
and outer surfaces s1 and s2. The surfaces are rotationally
symmetric with respect to the vertical z axis and follow
conic shapes. In this work, the dielectric dome of εr = 2.5
is evaluated with an array of L = 975mm at 13 GHz.
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FIGURE 1. Dielectric dome antenna geometry and main parameters.

FIGURE 2. Examples of (a) direct ray tracing for linear phase array excitation and
(b) reverse ray tracing for calculating the phase over the array.

A. GEOMETRICAL OPTICS
GO uses a zero-wavelength approximation to model
the behavior of electromagnetic propagation in terms of
rays [58], [59]. The rays are defined as the orthogonal
trajectories to the wavefronts, which are the equiphase
surfaces of a wave. To trace the rays through dielectric
lenses, the Snell-Descartes law is employed. Following the
procedure reported in [7], two different approaches to ray
tracing are presented here, depending on where the starting
points of the rays are set. The first, referred to as direct
ray tracing, involves setting the starting points in the array.
This ray tracing is the initial step in obtaining the amplitude
distribution and the far-field radiation pattern. The second
implementation is reverse ray tracing, in which the starting
points are specified in the aperture plane. Reverse ray
tracing is used to obtain the optimum phase distribution
over the array to maximize directivity. For completeness,
this procedure is briefly outlined next.

1) DIRECT RAY TRACING

The rays are emitted from the array towards the aperture
plane, with a fixed angle of emergence, θi, as seen in
Fig. 2(a). This initial step considers the case of a linear
phased array excitation, meaning that all the rays have the
same incident angle, θi, and are parallel to each other at
the source. However, since the surfaces of the dome are not
parallel, the rays will be deflected in different directions,

FIGURE 3. Schematic of the k -th ray tube and variables involved in the amplitude
evaluation.

leading to a decrease in directivity. Consequently, an optimal
phase distribution is needed to maximize performance.

2) REVERSE RAY TRACING

Rays are sent out from the aperture plane towards the array
in order to maximize directivity. We assumed that the rays
in the outer part of the dome are parallel, so they reach
the surface where the array is located (at z = 0) with a
nonlinear phase distribution. The angle at which the rays
impinge on the dome [θo in Fig. 2(b)] is the same for all rays.
The phase distribution is obtained by adding the effective
distances traveled inside the different media for each ray [7]:

�a = −(d1k0 + d2kd + d3k0) (1)

where the distances d1,2,3 are shown in Fig. 1 for a specific
ray, and k0 and kd = k0

√
εr are the wavenumbers in free

space and in the lens material, respectively.

B. RAY TUBE POWER THEORY
Since the rays are not parallel, the power distribution at the
aperture is different from that at the source. Conservation
of power within the ray tubes is applied to account for this
effect [58]. Some details on the calculation of the amplitude
at the lens aperture were previously given in [54]. Following
the notation in Fig. 3, the amplitude can be expressed as

A′
k = Ak

√
dLk

dck cos θk
(2)

where A′
k is the electric field amplitude of the ray k on the

dome aperture wavefront, W ′. The terms Ak and dLk refer
to the amplitude and width of the ray tube on the source
wavefront, defined as W. The term dck refers to the length
of the arc in the dome aperture, and we define θk as the
angle between the local normal unit vector to the aperture n̂k
and the local Poynting unit vector ŝk. All the parameters
needed for the amplitude calculation are obtained from the
GO. Since the wavefront W ′ and the dome aperture can have
different curvatures, the width of the ray tube in the dome
aperture, dL′

k, is taken as dck cos θk.
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C. RADIATION PATTERN COMPUTATION
The far-field radiation pattern is evaluated using the
Kirchhoff diffraction formula [54], given by

E(θ) ∝
∑
k

A′
k
e−jk0(rk+σk)

rk

[
n̂k · ŝk + n̂k · r̂k

]
Tk dck (3)

where E(θ) is the total far-zone electric field at a given
observation angle θ . The dome aperture is treated as an
array of radiating dipoles, each with an amplitude A′

k. σk is
the effective path length of the k-th ray from the source
to the lens aperture (this quantity is defined later), rk is
the distance from the aperture to the observer position, r̂k
is the unit vector in the direction of the dome aperture to
the observer point. The term Tk is the Fresnel transmission
coefficient [60] that accounts for all reflections.

III. STUDY OF LOSSES
In dielectric dome antennas, absorption and reflection can
lead to losses. We have modified the ray-tracing approach
from [54] to evaluate these phenomena. Our approach
enables us to incorporate a dielectric material with a given
loss tangent and calculate the associated material losses.
Additionally, the forward and backward fields propagating
across different interfaces are related to the transfer matrix.
We use the matrix solution to calculate the components
of transmitted and reflected electromagnetic waves for a
multilayer dielectric structure in order to evaluate reflection
losses [60], [61].

A. ABSORPTION LOSSES
The dielectric loss tangent, tan δ, is a measure of the
electrical energy dissipated due to various physical processes,
such as dielectric relaxation, dielectric resonance, electrical
conduction, and nonlinear losses [62]. When the medium
is not ideal, absorption losses must be taken into account,
and the dielectric constant of the material becomes complex,
ε = ε′ − jε′′. Then, the wavenumber k = β − jα (β and α

are the phase and attenuation constants) associated with a
homogeneous medium can be written as

k = ω
√

μ0ε′(1 − j tan δ) = k0
√

εr(1 − j tan δ) (4)

with εr being the relative permittivity constant of the
medium, and tan δ the ratio between the real and imaginary
parts of ε (isotropic magnetic lossless/lossy materials can
easily be taken into account by changing μ0 by its corre-
sponding magnetic permeability). The complex permittivity
of each material in a layered dielectric dome leads to
different wavenumbers. This is taken into account when
the far field is evaluated using the Kirchhoff diffraction
formula (3). The total effective path of the k-th ray, which
can be complex if tan δi �= 0, is then given by the effective
path length

σk =
N∑
i=1

σ
(i)
k =

N∑
i=1

√
εr,i(1 − j tan δi)
i (5)

where the index i represents each medium of the N-layered
structure and 
i is the geometric distance traveled by the
ray within the i-th material.

B. REFLECTION LOSSES
When a traveling plane wave impinges on an interface
between two materials with different permittivities, both
reflection and refraction occur. However, when the medium
is layered, it is not enough to calculate the reflections at
each interface, as some of the energy will be trapped inside
one material as a result of internal reflections. According
to [61], [63], [64], the reflection and transmission losses
associated with each ray in a planar layered medium can
be determined by using propagation/matching matrices for
transverse fields. The losses due to multiple reflections can
then be calculated using the complex transmission coefficient
Tk in the Kirchhoff diffraction formula (3).

The analysis of transmission and reflection coefficients for
a multilayer planar dielectric medium can be accomplished
using the following approach outlined in [61], [63], [64]:[

E+
0
E−

0

]
=

{
N+1∏
i=1

1

Ti

[
e jϕi Rie−jϕi

Rie jϕi e−jϕi

]}[
E+
N+1
0

]

=
[
A11 A12
A21 A22

][
E+
N+1
0

]
(6)

where Ti and Ri are the Fresnel transmission and reflection
coefficients, respectively, at the i-th interface between the
(i− 1)-th and i-th layers. The phase shift associated with
each layer is given by ϕi = ki cos θiti, where ti is the
thickness of the layer and θi is the propagation angle with
respect to the normal of the interface (ϕN+1 = 0). The
total transmission coefficient for each ray is obtained after
computing the product of the matrices as Tk = 1/A11. The
above derivation assumes that all interfaces are planar and
parallel, so (6) must be adapted for our case study, where
the surfaces of the dielectric dome have a conical shape. To
do this, the geometry of the problem can be simplified by
breaking down all the surfaces that make up the dome into
small segments/facets.
The matrix solution requires three inputs: the thickness of

each layer, the relative permittivity of each layer, and the
angle of incidence. The configuration in Fig. 4(a) is used as
an approximate equivalent local model of the layered lens
when the surfaces are not parallel, for the particular case of
a three-layer dielectric slab. The normal of the first surface,
n̂A, is traced at the intersection point of the incoming ray
with this surface, a point that will be used as a reference.
Each time the ray intersects another interface, an auxiliary
line parallel to the first surface is traced [blue dashed lines
in Fig. 4(a)]. The “effective” thickness of each layer, t′i, is
taken as the distance between the parallel auxiliary lines,
thus creating a locally effective planar structure, acceptable
for the evaluation of the reflection losses associated with
each individual ray. The use of this equivalent planar model
to calculate the transmission coefficient Tt ignores any phase
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FIGURE 4. (a) Original locally non-planar structure and the equivalent thickness
used to evaluate reflections in the discretized dome. (b) Effective locally-planar model
that shows the phase compensation for the plane wave model.

shift of the ray due to its original non-planar nature. However,
in our approximate model, we must take into account a
phase-shift factor ξk for each ray. This requires moving the
reference from point A to the corresponding exit point of
the ray, point B in Fig. 4(b), which makes that

ξk = e−jk0t′T tan θk sin θk (7)

where the angle θk between the ray inside the lens and the
normal n̂A is determined by the Snell-Descartes law, which
states that θk = arcsin(sin θ0/nlens). The total equivalent
thickness t′T in the case of Fig. 4 is equal to the sum of t′1, t′2,
and t′3. The distance from the end-point of the ray to point A
(solid red line in Fig. 4) is obtained from t′T tan θk. Then the
term sin θk is added to the phase-shift factor ξk to move the
reference from point A to point B (dashed orange line). The
accuracy of the approximate equivalent local planar model
is demonstrated by the close match between the results of
our model and full-wave simulations, which is discussed in
more detail in the following sections.

IV. NUMERICAL RESULTS
The 2D dielectric dome array antenna was modeled using the
ray-tracing tool discussed in the previous section. The dome
shapes were divided into 30 segments, which was enough
to guarantee good convergence in this case. To validate the
precision and efficiency of our approach, we also simulated

FIGURE 5. Phase distributions in the array when a plane wave is arriving from θo of
0◦ , 20◦ , 40◦ , 60◦ and 80◦ .

the 2D profile of the lens with COMSOL at 13 GHz. The
dielectric lens was illuminated using an 84-element array of
dipoles with a length of 975 mm (see Fig. 1). Two lenses
were simulated: a three-layer dome with arbitrary refractive
indexes and high reflection losses and a dielectric dome with
matching layers. The reverse ray tracing is used to obtain
the phase excitation of the array when the lens is applied.
The phases are shown in Fig. 5 for the two lenses studied:
the lens with high reflections and the lens with matching
layers. However, the radiation patterns are computed with
direct ray tracing using the phase information obtained from
the reverse model (from Fig. 5).

A. DOME WITH HIGH REFLECTIONS
A conic-shaped dome with three layers of different refractive
indices is used to test the accuracy of the proposed ray-
tracing tool in assessing reflection losses. The refractive
indices of the layers are 3, 4, and 2.5, respectively, and the 2D
profile is shown in Figure 6(a). The thicknesses of the first
and third layers are t1 = 20mm and t3 = 30mm. The shape
of the lens is defined by four surfaces (s0, s1, s2, and s3) that
can be defined analytically or numerically, resulting in four
functions that are discretized. In this example, the surfaces
s0 and s1 that define the lower dielectric layer have the same
shape; similarly, s2 and s3 that bound the upper layer are
also parallel to each other. When the surfaces are discretized,
the problem can be locally viewed as two nonparallel but
planar surfaces, s1 and s2, with additional parallel lower and
upper parallel surfaces, s0 and s3, as illustrated in Fig. 4(a).

Fig. 6(b) shows the radiation patterns for 0◦, 20◦, 40◦, 60◦
and 80◦, comparing the results obtained with our algorithm
and the COMSOL software. The phase distribution of the
phased array is obtained first from reverse ray tracing, as
discussed in Section II-A. The peak magnitude of the electric
field normalized to that in broadside without the lens is
illustrated in Fig. 6(c). The ray-tracing results are compared
to those from COMSOL simulations, as well as to the scan
losses of the isolated array (gray line). The comparison yields
good agreement across the entire scanning range, although
some minor discrepancies are observed for large angles,
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FIGURE 6. (a) 2D profile, (b) radiation patterns, and (c) peak magnitude vs scanning
angle for a conic-shaped dielectric lens with high reflections. Ray-tracing results are
compared with COMSOL.

which are mainly attributed to the drawbacks of COMSOL
when simulating such extreme angles. A simulation of
the isolated array without the lens was also conducted
using COMSOL and was compared to the ray-tracing
algorithm, which revealed similar discrepancies at these large
angles.

B. DOME WITH MATCHING LAYERS
Here we study a dielectric dome of εr = 2.5 defined
by two surfaces s1 and s2 when this dome is bounded
by lower and upper matching layers. To reduce the level
of reflections, these matching layers have a thickness of
a quarter wavelength and a relative permittivity εML =√

1 · 2.5 = 1.58. The shapes of the four surfaces that define
this lens are exactly the same as in the previous example,
as shown in Fig. 7(a).

FIGURE 7. (a) 2D profile, (b) radiation patterns, and (c) peak magnitude vs scanning
angle for a conic-shaped dielectric lens with matching layers. Ray-tracing results are
compared with COMSOL.

In Fig. 7(b), the radiation patterns computed with
COMSOL and the ray-tracing algorithm are presented with
the phase distribution of the phased array obtained first from
reverse ray tracing. Radiation patterns are computed for five
cases, each with a different pointing direction that goes
from 0◦ to 80◦. The peak magnitude of the electric field
normalized to that in broadside without the lens is illustrated
in Fig. 7(c). Again, good agreement is achieved along almost
the entire scanning range between the ray-tracing (RT) and
COMSOL data. Similarly to the previous example, small
discrepancies are found for very large pointing angles. This
analysis clearly shows that matching layers are required to
reduce losses.
Our model has also been tested using CST Studio

Suite 2022, a three-dimensional (3D) full-wave simulator.
Two lenses were implemented in CST at 28 GHz and
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FIGURE 8. (a) Linear phased array,(b) cylindrical lens, (c) radiation patterns
considering CST and 2D ray-tracing, and (d) peak magnitude vs scanning angle for
conic-shaped dielectric lens with matching layers. The results are normalized to
broadside without the lens.

compared to the proposed ray-tracing tool. Figure 8(a) shows
a one-dimensional array of 24 waveguides that illuminates
a cylindrical lens along the y-axis. The dimensions of the
array and the 2D profile of the lens were taken from [34].
The geometry of the 3D lens is depicted in Fig. 8(b), and
the radiation patterns for different steering directions in
the E-plane are shown in Fig. 8(c). To assess the effect
of reflection losses, the results were normalized to the
broadside without the lens. For the second validation, a
two-dimensional array of 24x8 waveguides was employed, as
depicted in Fig. 9(a). The second lens had the same profile
as the first, but was rotationally symmetric with respect to
the z-axis, as illustrated in Fig. 9(b). The radiation patterns

FIGURE 9. (a) 2D Phased array model included in the CST simulation. (b) Spherical
lens, (c) radiation patterns normalized to broadside with the lens for a rotationally
symmetric conic-shaped dielectric lens.

of the lens normalized to broadside are shown in Fig. 9(c).
The radiation patterns show the Ex-field contribution in the
E-plane, which corresponds to the co-polarization. In this
simulation, although it is not illustrated here, the cross-
polarization is negligible. The results obtained from the 2D
ray-tracing model and the CST tool for both the cylindrical
and spherical lenses were in very good agreement. This
shows that the proposed method can be used as a first design
step for 3D dome antennas, as it provides a reliable initial
understanding of the lens performance, both qualitatively and
quantitatively.
As a final note, the CPU time employed by the ray-tracing

tool implemented in these two examples is about 150 times
less than that required by COMSOL, 240 times less than the
required in CST for the cylindrical lens, and 740 times less
for the spherical lens in CST.

V. CONCLUSION
An efficient ray-tracing tool has been developed to evaluate
the far-field radiation pattern of 2D multilayer dielec-
tric lenses. Radiated fields computed with this approach
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have been successfully validated by comparison with the
COMSOL commercial simulator, reducing the computational
time by a factor of approximately 150. Losses can be
determined even when extra layers are added to the dielectric
dome. The imaginary part of the permittivity of the layers is
used to take into account absorption losses. Reflection losses
have been accurately simulated by utilizing an equivalent
local planar model and the propagation/matching matrices
for the transverse fields. The implementation of the ray-
tracing method has been proven to be a powerful and
precise tool for the design and analysis of multilayer
dielectric dome antennas. The 2D ray-tracing model has also
been verified with a 3D full-wave commercial simulator,
CST Studio Suite 2022, demonstrating its suitability as an
initial design tool for understanding how a 3D lens shape
would perform when combined with an array. This has a
significant industrial impact, as different lens geometries can
be modeled quickly and accurately, saving computational
resources and engineering efforts. The agreement between
our simplified 2D model and CST is remarkable. However, to
make the ray-tracing approach suitable for all dome antenna
applications, our next research objective is to expand the
ray-tracing method to encompass 3D structures. Moreover,
the proposed methodology has shown significant efficiency
and speed, making it a valuable complement to advanced
synthesis procedures. Exploring synthesis methods for dome
antenna design will be considered for future research.
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