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ABSTRACT Parkinson’s disease is a progressive neurodegenerative disorder with significant fluctuations
throughout the day, making accurate drug treatment difficult. A home-based long-term monitoring system
is essential to address this challenge. Contemporary approaches to activity monitoring have focused on
wearable devices and computer vision systems. Wearable devices are often uncomfortable and not ideal
for long-term monitoring, while computer vision is plagued with significant privacy concerns. In this
context, Wi-Fi sensing presents itself as an advantageous alternative due to its non-invasive and privacy-
preserving properties. However, current human activity recognition methodologies lack the specificity to
identify disease-related symptoms within everyday activities. Furthermore, the efficiency of human activity
recognition methods in processing continuous data streams in real time is a crucial aspect that needs
thorough assessment. This study proposes a novel approach for human activity recognition using Wi-Fi
signals. Traditional methods for signal processing are avoided by converting the ratio of channel state
information from antenna pairs into images. These images are then processed using a convolutional neural
network to detect movements related to diseases in a large dataset. The experiments utilize a laptop PC
with Intel Wi-Fi Link 5300 and a receiver equipped with three external 12 dB omnidirectional antennas in
the 2.4 GHz band and cover various daily activities. The proposed method has demonstrated remarkable
accuracy, with an average recognition rate of 93.8% in validation. It also showcased a consistent accuracy
range of 91.9% to 95.2% in generalization tests, proving its effectiveness in different environments, with
various individuals, and under assorted Wi-Fi configurations. A performance test of our method revealed
that it processes raw CSI to recognition results in just 0.65 seconds per second of data, highlighting its
potential for real-time applications.

INDEX TERMS Wireless sensing network, channel state information, human activity recognition,
Parkinson’s disease, health monitoring.

I. INTRODUCTION

PARKINSON’S disease (PD) affects approximately 1%

of people aged 60 years or older and 1%-3% of
people aged over 80 year [1]. Currently, more than seven
million people worldwide suffer from PD, and its prevalence
has doubled in the past 25 years [2]. The disease is
typically characterized by a combination of motor features,
such as resting tremor, bradykinesia, abnormal gait, and

non-motor symptoms, which significantly affect the lives of
patients.

There is currently no cure for Parkinson’s disease (PD).
The disease can only be managed with drugs such as
levodopa, monoamine oxidase inhibitors, and dopamine
receptor agonists to control changes in the condition.
However, the side effects of these drugs, such as dyskinesia,
confusion, and hallucinations [3], can cause more suffering
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than the disease itself. Therefore, personalized medication
tailored to the patient’s condition and home monitoring
systems that help physicians monitor patients outside clinics
are particularly important.

Wearable devices and computer vision are two widely
accepted health monitoring methods used to assess a patient’s
health status. Wearable devices such as gyroscopes and
accelerometers have become a mainstream research direction
owing to their low cost and ease of use [4]. Nevertheless,
wearing these sensors can cause inconvenience and dis-
comfort, limiting the patient’s mobility [5]. Computer-vision
approaches analyze recorded videos of patients and quan-
tify their motor functions to evaluate disease progression.
However, filming the patient may invade the privacy of
the patient, and the method is limited by environmental
conditions, such as lighting and space.

Wireless sensing technology enables the contactless detec-
tion of human activities in a person’s natural state without
any equipment. This method captures signal data containing
no personally identifiable information, thereby preserving
privacy. Recent studies have developed sensing devices based
on radio frequencies (RF) to locate and recognize indoor
human movements [6]. In another study, an RF device was
built to track the gait of patients with PD at home [7].

Wi-Fi-based sensing has become a popular research topic.
The channel state information (CSI) of Wi-Fi contains fine-
grained information that reflects the occurrence of activities
and/or environmental changes. This technology can be
implemented using commodity Wi-Fi devices, making it a
low-cost, easy-to-deploy, and widely applicable solution for
health monitoring.

Wi-Fi CSI detects movement in space by analyzing
the electromagnetic waves emitted by Wi-Fi devices. In
recent years, the use of CSI for human activity recognition
(HAR) has gained increasing attention because of its ability
to provide information on multiple channels and record
the amplitude and phase information for each orthogonal
frequency-division multiplexing (OFDM) subcarrier, thereby
providing a wealth of features for HAR.

Recent studies developed HAR methods based on Wi-Fi
CSI to identify violent activities [8], daily activities [9], and
gestures [10]. These methods rely on processing the CSI
amplitude or phase through denoising, filtering, and/or time-
frequency transformation and using deep learning techniques
to extract features from the CSI for activity recognition.
However, some of these methods face the impact of changing
spatial environments and device placements, which in turn
affect the accuracy of the recognition model, whereas others
lack a complete evaluation of the versatility of the model.
Furthermore, data processing procedures, such as filtering
and time-frequency transformation, often require significant
computational time. Therefore, developing a deep learning
model with generalizability for real-time HAR remains
challenging.

Inspired by these studies, we propose a HAR system
based on Wi-Fi CSI to enable the detection of disease-related

movements of patients with PD for long-term health
monitoring. The proposed HAR system combines the CSI
ratio model [11] with a convolutional neural network (CNN)
to distinguish between daily activities and disease-related
movements. We use the CSI ratio for its advantage of
eliminating the influence of static paths and requiring less
computation than traditional filters. Moreover, the CSI ratio
sequence is converted to images, which are two-dimensional
arrays of data with time on one dimension and subcarriers
on the other, making them suitable for a 2D-CNN to learn
human activity features.

The main contributions of this paper can be summarized

as follows.

1) We proposed a novel HAR system with a data pro-
cessing mechanism and a highly precise deep learning
model that can accurately identify human activities,
particularly PD-related movements, from continuous
CSI streams.

2) We took advantage of the CSI ratio model that
automatically cancels the effect of environmental
noise, which enhanced the adaptability of the proposed
HAR system to different usage conditions. The need
for a filtering process to denoise the data was also
eliminated, leading to excellent computing efficiency
for real-time health monitoring applications.

3) We conducted comprehensive performance evaluations
of the proposed HAR system, including analysis
of the recognition accuracy and performance when
used in long-term scenarios and various generalization
tests in terms of the environment, person, and Wi-Fi
arrangement.

Il. RELATED WORKS

The development and popularity of Wi-Fi devices have led
to increased attention being paid to HAR systems based on
Wi-Fi signals. In early studies, most researchers used the
Received Signal Strength Indicator (RSSI) of Wi-Fi signals to
identify human activity. In 2006, Woyach et al. [12] conducted
experiments using Crossbow’s MICA2 and MICAz (equipped
with an IEEE 802.15.4-compliant 2.4GHz Chipcon CC2420
radio) that sent a packet to each other every 100 ms at a
transmit power of —10 dBm and found that the human motion
caused a series of attenuation and multipath effects in the
RSSI. In 2007, Youssef et al. [13] further confirmed that RSSI
data can detect the presence of human bodies using Wi-Fi
2.4 GHz signals with simple feature calculation methods, such
as moving averages and variances. Moreover, they proved that
the position of a human body can be tracked using the RSSI
value. However, owing to the attenuation and multipath effects
of signals, the measurement of RSSI is unstable, creating
difficulties in finer-grained activity recognition.

With the development of CSI extraction tools for commer-
cial network interface controllers (e.g., Intel 5300 [7] and
Atheros 9580 [14]), the performance of HAR technologies
has significantly improved by grafting from RSSI- to CSI-
based methods [15].
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Existing CSI-based HAR methods can be divided into
model- and pattern-based methods. Model-based approaches
interpret the received signals using mathematical models to
show the relationship between the signals and real movements.
This type of approach is based on mathematical theories and,
therefore, has better adaptability to different data collection
environments than pattern-based approaches. The models
proposed in current studies include the Fresnel zone, CSI
speed, and models performing calculations based on the
multiple signal classification (MUSIC) algorithm, such as the
angle of arrival (AoA) and time of flight (ToF) [16], [17].

The focus of previous studies on model-based approaches
for HAR was scarce. Few applications have focused
on human localization or the detection of individual
movements [11], [18], [19], such as breathing detection and
finger tracking. Li et al. [19] developed an indoor localization
method based on the MUSIC algorithm, which was tested in
the 5 GHz frequency band employing an unutilized 40 MHz
channel. Zeng et al. [11] proposed a method based on the CSI
ratio model to enable wall-penetrating detection of breathing
and significantly expanded the detection range of CSI. The
research utilized an Intel 5300 Wi-Fi card, with the central
frequency set at 5.24 GHz and a 20 MHz bandwidth, to
gather a total of 56 sub-carriers of CSI data. This data was
collected from the communication between a transmitter with
one antenna and a receiver with two antennas. Using similar
Wi-Fi specifications (5.24 GHz frequency band, 20 MHz
bandwidth, 15 dBm transmitting power, and monitor mode),
Wau et al. [18] used the CSI ratio to develop a sub-wavelength
level tracking system for finger drawing.

However, some limitations exist in the model-based human
sensing methods using Wi-Fi CSI. First, although the model-
based methods are robust to environmental changes, they
cannot always achieve significant performance. For example,
the model-based methods may not perform as well as pattern-
based methods for some coarse-grained applications. Second,
it is challenging to establish mathematical relationships
between CSI changes and some complex human activities.
Third, the model-based methods may not work well in non-
line-of-sight scenarios due to the effect of the wall or other
occlusion on the signal propagation.

Pattern-based methods often employ machine and deep
learning to extract features from CSI. Although this type of
approach may not be as adaptable to various situations as
model-based methods, it often achieves excellent results for
specific HAR tasks and recognizes a wide range of human
activity types. Wang et al. [20] used the Intel 5300 tool
and commercial Wi-Fi devices (IEEE 802.11n AP mode
at 2.4GHz) and machine learning to recognize different
mouth motions and achieved a detection accuracy of 91%
within six words. Bu et al. [10] used transfer learning
techniques for gesture recognition and converted CSI into
image matrices to transform gesture recognition problems
into image classification problems. Liu et al. [8] successfully
detected violent actions by converting filtered CSI into
grayscale images.

Most research on human activity recognition uses pattern-
based methods to automatically learn features from a
denoised CSI signal, thereby simplifying the feature explo-
ration process. However, the influence of environmental
noise can be too large to be eliminated, leading to a
significant decrease in HAR accuracy, particularly when an
HAR method is used in a new environment.

To date, most studies have not considered HAR systems in
terms of real-time or continuous detection. First, the current
methods typically process CSI data with short-time Fourier
transform (STFT) or discrete wavelet transform (DWT)
and train the model with a time-frequency map [21], [22].
Although such data processing methods can achieve a high
degree of accuracy in recognizing motion, they require a
large computation time, making it difficult to achieve real-
time recognition. Second, most current motion detection
technologies can only detect motion for a fixed period of
time rather than continuously detecting the motion and time
of occurrence [23]. This makes it difficult to apply these
technologies in health monitoring applications.

This study proposes a new HAR system that combines
both model- and pattern-based approaches. The CSI ratio
model [11] was used to cancel the static path of the signal
propagation from the raw CSI data, thereby avoiding environ-
mental noise and increasing the adaptability of the method
to environmental changes. By converting the CSI ratio into
images (CSI images), the pattern-based approach was used to
implement a CNN-based model. The proposed HAR system
was designed to identify PD-related movements from daily
activities in a long-term recorded CSI sequence. Segments
of the identified movements could be further quantified to
understand the variation of the disease conditions on a daily
basis, thereby enabling continuous health monitoring.

lll. PROPOSED METHODS

A. SYSTEM ARCHITECTURE

The architecture of the proposed method is shown in
Figure 1. The system consists of five processes: (1) CSI ratio
measurement, which collects the CSI phase and amplitude
values to calculate the CSI ratios; (2) CSI image conversion,
which converts a sequence of CSI ratios into a grayscale
image and applies contrast enhancement; (3) activity recog-
nition, which uses the sliding window technique to produce
fixed-size images from the input CSI image, classify them via
a CNN model, and produces data segments of each identify
activities based on the predicted probability distributions
(note that the CNN model is based on the VGG19 network
and is trained using CSI images). These data segments of the
target categories, such as walking and tremor, are ready for
motion analysis. Detailed information regarding each process
is provided in the following subsections.

B. CSI RATIO MEASUREMENT

The CSI is calculated based on the electromagnetic wave
characteristics, which consider a series of influences, such as
reflection, scattering, and attenuation of the wireless signal
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FIGURE 1. The system architecture of the proposed HAR system.

from the transmitter to the receiver. The CSI matrix can be
expressed as:
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The matrix H' represents the CSI at time t, where i

and k correspond to the numbers of receiving antennas and

subcarriers, respectively. The element /!, in the matrix can

be expressed as follows:

Ht — afkejsi"(gftk) (2)

The variables a/, and 6}, represent the calculated amplitude
and phase, respectively.

Under ideal conditions, the static path components of CSI
are composed of a combination of line-of-sight (LoS) and
other static object reflections (denoted as hg), whereas the
dynamic components are generated by reflections caused by
human body movement (denoted as hy) [11], as expressed
in Eq. (3), with the matrix form given in Eq. (4).

h?k = hi‘,'k + hii;k 3)
H = H +H, @)

The dynamic path h; can be further repre§er1[it(’e>d by the
change in amplitude a}, and the phase shift e 7T caused
by the target displacement d’. The equation for this is shown
in (5), whereas (6) presents the same formula in matrix form:

dl
hy = héik + aﬁke—JZHT (5)
dt
H =H + A’e—Jan (6)

Under realistic conditions, the phase Gl?k in the channel
state information is affected by the carrier frequency offset
(CFO) and sampling frequency offset (SFO), owing to the
inconsistent carrier frequency and sampling rate between
the transmitter and receiver. The attenuation and phase shift

t

caused by these two offsets can be represented by A} ..

X

— 7 1 . .
exp ﬁvfﬁ‘f’; thus, the channel state information affected by
the offset can be written as
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By calculating the CSI ratio between the two antennas
(represented as Hﬁe [11], we can eliminate the effects of the
two offsets, as follows:
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C. CSIIMAGE CONVERSION

We used the phase of the CSI ratio to create CSI images [24],
which ensured that the data fell between =+, so that the
small motion feature would not be lost in the process
of conversion to CSI images. The CSI ratio phase was
calculated for two arbitrary antennas from the three antennas
on the receiver, resulting in three data sequences: Rj, Ry,
and Rj. Each R; contains CSI phase measurements over time
from 30 subcarriers. The root mean square (RMS) values of
the three R; were calculated (Eq. (9)) and transformed to
a range between 0 and 255 (Eq. (10)), which can later be
related to the pixel values of the greyscale image. Finally,
we obtained the matrix M(s, f), where s and ¢ represent the
subcarrier number and time, respectively. The formulae are
as follows:

|23 R2(s,t
RMS(s, 1) = l=1+(s)

{ftltezZNl<t<Ll{s|lseZnNl <s <30}

(3)
M(s, t) = RMS(s, 1) —255
= X
. . max(RMS)
{ftlteZNl<t<L}{s|seZnNl<s <30}
)

The data sequence M(s, r) was used to generate a CSI
image. However, random packet loss is inevitable during
network communication and should be considered. We
developed an algorithm to detect occurrences of packet loss
and label them properly (Fig. 2). To begin, the algorithm
reads a 1 s segment of M (which is approximately 250 data
points when the network condition is normal) and checks its
data length. If the data length is less than 56, the data segment
of M is considered packet loss, and an image matrix with
size of 224 x 112 pixels with values of 255 is generated (i.e.,
an all-black image). Otherwise, the values in the segment
were transformed into pixels of a grayscale image, where
the Y-dimension was enlarged from 30 (subcarriers) to 224
pixels, and the X-dimension was enlarged or reduced to 112
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FIGURE 2. The process to convert a full-length M(s, t) to a CSI Image.

pixels through bilinear interpolation. The resulting image
matrix was enhanced using the CLAHE algorithm [25].
Therefore, the final image matrix resulted from the 1 s
segment of M is with size of 224 x 112 pixels that contain
all-black values or meaningful content and appended to the
output matrix O (empty at the beginning). The threshold
of data length 56 for checking the packet loss ensures the
converted image of 1 s has at least a half second of data.
This process is repeated throughout the sequence of M.

D. CNN MODEL TRAINING

While training deep learning models in the medical field,
researchers frequently face the challenge of insufficient data.
Therefore, we applied transfer learning techniques in the
training process and selected VGG [26] as the base model
to extract features from the collected CSI images. VGG
is configured with multiple convolution layers of uniform
size 3 x 3, a max-pooling layer of size 2 x 2, a flattened
layer, and three fully connected layers, which not only
improve the network depth but also make model training
a time-consuming task. To address this issue, we replaced
the flattened layer with global average pooling to flatten
the output from the convolution layer while reducing the
number of trainable parameters. Furthermore, we reduced the
total number of parameters of the fully connected layers and
introduced dropout layers to prevent overfitting. The model
constructed using VGGI19 is shown in detail in Fig. 3.

E. ACTIVITY RECOGNITION FROM A LONG-TERM
RECORDED CSI IMAGE

The trained CNN model requires an input CSI image with
a specified size of 224 x 224 pixels. We implemented an
algorithm to produce a sequence of images of the required
size by shifting a sliding window (224 x 224 pixels) over
the time length (/) of a long-term recorded CSI image, which
had a size of 224 x 112[. At each step, the sliding window
was shifted forward by 56 pixels (equal to 0.5 s) to capture
an image, and the CNN model read the image and output
a probability distribution over the predefined categories of
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FIGURE 3. The VGG19-based CNN model.
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FIGURE 4. The process of recognizing human activities in a long-term recorded CSI
image using the trained CNN model.

activities. Finally, the probability distribution was generated
over all the time steps and filtered using a Hanning window
(window length = 9), as shown in Fig. 4. The most likely
activity at each timestep was selected.

IV. EXPERIMENTS

A. DATA COLLECTION

The Linux 802.11n CSI Tool [27] was used to collect CSI
data for all experiments in this study. The CSI Tool was set to
station (STA) mode and run on a DELL P40G i8 laptop with
an Intel 5300 wireless network interface controller connected
to three external 12 dB omnidirectional antennas as the
receiver (Rx). The Rx was connected to a D-Link DIR-853
router as the transmitter (Tx). For data communication, a
2.4 GHz band was used, and the CSI values were measured
on ping packets sent from the Tx to the Rx with a 200 Hz
ping rate and 250 Hz packet sampling rate.

We aimed to identify PD-related motor features during
daily activities. The following four main categories of
activities were included: walking (W), tremor (T), body
movements (BM), and static postures (SP). The subjects
were asked to walk (1) naturally at a slow or fast pace (1—
2 steps/min). For tremor (2), the subject mimicked two key
features of the hand rest tremor: a frequency of 3—7 Hz and
an amplitude of 5-10 cm [28]. Body movements included
head nodding (3), hand shaking (4), scratching (5), and leg
kicking (6), which involved movements of a single body
part and were designed to produce signal responses similar
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TABLE 1. Physical information of the subjects in the training dataset.

Subject No. Age  Height (cm)  Weight (kg)
1 23 178 80
2 24 169 52
3 25 181 90

to tremor and walking, respectively. For static postures,
sitting (7) and standing (8) postures were chosen. Among
the four categories, walking and tremor were the targets
to be recognized, whereas the others were either common
daily activities or specifically selected to challenge model
training and to make the model more applicable to real-use
conditions.

We conducted the experiments in a university discussion
room (referred to as room T), which was 6.2 m long and
4.2 m wide, as shown in Fig. 5. Room T had solid cement
walls on all sides and one side had four windows and a door.
During the experiments, tables and chairs were arranged
against the walls, and the door and windows were closed.

Three healthy subjects aged 22-25 years were recruited
to implement the experiments for collecting training data.
Their physical data are presented in Table 1.

While the walking activity allowed a subject to move
arbitrarily in the room, the activities in the other three
categories were performed at one of six locations, as
indicated by the yellow circles. At each location, the subjects
were asked to perform each activity twice for 30 s. Therefore,
the length of the data collected for training was:

3(sub) x 6(loc) x 8(act) x 2(rep) x 30(s) = 8640(s)

B. CNN MODEL TRAINING

The collected CSI data sequences with a total length of
8,640 s were converted into CSI images, producing 3,054,
3,074, 3,048, and 2,997 labeled images (with a size of
224 x 224 pixels, representing an activity of 2 s) of
body movements, static postures, tremor, and walking,
respectively. The data were divided into training, testing, and
validation sets in a ratio of 6:2:2 to train the CNN model.
Table 2 lists the hyperparameters used during the training
process.

TABLE 2. Hyperparameters for training the CNN model.

Hyperparameters Setting
Optimization:
Optimizer SGD
Learning rate 5e — 4
Decay le—6
Momentum 0.9
Training:
Batch size 18
Epoch 1000
Early stopping patience 20

Early stopping monitor  Validation accuracy

Loss function Cross-Entropy

C. HUMAN ACTIVITY SEGMENTATION

The recognition performance of our HAR system was tested
using 50 s CSI sequences, which were collected by additional
experiments in Room T with the same Wi-Fi arrangement
(Fig. 5). In each experiment, subject 1 (Table 1) performed
five 10 s activities in the following order: walking arbitrarily
in the room (walking), sitting in the nearest chair (static
posture), performing hand rest tremor (tremor), sitting quietly
in the same chair (static posture), and performing a random
body movement from the four predefined activities (body
movement).

All experiments were filmed simultaneously, and the
recorded footage was manually examined to label the type
of activity at intervals of 0.5 s. For a CSI sequence, we
compared the activity type of each 0.5 s interval classified
by our HAR system with the labeled data and added 0.5 s to
the error if the classified type was incorrect. Therefore, each
CSI sequence obtained an accumulated error (E;), and the
accuracy (ACC) was calculated using Eq. (11) and Eqn. 12,
where E;otal is the sum of E; from all 10 CSI sequences, and
T;otal is the total time of all 10 CSI sequences. Note that the
time length of a CSI sequence recorded for an experiment
would slightly exceed 50 s owing to some buffer time at the
beginning and end of the experiment. The exact duration of
each experiment is presented in the results section.

Eprat = T2 E; (10)
E

ACC = | — Lol (11)
Ttoml

D. GENERALIZATION ASSESSMENT

This section investigates the generalization of the proposed
HAR system when the usage conditions differ from those
in the training environment. The capability of the system to
accurately classify activities for new environmental layouts,
human subjects, and Wi-Fi arrangements was assessed. For
each assessment, ten 50 s CSI sequences were collected
using the same scenario described in Section IV-C. A
description of each assessment is provided in the following
subsections.
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TABLE 3. Physical information of the subjects in the generalization test.

Subject Age  Height (cm)  Weight (kg)
4 23 178 73
5 23 165 52
6 24 180 70
7 22 170 93
8 23 169 60

1) IMPACT OF ENVIRONMENTAL LAYOUT

Another discussion room (room V) with regularly arranged
furniture items was selected to increase the complexity of
the environment, as shown in Fig. 6. Room V is a longer
space than room T and has a larger number of static objects
inside it to create more complex signal propagation paths.
The test subject was subject 1 (Table 1), and the transmitter
and receivers were placed at the four corners, which were
the settings used for the training data.

2) PERSON-GENERALIZATION

For this evaluation, we included five new subjects who
participated in the data collection. Their detailed physical
information is presented in Table 3. Using the scenario
described in Section IV-C, two 50 s CSI sequences were
collected for each participant in room T, resulting in a dataset
with ten 50 s CSI sequences.

3) WI-FI ARRANGEMENT

In this section, we test the adaptability of the HAR system
to two additional Wi-Fi arrangements (Fig. 7). In Room T,
we moved the positions of the Tx and Rx from the four
corners to (a) all three Rx antennas placed at a single point
and (b) three Rx antennas placed along one side of the room,
whereas the Tx was placed on the opposite side for both
setups. Ten 50 s CSI sequences were collected for each setup
on subject 1.

E. LONG-TERM TESTING

To test the stability and efficiency of our HAR system for
continuous monitoring applications, we designed a 30-minute
action script for subject 1 to perform in Room T, where
all tables and chairs were arranged like a normal discussion
room (Fig. 8). The script contained a sequence of activities
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FIGURE 7. Two new Wi-Fi arrangements used in the generalization test: linear (left)
and single-point arrangements (right).
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FIGURE 8. The experimental setup for the long-term test in room T. The circle S
indicates the start location of the test, while circles 1-15 represent the sequences of
activities to perform, as listed in the action script (Table 4).

and instructions on where and what activities should be
performed, as shown in Figure 8. There were 15 sessions of
2 min each in the 30-minute experiment. The subject was
reminded at the beginning of each session by a timer to
perform the next activity in sequence for 5-10 s and return
to a stationary state (standing, sitting, or leaving the room).
Fifteen sessions of activities were conducted, including three
of tremors, five of walking, six of body movements, and
one in which the subject left the room, leaving no person.
The entire experiment was filmed and examined manually
to apply accurate timestamps for the activities as ground
truth, which were used to evaluate the accuracy of the HAR
system. The computational performance of the system was
also evaluated.

V. PERFORMANCE EVALUATION

A. HUMAN ACTIVITY SEGMENTATION

Compared with the labeled data from the recorded footage,
the errors in the 10 experiments ranged from 1 to 6 s over
a duration of 53-55 s, resulting in an ACC of 93.82%.
The largest proportion of errors was attributed to walking
activities, followed by static postures, tremors, and body
movements. The comprehensive results are presented in
Table 5.

B. GENERALIZATION

1) IMPACT OF ENVIRONMENTAL LAYOUT

The proposed HAR system achieved an average ACC of
95.19% when segmenting the activities performed in 10
experiments in Room V, which slightly outperformed the
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TABLE 4. The 30-minute action script for the long-term test. Each entry specifies a
dynamic activity to perform for 5-10 s and a static posture to finish with. Activities 1,
10, and 14 require the subject to walk back and forth in the room, while activities 5 and
6 ask the subject to walk out of the room and return back in. For each walking activity,
a location number is given to instruct where to stop.

Seq Activity Finished with
1 walking sitting at 2
2 nodding sitting
3 tremor sitting
4 scratching sitting
5 walking out standing at 5
6 walking in standing at 6
7 kicking sitting at 8
8 hand shaking sitting
9 tremor sitting
10 walking sitting at 11
11 tremor sitting
12 nodding sitting
13 scratching sitting
14 walking sitting at 15
15 sitting end

TABLE 5. The errors (s) of the proposed HAR system in segmenting the CSI
sequences into the four categories of human activities and overall accuracy. SP: static
posture, BM: body movement, T: tremor, W: walking.

No. SP BM T W  Ei,tq Duration ACC
1 2 0 0 2 4 55 92.73%
2 1.5 0 0 0 1.5 55 97.27%
3 0 0 0 75 7.5 53 85.85%
4 0 0 0 1 55 98.18%
5 1.5 0 0 25 4 55 92.73%
6 0 0 0 15 1.5 55 97.27%
7 0 0 05 1.5 55 97.27%
8 1.5 0 0 1.5 53 97.17%
9 0 1 5 53 90.57%
10 2 0 3 1 53 88.68%

results obtained in Room T (93.82%). We conducted a t-test
on two data series, E; of this experiment (at location V) and
the E; of the human-activity segmentation experiment (at
location T). The null hypothesis was that the difference
between these two environments would not affect the
outcomes. The t-test obtained a p-value of 0.457 (< 0.05),
indicating that the performance of our HAR system was not
affected by changes in the environment.

2) PERSON-GENERALIZATION

The 10 experiments of 50 s each conducted with the five
new human subjects had an average ACC of 91.92%, which
was 1.9% lower than the validation result (93.82%) tested
with the original three subjects (Section IV-A). The errors in
the 10 experiments ranged from 2.5 to 7.5 s over durations
ranging from 53 to 55 s, as shown in Table 7. However, the
largest error was attributed to the segmentation of walking
activities.

TABLE 6. The errors (s) of the proposed HAR system tested in Room V by
segmenting the CSI sequences into the four categories of human activities and overall
accuracy. SP: static posture, BM: body movement, T: tremor, W: walking.

No. SP  BM T w Fiotqr  Duration ACC
1 2 0 0 2 4 55 92.73%
2 L5 0 0 0 1.5 55 97.27%
3 0 0 0 7.5 7.5 53 85.85%
4 1 0 0 0 1 55 98.18%
5 1.5 0 0 2.5 4 55 92.73%
6 0 0 0 1.5 1.5 55 97.27%
7 1 0 0 0.5 1.5 55 97.27%
8 1.5 0 0 1.5 53 97.17%
9 2 0 1 2 5 53 90.57%
10 2 0 3 1 6 53 88.68%

Average 06 03 06 1.05 2.55 53 95.19%

TABLE 7. The overall accuracy and errors (s) of the proposed HAR system tested
with five new subjects by seg 1ting the CSI sequences into the four categories of
human activities. SP: static posture, BM: body movement, T: tremor, W: walking.

Sub Exp SP BM T W Eiyq Dur ACC
4 1 0 0 0 0 0 55 100%
2 1.5 0 0 6 7.5 53 85.85%
1 4 0 0 0 4 53 92.45%
5 2 0 0 0 25 2.5 53 95.28%
1 2 0 0 2 4 53 92.45%
6 2 4 0 0 25 6.5 53 87.74%
7 1 0 0 0 45 4.5 53 91.51%
2 0 0 0 55 5.5 53 89.62%
1 3.5 0 0 15 5 53 90.57%
8 2 0 0 0 35 3.5 53 93.40%
Average - 1.5 0 0 28 4.3 532 91.92%

3) IMPACT OF WI-FI ARRANGEMENT

The experiments conducted using two unseen Wi-Fi arrange-
ments, single-point and linear placement, produced average
segmentation accuracies of 94.25% and 94.12%, respectively,
as shown in Fig. 9. The differences between the three Wi-Fi
arrangements tested in this study were within 0.5%. We also
performed t-tests hypothesizing that there was no difference
between the datasets obtained from the new and original
Wi-Fi arrangements. The results showed that the p-value
for the difference between the original (four-corner) and
linear placements was 0.871, and the difference between
the original and single-point placements was 0.757. This
indicates that the Wi-Fi arrangement had an insignificant
influence on segmentation accuracy when using the proposed
HAR system.

C. LONG-TERM TESTING
The accuracy of segmenting the 30 min CSI data in the long-
term test achieved an average ACC of 94.74%, demonstrating
an outcome similar to that obtained in the 50 s experiments
conducted earlier in this study. Detailed information is
presented in Table 8.

In terms of computing efficiency, the processing time on
a computer with a CPU configuration of Intel i7-4790 and
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FIGURE 9. The activity segmentation accuracies of the proposed HAR system
tested with different Wi-Fi arrangements.

TABLE 8. The activity segmentation accuracies of the proposed HAR system in the
30 min long-term test.

Category  Time length  E; (s)  Accuracy
w 52.5 9 82.86%
BM 137 0 100%
T 46 1.5 96.74%
SP 1608.5 81.5 94.93%
Total 1844 92 94.74%

a GPU configuration of NVIDIA Quadro RTX4000 was
155.43 s for converting CSI data of 1,844 s to CSI images
and was 1205.64 s for recognizing the types of produced
images and dividing them into segments of individual
activities. In other words, the total time to recognize an
activity per second was 0.65 s. Therefore, this system could
continuously perform real-time activity recognition.

VI. DISCUSSION
The proposed HAR system demonstrates an accuracy of
93.82% (Table 5) in recognizing predefined activities and
the capability of segmenting the recognized activities from
a long-term recorded CSI sequence. For health monitoring
of PD, the detected target motions, such as walking and
tremors, can be logged for their occurrence and quantified
using existing methods [6], [29] to track motor functions.
The generalizability and capability of the proposed HAR
system to process long-term CSI data were verified. When
used in a new environment or Wi-Fi arrangement, the model
could still segment activities with similar accuracies. The
segmentation accuracy decreased slightly (1.9%) when the
activities were performed by an unseen human subject.
The results showed that the proposed HAR system can
identify target activities regardless of individual differences.
However, data from real patients with PD should be included
to improve the model, as the difference between healthy
persons and patients with PD can be significant. The process
of receiving a CSI sequence to output the data segments

of activities was computationally efficient. The processing
time for each second of an input CSI sequence would only
be 0.65 s, highlighting the potential of its use in real-time
scenarios.

A. LIMITATIONS
There are certainly limitations and challenges to be overcome
in the future.

Multi-person activity recognition has always been a
major challenge for HAR using Wi-Fi CSI. This study
considers a situation in which the target person is the only
person performing activities in the room. When more than
one subject is active, interference inevitably increases and
significantly affects the performance of the current system.
Therefore, it is crucial to develop more dedicated signal-
processing methods or deep neural networks to distinguish
or separate individual signal responses from complex data.

The proposed HAR system was evaluated in two regular
discussion rooms with good Wi-Fi signal coverage. In reality,
obstacles, such as walls in the environment, can block or
weaken the signal, leading to poor detection performance.
This can be addressed in two ways. One is by enhancing
the sensing capability of individual Wi-Fi links to enable
through-wall detection [11], and the other is by utilizing
and combining CSI from multiple Wi-Fi links that exist in
the environment, such as Wi-Fi links formed by a wireless
router and smart IOT devices.

In this study, the predefined activities were performed by
young healthy human subjects. Therefore, the proposed HAR
system might have learned to recognize the essential pattern
of each activity but never saw the symptomatic features of
PD. For example, abnormal walking, such as shuffling or
freezing of gait and different kinds of tremors, although
within the range of frequency and amplitude, might not be
recognized owing to unseen features shown in the CSI image.
A plan to collect data from healthy individuals of different
ages and real patients with PD in different stages is required
to improve the performance of the proposed HAR system.

B. MAJOR REASONS CAUSING SEGMENTATION
ERRORS

Although the overall accuracy of the proposed HAR system
in segmenting the classified activities was satisfactory
(93.82%), the poorest performance (85.85%) was observed
in detecting walking activities. By further looking into the
misjudged sessions in the CSI sequences, they were mainly
transitions from a stationary state (static posture) to dynamic
state (tremor, body movement, and walking) or in an opposite
way. Figure 10 shows a sample of 50 s CSI image that
contains four transitions between five activities, which are
(1) walking to static posture, (2) static posture to tremor,
(3) tremor to static posture, and (4) static posture to body
movement. Transition 1 was found to begin approximately
at the 8th second and last for about 4 s, in which the subject
was stopping the momentum of walking and changing to
a stationary state, leading to ambiguous recognition results.
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The first half of the transition was correctly recognized as
walking, but the probability of walking dropped while that
of static posture rose. In the second half of the transition, the
probability of static posture exceeded that of walking as the
motion of walking was largely reduced, leading to incorrect
recognition results. Transitions 2—4 also contributed some
portions of the recognition errors due to the change of state.
However, the recognition error occurred more frequently in
the transitions between walking and static postures, and these
transitions required the longest time as the walking produced
the largest motion compared to the other activities tested in
this study.

To confirm this situation, we manually identified all
transitions between walking and static postures for their
start and end times and recalculated the ACC to be 96.03%
by excluding these transition sessions, as listed in Table 9.
The results suggested that the proposed HAR system can
accurately segment activities during steady sessions. For
health monitoring in Parkinson’s disease, gait information
during steady walking sessions in a day would be sufficient
to provide significant insight for understanding a patient’s
motor fluctuations and drug efficacy. However, it is also
important to observe the initial and final walking sessions.
An advanced segmentation method for identifying these
transition sessions is required to provide another valuable
dataset for the disease.

C. COMPARISON WITH STATE-OF-THE-ART
APPROACHES

Three CSI-based HAR systems were selected from the
state-of-the-art baselines for performance comparison: CSI
Violent [8], WiRIM [30], and DA-HAR [9], as listed in
Table 10. All three systems recognized human activities
based on images generated from CSI sequences but applied
different preprocessing techniques to image generation.
Therefore, the three different image generation methods were
compared with the proposed system, which generated the

TABLE 9. The segmentation accuracies recalculated by excluding the transition
sessions. SP: static posture, BM: body movement, T: tremor, W: walking.

No. SP BM T W  Eiotq; Duration ACC
1 2 0 0 0 2 55 96.36%
2 1.5 0 0 0 1.5 55 97.27%
3 0 0 0 45 4.5 53 91.51%
4 1 0 0 0 1 55 98.18%
5 1.5 0 0 0.5 2 55 96.36%
6 0 0 0 0 0 55 100%
7 1 0 0 0 1 55 98.18%
8 1.5 0 0 0 1.5 53 97.17%
9 2 0 1 0 3 53 94.34%
10 2 0 3 0 5 53 90.57%

Average  1.25 0 04 05 2.15 54.2 96.03%

images using the CSI ratio model. The key observations are
as follows:

1) CSI-based HAR methods have been developed for
many applications; however, to the best of our knowl-
edge, no method has been developed for the health
monitoring of PD. Together with the three baselines,
all four methods achieved over 90% accuracy in
recognizing the predefined categories. However, this
comparison is not intended to provide a ranking for
each method, as the performance evaluation of an HAR
method should depend on its usage.

2) Signal attenuation due to an increase in the distance
between the subject and transmitter can significantly
affect accuracy. The impact of distance was observed
in the three baseline methods because their detectable
areas were limited to a relatively small range. Because
detection based on the CSI ratio has been shown to
have an enhanced detection range [11], our method
maintains an accuracy of 93.82% over a much larger
space.

3) Compared with the three baselines, the proposed HAR
system was comprehensively evaluated for its adapt-
ability to changes in environmental settings, human
subjects, and Wi-Fi arrangements.

4) Signal processing procedures, such as principal
component analysis, filtering, and time-frequency
transformations, may require more computing time.
The proposed HAR system eliminated these time-
consuming procedures while still obtaining high
detection accuracy, making real-time HAR for health
monitoring possible.

D. PRACTICAL IMPLEMENTATION OF THE PROPOSED
HAR SYSTEM

The proposed HAR system’s practical implementation
necessitates carefully considering its adaptability to new
environments, diverse individuals, and various device con-
figurations. Our generalization tests proved this adaptability,
which showed the system’s capacity to adjust to unfamiliar
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TABLE 10. Comparisons between proposed HAR system and state-of-the-art CSl-based HAR methods.

CSI Antenna  Frequency/  Detectable

System X ) 5 Process Activity Evaluation
tool pairs Bandwidth  area (m~)
walking,
wavelet, . . . . .
CSI L. jumping, 97.3% in the training environment.
i Intel denoising, L . L .
Violent Tx1, Rx3 N.A. 2x2 . kicking, 92.7% in the validation environment.
5300 smoothing, . .
[3] K etc. 5-10% reduction in an unseen environment.
filtering L
10 activities
walking,
X PCA, running, 97.8%-96.2% when the device and subject
WiRIM 5 GHz . .
Atheros  Tx1, Rx2 2%x2 STFT, standing, are within 0.2-2 m.
[19] 40 MHz L .
AoA etc. Generalization tests were not mentioned.
5 activities
walking,
PCA, running, . . .
DA-HAR Intel 5 GHz . . 90% in the training environment.
Tx3, Rxl 3.5%3.5 Bandpass,  jumping, L .
[20] 5300 20 MHz Generalization tests were not mentioned.
STFT etc.
10 activities
walking,
tremor, . . .
. 91.9%-95.2% in different use conditions.
Proposed Intel 2.4 GHz . sitting, . . .
Tx2, Rx3 8.2x4.2 CSI ratio . Tested for different environments, Wi-Fi
method 5300 20 MHz nodding,
. arrangements, and persons.
etc.

8 activities

scenarios, including different environmental setups, individ-
uals with diverse body sizes, and common Wi-Fi device
arrangements in residential settings.

Highlighting the study’s Limitations section, it’s pivotal
for future research to focus on collecting data from a
wide array of healthy individuals of differing ages and real
patients with PD in varying stages. Such comprehensive data
collection is crucial to advancing the HAR system’s accuracy.
The system’s initial deployment could be in relatively simple
environments, like a room in a nursing home, to accrue more
genuine and less noisy data, thereby refining the CNN model.
As the system’s deployment expands, advanced techniques
such as few-shot learning can be incorporated to enhance
the precision in recognizing individual-specific movements.

The performance test has proved that the proposed HAR
system can efficiently process raw CSI into recognized
motion segments within 0.65 seconds for each second of
data. An initial practical application could be set up using
a mini-PC (Rx) connected to a home Wi-Fi router (Tx).
In this configuration, the Rx would perform HAR tasks
in real-time, and the results would be sent via Tx to a
remote server for comprehensive motion analysis, such as
assessing gait parameters or monitoring the frequency of
tremors, showcasing the system’s potential for effective and
immediate real-world application.

VIl. CONCLUSION

This study proposes a novel approach for implementing
a CNN-based HAR system using CSI images converted
from the phase of CSI ratios. The system achieved an

accuracy of 93.82% in identifying PD-related activities in
a CSI sequence and in dividing the data sequence into
segments for motion analysis. Furthermore, the impact of
the environmental layout, person, and Wi-Fi arrangement
on the system performance was found to be insignificant
(the variation in the detection accuracy was within 2%),
demonstrating the capability of the model to adapt to unseen
conditions. The system could process an input CSI sequence
with high efficiency (0.65 s processing time per second of
CSI data), highlighting its potential for applications in real-
time health monitoring.
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