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ABSTRACT Wireless channel properties in industrial environments can differ from residential or office
settings due to the considerable impact of heavy machinery that triggers intricate multipath propagation
effects and strong blockage effects. Previous investigations on wireless propagation in factories often
consisted of empirical models, that is simple analytical formulas based on measurement data. Unfortunately,
they usually lack in flexibility, since they seldom include geometrical parameters describing the industrial
scenario and therefore turn out reliable only in industrial scenarios sharing the same propagation
characteristics as those where the measurements were performed. In response to this limitation, this article
harnesses the power of Machine Learning to model propagation markers like path loss, shadowing, and
delay spread in the industrial environment. By employing Machine Learning techniques, the objective is to
achieve flexibility and adaptability in modeling, enabling the system to effectively generalize across diverse
industrial scenarios. The proposed model relies on a combination of predictive algorithms, including a
linear regression model and a Multi-Layer Perceptron, working collaboratively to model the relationship
between the considered propagation markers and input features like frequency and machine size, spacing,
and density. Results are in fair overall agreement with previous studies and highlight some trends about
the sensitivity of the propagation parameters to the considered input features.

INDEX TERMS Delay spread, industrial environment, machine learning, path loss, shadowing, wireless
propagation channel.

I. INTRODUCTION

WIRELESS communication in industrial manufactur-
ing has advanced in recent years, inspired by the

growing popularity of the smart factory idea, where data
exchange between machines and controllers (either human
or unmanned) is continually carried out not only to
improve the whole production process [1], [2] but also to
trigger safer work procedures. Wireless solutions can be
effectively employed for many applications in industrial
environments, like monitoring and surveillance, smart meter-
ing, cable replacement, remote control, and autonomous
robotics [1], [3].
The performance of wireless systems in the industrial

environment depends on equipment design and the properties
of the wireless channel. Industrial scenarios have specific

properties that make wireless propagation somehow peculiar
and different from other wireless channels. In general,
industrial environments are larger and/or taller than office
or residential buildings and are divided into large depart-
ments with high ceilings where the machinery is usually
arranged according to some roughly regular layout, with
long aisles in between for movement of people and transport
of materials [4]. Industrial building structures are often
made of reinforced concrete to safely support vehicles and
heavy machinery. Industrial equipment is usually made of
metal, i.e., highly reflective, with size, density, and spatial
distribution that can change significantly case by case. These
characteristics of the industrial environment lead to fading
Path Loss (PL), obstruction level (shadowing), and Delay
Spread (DS) different from other indoor scenarios [5].
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Several empirical models for PL, shadowing, and DS
were achieved based on measurements in various industrial
environments [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15]. Empirical models often consist of user-friendly, closed-
form expressions mainly aimed at catching the average
dependence of major propagation markers (like PL) on
some simple link parameters (like distance or frequency).
The measurement campaigns required for deriving these
models usually mean a lot of cost in time and manpower.
Moreover, the nature of empirical models implies that they
are only suitable and fairly reliable for environments sharing
the same propagation characteristics as those where the
measurements were performed, which limits their flexibility
and adaptability.
Ray Tracing (RT) is an alternative channel modeling tech-

nique [16], [17] that tracks all potential optical rays between
a transmitter and a receiver for a given number of permitted
wave-matter interactions and starting from a site-specific
description of both the environment and the antennas. Then,
the computation of the rays’ (EM field) contributions is based
on geometrical optics (GO), uniform theory of diffraction
for diffraction (UTD), and can also include diffuse scattering
to some extent [18]. PL data, large- and small-scale fading,
time/frequency/angular dispersion, and optical visibility can
be investigated through RT in almost every propagation
scenario and wireless application [19], [20], [21], as RT is
a general-purpose approach. However, RT simulations often
lead to large, sometimes prohibitive, computational costs and
simulation time [22].

There has been increasing interest in Machine Learning
(ML) algorithms in electromagnetic propagation over the
last years [23], [24], [25], [26]. The use of ML techniques
in wireless channel modeling can be extremely beneficial,
as ML-based methods can in principle learn the complex
relationship between the channel parameters and the proper-
ties of the propagation environment. Moreover, they can be
aimed at both average and case-specific evaluations. Another
significant advantage of ML models is the inference speed:
while the training phase may be computationally expensive
(often due to very large datasets), querying the output of
a trained model is typically computationally light. In this
framework, an ML approach to channel modeling can turn
out very flexible, as it can in the end contribute to the
achievement of simple, closed-form formulas (like empirical
models), or result in a black box describing some complex
input-output relationship (like RT models).
This paper presents a hybrid scheme integrating RT

simulation tools with ML techniques for predictive chan-
nel modeling in the industrial environment. In particular,
RT enables the generation of reliable, synthetic, tabular
propagation data sets that are then used for the train-
ing of different ML models. The ML tools are here
conceived for the assessment of PL, shadowing standard
deviation (σ ), and DS based on the value of few, simple
parameters like communication frequency and machine
density.

The remainder of this paper is organized as follows:
Section II contains recent work on ML-based channel
modeling. Section III details the specifications of the
industrial environment together with the system setup and
industrial wireless channel characterization. In Section IV,
the machine learning-based approach to channel modeling
is presented. In Section V numerical results are presented
and discussed. Finally, Section VI concludes the paper with
main takeaways and ideas for future work.

II. RELATED WORK
Industrial wireless propagation has been addressed in some
previous works, mostly employing experimental investiga-
tions carried out in industrial environments [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15]. Measurements are
usually exploited to tune the path-loss exponent (PLE) in
simple PL formulas [6], [8], [9], [10], [11], [12], [13], [15]
and/or to estimate other channel parameters like shad-
owing level [6], [8], [9], [10], [11], [12], [13], [15] or
DS [7], [8], [11], [12], [13], [14], [15]. RT simulations have
been also relied on for similar assessments [27], [28], [29],
[30]. According to the main outcomes resulting from a
literature survey and summed up in Table 1, investigations
aimed at industrial propagation modeling have been mostly
carried out in Line of Sight (LOS) conditions at frequencies
up to a few tens of GHz. Not surprisingly, in LOS conditions
PLE is equal to about 2, or even sometimes lower,1 and (σ )

is limited to a few dBs. Both these parameters are likely
to be greater in NLOS cases. DS in general ranges from a
few to some tens of nsec. The sensitivity of the industrial
channel coefficients to parameters like frequency and clutter
density does not clearly come out from the survey, as both
measurements and RT models are inherently case-specific
and the available dataset in Table 1 is likely to be too small
to highlight consolidated trends. The limited consistency
and/or representativeness of results collected from different
case studies is often a common, general drawback of any
deterministic, site-specific approach.
Over the last years, channel modeling has been heavily

relying on ML techniques. In several cases, ML has been
considered for PL prediction, mainly in rural, suburban,
and urban outdoor scenarios [31], [32], [33], [34], [35],
[36], [37], [38], [39], or in other particular cases [40], [41].
Regarding indoor environments, an ML-based PL regression
model was proposed in [42] for an office scenario, whereas
an ML approach to the classification of indoor spaces inside
a university campus is discussed in [43].

To the best of the authors’ knowledge, specific inves-
tigations on the industrial wireless channel through ML
is basically limited to [44], where ML is fundamentally
exploited to cluster the power-angle-delay profiles collected

1PLE values lower than two correspond to some guiding effect experi-
enced by the wireless signal. In industrial environments, this may occur
between the floor and the ceiling of industrial buildings, and/or along the
aisles often present between machinery.
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TABLE 1. Related studies. (a, b, c, d) refer to specific working conditions in each reference.

from a measurement campaign carried out inside an indus-
trial plant based on some common feature (like power or
DS), and to associate then each cluster with a representative
power-delay-profile. Therefore, the goal in [44] is not to
catch the relationship between propagation markers (like

PLE, DS, etc.) and the major features of the industrial
scenario, which is instead the main issue tackled in this work.
According to an assessment framework already experienced
in previous investigations [36], [38], RT simulations at
different frequencies and on different realizations of the
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FIGURE 1. Two extreme cases of industrial maps - High Density (MS = 4, SP = 2, T = 0.1, MD = 0.4) and Low Density (MS = 2, SP = 4, T = 0.5, MD = 0.05). Blue and Red points
represent the TXs and the RXs, respectively.

industrial environment are leveraged to gather the data
required to train and test artificial neural networks (ANN)
to learn the dependence of PL, shadowing, and DS on input
features like the communication frequency and the machine
density. The trained ML networks are then effectively used to
complement and further extend the propagation data achieved
from RT. Some simple, analytical, parametric formulas for
PLE, σ , and DS are finally drawn from such a larger dataset,
which includes RT simulation data and ML extrapolated data.

III. ASSESSMENT FRAMEWORK
A. INDUSTRIAL ENVIRONMENT REPRESENTATION
An industrial shed with dimensions of 100 m × 100 m and
a uniform height of 10 m, where machines are all simply
represented as metal boxes with te same machine size (MS),
machine height (MH), is considered to simulate real-world
situations. Machines were at first deployed according to a
perfectly regular layout with constant spacing (SP) between
them. To make the digital representation of the industrial
environment more realistic, a fraction T of machines has
been then randomly removed, thus creating some emptier
spaces among them.
Multipath propagation in this industrial layout is inves-

tigated in this study for different values of MS (2, 3,
4, 8 m), MH (2 m), SP (2, 3, 4m), and T (0.1, 0.2,
0.35, 0.5). An example of two different realizations of the
industrial environment is shown in Fig. 1. A total number
of 48 scenarios has been then considered, corresponding to
the whole set of combinations of these parameters. For each
case, five maps have been generated by randomly changing
the set of removed machines, for the same T value. The final
number of digital maps therefore amounted to 240.

Based on the values of MS, SP, and T, the Machine Density
(MD) can be also estimated as:

MD � (1 − T) ·
(

MS

MS+ SP

)2

(1)

B. TRANSMITTERS, RECEIVERS, AND FREQUENCIES
In this work, transmitters (TXs) are assumed to lie on
the shed wall, in four different possible positions (blue
points in Fig. 1) at a height of 3 meters above the ground
(i.e., slightly higher than MH). For each map, a multitude
of receivers (RXs) have been then spread throughout the
industrial area at 1 m above ground along the aisles
between machines, representing the position of automated
guided vehicles (AGVs) often observed in manufacturing
and automation scenarios. Four different frequency values
have been explored to be used in RT simulations, namely
700 MHz, 3.5 GHz, 28 GHz, and 60 GHz. The selection of
these frequencies is driven by the need to assess wireless
propagation characteristics for a broad spectrum of possible
industrial applications.

C. PROPAGATION MARKERS UNDER INVESTIGATION
Metal is commonly present in industrial scenarios: besides
industrial machinery, which is primarily made of metal,
metal pipes, shelves, beams, doors, etc. are commonly found
in factories. From a propagation perspective, the massive
presence of metal parts corresponds to rich multipath effects,
i.e., strong reflections and - sometimes - diffractions on metal
wedges may trigger the existence of a multitude of different
radio paths the wireless signals can follow to effectively
propagate through the cluttered industrial environment [1],
[4], [5], [6], [7], [11].
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Because of multipath interference, the envelope of the
received signal exhibits fast and - sometimes deep - spatial
fluctuations over distances of the order of the wavelength
(small-scale fading), whereas blockage effects result in addi-
tional oscillations at a slower rate (large-scale fading) [45].
Because of multipath and blockage effects, the received
signal strength decreases with distance only on average.
That is, path loss experienced over a link distance d is
expressed as:

PL(d) = PL(d0) + 10 · n · log10

(
d

d0

)
+ χ (2)

where n is the PLE (or propagation factor), PL(d0) is the
PL at a reference distance d0 and χ is a random variable
accounting in general for the spatial fluctuations triggered
by large- and small-scale fading. The reference distance is
often set as d0 = 1m and the corresponding loss is then
computed through the free space formula, i.e.:

PL(d0) = 20 · log10

(
4π

λ

)
(3)

In case the values of PL over a multitude of point-
to-point links spread over the propagation scenario are
collected through measurements or site-specific simulations,
the corresponding PLE can be easily computed as:

PLE =
∑N

i=1(PLi − PL(d0)) · log10(di)

10
∑N

i=1

(
log10(di)

)2
(4)

being N the number of considered TX-RX links, PLi and
di the path-loss value and the TX-RX distance for the i-th
considered link.
Finally, it is worth pointing out that the random coefficient

χ in eq. (2) is commonly limited to large-scale fading
only [4]. To get rid of small-scale fading effects, PL
measured or simulated values must be spatially averaged
over a small area having a linear dimension equal to
several (tens of) λ [45]. Concerning the representation of the
industrial scenario considered in this study (Fig. 1), PL point
values have been therefore averaged over the 3 × 3 spatial
grids. After the removal of small-scale fading, then χ ∼
N(0, σ ) [45]. Although attenuation will always represent a
crucial issue in wireless communication systems, distortion
can also further impair the correct symbol sequence detection
at the receiver side. In particular, time dispersion still due to
multipath propagation can contribute to the overall degree of
distortion to an extent that depends on the DS experienced
over the environment and the symbol time length [45]. If M
different propagation paths can be identified between a TX
and RX pair, and Pi and τi represent the intensity and the
propagation delay of the i-th path, then:

DS =
√√√√ M∑

i=1

Pi
P

· (τi − 〈τ 〉)2 (5)

where P = ∑M
i=1 Pi and 〈τ 〉 = ∑M

i=1
Pi
P · τi. Averaging the

DS values over many, different TX, and RX pairs leads

TABLE 2. Simulation configuration.

to a final, mean DS somehow characteristic of the whole
propagation environment.

IV. MACHINE-LEARNING-BASED PATH LOSS,
SHADOWING AND DELAY SPREAD PREDICTION
ML relies on vast datasets and adaptable model architectures
to make predictions. In recent times, ML methods have found
applications in diverse fields such as self-driving cars, data
mining, computer vision, and speech recognition, among oth-
ers [46]. These applications encompass both supervised and
unsupervised learning. In supervised learning, where labeled
data is available, the objective is to deduce a generalized
and accurate function mapping inputs to outputs. This makes
supervised learning well-suited for tackling classification
and regression problems. By contrast, unsupervised learning
algorithms aim at unraveling the concealed structure within
unlabeled data. In essence, PL, shadowing, and DS prediction
represent supervised regression problems, which have been
here tackled by ANN, and in particular, resorting to Multi-
Layer Perceptron (MLP) [47]. Other ML methods, like
Support Vector Regression (SVR) [48], XGBR decision
trees [49], and Random Forest (RF) [50] have been also
considered for the sake of comparison. It has been reported
that ML-based models can be more accurate than empirical
models and more computationally efficient than deterministic
ones [31], [51].

A. RAY TRACING SIMULATION
RT is a powerful computational technique to model the prop-
agation of radio waves in various environments [16], [17].
By simulating the interaction of radio waves with objects and
materials in the environment, RT can predict the behavior of
wireless communication systems, aiding in their design and
optimization. Key parameters in RT simulations include the
number of interactions, antenna type, and frequency value.
Table 2 summarizes this information for the RT simulations
carried out in this work.
RT tools also require the electromagnetic parameters of

the materials (relative permittivity εR and conductivity γ )

as input data. In the considered industrial environments,
two types of materials are predominantly present. The first
type is machinery, which is assumed to be Perfect Electric
Conductors (PEC). The second type is the shed, which is
assumed made of concrete, with εR=5, σ=0.01 S/m at lower
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TABLE 3. Features.

FIGURE 2. Common PL range dependence in wireless channels.

frequencies (0.7 and 3.5 GHz) and σ=0.1 S/m at higher
frequencies (28 and 60 GHz).
In this work, several synthetic datasets of the industrial

environment have been generated according to the input file
format required by the RT tool previously described in [52].

B. DATA COLLECTION AND FEATURE EXTRACTION
The collected data refer to samples obtained from RT
simulations, and each sample should include the target output
value such as PL, shadowing, and DS and the corresponding
input features as mentioned in Table 3.

In the end, the total number RT simulations amounted to
960 (4 frequencies explored over the whole set of 240 digital
maps). For each simulation, PL and DS experienced over
all the TX-RX links have been computed assuming isotropic
antenna at both link ends for the sake of simplicity. The RXs
have been grouped in grids of 3 x 3 locations, with distance
between the grids equal to 10 m and spacing inside each
grid equal to 10λ, being λ the communication wavelength.
In this way, fast fading is expected to independently affect
the different RXs, and therefore has been filtered out from
the simulation results by averaging the PL values over each
grid. The corresponding PL values collected over the five
simulations sharing the same geometrical parameters have
been merged and plotted against link distance in logarithmic
scale, for each different frequency (Fig. 2). The final number
of collected PLE, σdB, and DSmean values therefore amounted
to 960/5=192 corresponding to the combinations of the
features (MS, SP, MD, and frequency). The collected data
have been arranged on the dataset sketched in Fig. 3.

The values of PLE, σdB, and DSmean corresponding to
the 192 combinations of the features (MS, SP, MD, and
frequency) have been arranged in a database as sketched in
Fig. 3.

It is worth pointing out that the size of the database
is actually not so large, that in general may not help the
accuracy of the ML training stage. The reason is twofold:

• RT simulations for PL modeling are in general not
computationally light. Although the RT parameters
were set to effectively speed up each single run,2 the
execution of the 960 RT simulations required about two
weeks of computation (on a standard PC).

• Each simulation includes four TXs and many RXs (i.e.,
several hundreds of wireless links) but in the end it
contributes to the computation of a single value of PLE,
σdB and DSmean.

C. MODEL SELECTION
The dataset achieved from RT simulations was finally used
to train and test an MLP network aimed at catching the
relationship between the output label (either PLE, σdB or
DSmean) and the corresponding features. The learning process
was organized in three different steps:
1) Since the labels included in the final dataset look

somehow linearly dependent on log10(fGHz) (Fig. 4),
a simple linear regression was first carried out to
compute the coefficient β and γ describing the average
frequency dependence of the label as::

< y >= β · log10(fGHz) + γ (6)

where y indifferently stands for PLE, σdB or DSmean
and 〈·〉 represents the mean value;

2) for each yi, i=1,2,.., 192 the residual ri concerning the
regression line has been computed, i.e.:

ri = yi − β · log10(fGHz) − γ, i=1, 2,. . . , 192 (7)

3) MLP has been leveraged to seize the dependence of
the residuals on the geometrical features (MS, SP,
and MD).

Of course, three different MLP networks, respectively
tailored to PLE, σdB or DSmean have been in the end arranged
in agreement with the outlined procedure.

D. HYPERPARAMETER SETTING AND MODEL TRAINING
The primary objective during the training stage of every
machine learning model is to optimize the parameters, specif-
ically the weights (w) and biases (b) of each layer in MLP,
to achieve optimal learning. Following the training stage,
the validation phase focuses on fine-tuning hyperparameters
such as the number of hidden layers, the neurons within
each hidden layer, and the activation function (represented
as ‘f’ in Fig. 5). Table 4 provides a brief summary of the
tuned hyperparameters for three distinct models designed for
predicting PLE, σ , and DSmean. It is noteworthy that ‘ReLU’
stands for the Rectifier Linear Unit function, and ‘lbfgs’
serves as an optimizer from the family of quasi-Newton
methods, particularly suitable for small datasets [53], [54].

2In particular, the maximum number of bounces permitted for each ray
was limited to three, with one diffraction at most. Also, the transmission
was not enabled, as the machinery was supposed made of metal.
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FIGURE 3. An example of the dataset considering MS, SP, MD, and frequency as features and PL and Shadowing, and DS as target outputs.

FIGURE 4. Linear relationship between PLE, σdB , and DSmean Vs. log(f[GHz]).

FIGURE 5. General structure of a Multi-Layer Perceptron. A single hidden layer is
deployed for the sake of simplicity.

E. MODEL EVALUATION
In general, the performance of regression models is measured
by samples in the test dataset, which do not appear in
the model training process. The evaluation metrics include
prediction accuracy and generalization properties.
In terms of evaluating the accuracy, performance indicators

like maximum prediction error, mean absolute error, error
standard deviation, correlation factor, root mean square error
(RMSE), and mean absolute percentage error are commonly

TABLE 4. Major parameters of the neural networks for PLE, σdB and DS regression.

used [31], [51]. In this work RMSE is considered:

RMSE
(
y, ŷ

) =
√

1

n
·
∑(

yi − ŷi
)2 (8)

where yi is the ground-truth value for input xi and ŷi is the
predicted value for input xi and n is the number of samples.
Generalization property describes the model reusabil-

ity when the deployment concerns new frequency bands
and/or new environment types. The model may have better
generalization performance with more data collected from
diverse scenarios, such as different machine densities and
frequencies.

V. RESULTS AND DISCUSSION
A. NARROWBAND PARAMETERS ASSESSMENT
The accuracy of the ML approach to PLE and σ prediction
is displayed in Table 5 in terms of overall loss over the test
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FIGURE 6. PLE sensitivity to MD and frequency for MLP-based model (left) and XGBRegressor (right).

TABLE 5. Model evaluation for PLE and σ and min and max of each case.

TABLE 6. An example of new dataset.

dataset together with the range of variability of each target
label. As the loss turns out quite small compared to the range
of variability for both parameters, the learning task has been
fairly accomplished. Furthermore, a comparison between
different models shows satisfactory overall effectiveness,
with the MLP and XGBRegressor slightly outperforming the
others.
To further investigate and evaluate the models’ perfor-

mances, a generalization perspective is adopted. This entails
the evaluation of the models’ consistency when challenged
on new values of the features never seen during the training
stage. To this aim, a fresh dataset with entirely new feature
values was considered according to Table 6.

Fig. 6 shows PLE against MD for different frequency val-
ues for both the MLP-based model (left) and XGBRegressor
(right). Besides the data returned by RT simulations (dots),
new data generated utilizing the trained ML tools related
to the new dataset (squares and stars) are added to the
figures, which also include the corresponding best-fit line.
Results are in clear agreement with the RT outcome as
far as the MLP-based model is concerned as shown in
Fig. 6(a), thus further corroborating the effectiveness of the
training but also highlighting a fair robustness in terms of

generalization skill. Conversely, the XGBRegressor cannot
consistently track the PLE sensitivity to completely new
frequency values (Fig. 6(b)). The reason is in the context
of the training set, where frequency is represented by four
distinct values. Given that XGBRegressor operates on tree-
based structures, the decision points for splits in the tree are
defined by conditions such as frequency lower and/or greater
than a threshold. With only four unique values for frequency,
the resulting thresholds in the tree are likely to closely
align with these specific values. For instance, consider a
split condition frequency greater than 28 GHz and less than
60 GHz, where observations with frequencies 28 GHz and
40 GHz may be grouped on the same branch. In situations
where the remaining features exhibit similar characteristics,
these two observations are anticipated to receive nearly
identical predictions. In conclusion, the MLP-based model
turns out as the most reliable and flexible overall and will
be therefore referred to in the following.
Fig. 7 shows σ against MD for different frequency values.

Similar to the PLE model, they are in clear agreement with
the RT outcome as far as the MLP-based model is concerned.
Prior research suggests that conventional ML models excel

in interpolating within the known data range but often exhibit
poor performance when extrapolating beyond this range [55].
However, the MLP-based model employed in this study is
not in agreement with this trend, as it effectively learned
the correlation between the target output and frequency,
demonstrating a remarkable ability to predict accurately even
for frequency values outside the frequency range explored
inside the training dataset.
In the end, the trained MLP can be exploited to quickly

and reliably complement the limited amount of information
that has been painstakingly gathered through electromagnetic
simulations (or could be provided by channel experimental
sounding). Of course, the availability of a large set of
information can help to clearly get a deeper insight into the
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FIGURE 7. σ sensitivity to MD and frequency for MLP-based model.

TABLE 7. Model evaluation for DSmean and min and max values.

existing relationship between the output propagation labels
and the considered input features. For instance, Figs. 6(a)
and 7 quite clearly show that both PLE and σ increase with
machine density and frequency. Simple best-fit lines have
been then computed to formally describe the highlighted
trends, e.g., employing the following expressions:

PLE = 2 + k1 · 4

√
MD · f

1
k2
GHz (9)

σ = k3 · √
MD+ k4 · log10(fGHz) (10)

The coefficients k1 − k4 can be easily computed for each
frequency according to the least square method over the
corresponding dataset, leading to the continuous and dashed
lines in Figs. 6(a) and 7. To get a single, somehow rougher
but very simple analytical model, the same coefficients have
been also optimized across the whole set of frequencies,
corresponding to the final values of k1 = 0.48, k2 = 1.5,
k3 = 10.27, and k4 = 3.45.

B. WIDEBAND PARAMETERS ASSESSMENT
Table 7 shows that the learning process can be accomplished
also for DS prediction. Although the four considered ML
methods turn out quite accurate, the MLP-based model
outperforms the others. The model flexibility and consistency
are again investigated in Fig. 8, where the DSmean values
returned by RT simulations are reported for different MD
and frequency together with the values achieved from the
trained MLP-based model corresponding to the same new
set of features previously referred to (Table 6).

As shown in Fig. 8, the outcomes from the MLP for
the values of the fresh features are physically sound and

FIGURE 8. DS sensitivity to MD and frequency for MLP-based model.

consistent with the RT results. Best-fit lines are also traced
in Fig. 8, aimed at highlighting the average dependence of
DSmean on MD and frequency. The corresponding analytical
formulation is reported in the following eq. (11):

DSmean = k5 · 1√
MD · f

1
k6
GHz

(11)

The least square method can be leveraged to compute
the best k5 and k6 values at each different frequency
(continuous and dashed lines in Fig. 8. A simple, average
DS prediction formula describing its sensitivity to MD and
frequency can be instead achieved by extending the least
square computation all over the whole dataset. In this case,
the values of the coefficients were found to equal k5=8.35
and k6=20.35.

C. COMPARISON WITH PREVIOUS STUDIES
This sub-section discusses the reliability of the proposed ML-
based approach to wireless propagation modeling in factories
in comparison with the results reported in previous studies
(Table 1) and technical report [56].

Experimental and simulation assessments summarized in
Table 1 show that in the presence of LoS, PLE is approxi-
mately equal to 2 regardless of the frequency (green crosses
in Fig. 9), whereas in NLoS conditions it is increasingly
greater as the NLoS level gets heavier (red dots and purple
stars in Fig. 9). Also, PLE significantly increases with
frequency in the case of dense industrial clutter (purple stars
in Fig. 9). These trends are actually in contrast with the
path-loss models for indoor factories included in [56], where
a PLE independent of frequency is instead assumed, and
the value corresponding to sparse clutter is greater than that
considered for dense clutter. Also, PLE values in [56] for
the industrial case are just slightly greater than 2 even in
NLoS conditions, which sounds somehow unlikely.
In this framework, the results returned by the proposed

MLP-based model look like a sort of trade-off between
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FIGURE 9. Model - literature comparison for path loss exponent.

FIGURE 10. Model - literature comparison for shadowing level.

previous evaluations, showing a PLE that slightly increases
with frequency (Fig. 9) and machine density (Fig. 6(a)).
Moreover, since the PLE values referring to RT and ML
model in Fig. 9 correspond to LoS and NLoS altogether, it is
not surprising they are on the average in between PLE values
achieved for LoS and (heavy) NLoS conditions separately.
Rather similar considerations hold for the assessment of

shadowing level, as reported in Fig. 10. It is worth reminding
that the values of σdB corresponding to RT and ML in Fig. 10
again refer to LoS and NLoS altogether, which may explain
why values greater than those limited to LoS or NLoS only
have been sometimes achieved.
Finally, a comparison in terms of DS is shown in Fig. 11.

Since the values of DS in Table 1 for NLoS conditions are
seldom related to the corresponding clutter level, Fig. 11
simply considers LoS and NLoS classes. Results returned by
RT and ML assessment are in fair agreement with previous
experimental analyses (green crosses and red dots in the
figure), suggesting a slight reduction of DS for increasing
frequency. This was already clear in Fig. 7, where the
difference between mean DS at 0.7 GHz and 300 GHz
amounts to about 7 nsec only. Comparison with the simple
formulas for mean DS included in [56] looks a bit worse,
but anyway acceptable. In fact, the DS standard deviation

FIGURE 11. Model - literature comparison for DS.

reported in [56] (σDS) is equal to about 18 nsec. (for both
LoS and NLoS cases), thus meaning that most of the values
returned by the joint RT and ML approach actually belong to
the ±σDS range around the average values suggested in [56].
It is finally worth noting that although the learning process

was based on data collected from simulations carried out
for the same size of the industrial shed, results discussed
in this section have turned out to be in general agreement
with previous model and experimental investigations clearly
referred to different industrial environments and machinery
layout. This confirms the model is flexible and versatile,
and suggests it has fair generalization skills also in the
environment domain.

VI. CONCLUSION
In this work, narrowband and wideband propagation
modeling in an industrial environment has been addressed by
employing an ML-based approach including a simple linear
regression and a multi-layer perceptron network. Training
data have been achieved through ray-tracing simulations
carried out at different frequencies and on several real-
izations of the industrial context. Satisfactory performance
of the ML model has been achieved, both in terms of
interpolation and extrapolation skills. Overall, the results
are quite in agreement with previous investigations and
existing models. Moreover, the trained neural network has
been queried to complement the outcomes of RT simulations,
therefore achieving a large(r) database accounting for the
complex relationship between propagation markers like path
loss exponent, shadowing level, and DS and features like
frequency and machine size, spacing and density. Based
on this extended dataset, simple, closed-form formulas to
estimate the values of path loss exponent, shadowing level,
and DS from machine density and communication frequency
have been also proposed. Both path-loss exponent and
shadowing std. deviations increase at a larger frequency and
machine density, whereas an opposite trend has been found
for DS. Although the sensitivity of the considered propa-
gation parameters to the height of antennas and machinery
has not been considered to limit the computational effort, it
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clearly represents an interesting issue that deserves further
investigation as well as the impact of antenna radiation
patterns on the properties of the industrial wireless channel.
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