
IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, VOL. 5, NO. 2, APRIL 2024 474

Received 19 December 2023; revised 17 January 2024; accepted 27 January 2024. Date of publication 8 February 2024; date of current version 26 March 2024.

Digital Object Identifier 10.1109/OJAP.2024.3363730

Kriging Methodology for Uncertainty Quantification
in Computational Electromagnetics

STEPHEN KASDORF (Student Member, IEEE), JAKE J. HARMON (Member, IEEE),
AND BRANISLAV M. NOTAROŠ (Fellow, IEEE)

Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA

CORRESPONDING AUTHOR: B. M. NOTAROŠ (e-mail: notaros@colostate.edu)
This work was supported in part by the U.S. Air Force Research Laboratory under Contract FA8650-20-C-1132.

This article has supplementary downloadable material available at https://doi.org/10.1109/OJAP.2023.3363730, provided by the authors.

ABSTRACT We present the implementation and use of the Kriging methodology, i.e., surrogate models
based on Kriging interpolation, in uncertainty quantification (UQ) in computational electromagnetics
(CEM). We provide consistent, unified, and comprehensive description, derivation, implementation, use,
validation, and comparative study of accuracy and convergence of several advanced Kriging approaches,
namely, the universal Kriging, Taylor Kriging, and gradient-enhanced Kriging methods, for reconstruction
of probability-density function in UQ CEM problems. We also propose, derive, and demonstrate the
gradient-enhanced Taylor Kriging (GETK) methodology, novel to science and engineering in general.
Numerical results using higher-order finite-element scattering modeling show that Kriging methods for
UQ in CEM are able to accurately output probability-density function prediction for a quantity of interest
(e.g., radar cross-section) given the probability density of stochastic input parameters (e.g., material
uncertainties), as very efficient alternatives to Monte Carlo simulations. The novel GETK method shows
dramatic enhancement over all other tested approaches, Kriging and non-Kriging, in terms of surrogate
function accuracy and convergence with increasing the number of sample (training) points in all examples.

INDEX TERMS Adjoints, computational electromagnetics, finite element method, gradient-enhanced
Kriging methods, Kriging, material uncertainty, maximum likelihood estimation, metamodel, scattering,
surrogate models, uncertainty quantification.

I. INTRODUCTION

AMONG the most important topics in computational
science and engineering, and particularly so in compu-

tational electromagnetics (CEM), uncertainty quantification
(UQ) is at the forefront of research due to the far-ranging
academic and industrial uses [1]. Through effective and
rigorous UQ, the quality of analyses and designs may be
improved drastically, both in terms of effectiveness and
reliability. Indeed, from the position of satellites to the
manufacture of the simplest resistor or tomorrow’s weather,
uncertainty is unavoidable. Further, uncertainty is essential
in CEM as material parameters of an antenna/scatterer,
object shape/size, mutual positions/ orientations, etc. are all
uncertain input parameters, which may be known only within
a specific tolerance. UQ in CEM involves studies of how
the input parameter uncertainty translates into uncertainty

in the generated electric or magnetic field, for example,
where the UQ-CEM aims at assessing the sensitivity of the
field to the uncertain input parameter. Troublesome sources
of uncertainty also include experimental uncertainty, inade-
quacy and randomness of a model or some of its components,
discretization error, and other sources of numerical error,
e.g., numerical integration and finite-precision arithmetic.
In CEM, the finite element method and the method

of moments, along with similar alternatives such as finite
difference methods, provide the underlying model for solving
the relevant partial differential equation or integral equation
problems and therefore the structure by which the uncertainty
influences or perturbs the solution and the quantities of
interest (QoIs) computed from the solution. Namely, in
practical applications, we are often interested in specific
QoIs (i.e., functionals of the solution). With the solution
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itself being a random quantity, by tailoring results to the
set of necessary computables, the parameter space may be
explored more effectively, driving higher quality UQ analysis
for the goal-oriented simulation objectives and the same
or lower computational cost. For a waveguide structure, a
typical QoI that we are interested in studying could be
the cutoff frequency or the propagation coefficient; for a
scattering target, the QoI could be the radar cross section
(RCS) or a specific component of the scattered field. In other
words, according to our goal-oriented approach, rather than
the solution directly, our primary objective is the study of a
goal functional (or a collection of goal functionals) [2], [3].
The general UQ problem we are considering in this work can
be formulated as predicting and quantifying the probability
density function of a QoI in a CEM simulation given the
probability density of uncertain (stochastic) input parameters
to the CEM structure and model.
Traditional Monte Carlo methods – the conventional and

dominant approach to UQ – are straightforward, nonintrusive
(the deterministic forward solver can be used as a “black
box” and only postprocessing needs to be done on simulation
results), and can easily be applied to higher-dimensional
parameter spaces [4], [5], [6]. However, the number of sam-
ples required restricts applicability to low-cost computations
or when high-precision UQ is not needed, as the convergence
of Monte Carlo simulation is proportional to the square
root of the number of samples. For example, in [7], [8],
[9], standard Monte Carlo methods were applied to rough
surface scattering. Given the precision required of modern
devices and objectives, simulations require similar resolution,
demanding more expensive computational models. Hence,
when model complexity and precision require a large number
of unknowns (degrees of freedom), each Monte Carlo
solve can take large (often prohibitive) computation time.
Thousands (or many more) of points are usually required
for Monte Carlo convergence, which makes this simulation
practically unattainable in many cases.
Given the potential unsuitability of standard Monte

Carlo methods, then, a significant body of research has
been devoted to stochastic spectral Galerkin approaches,
e.g., polynomial chaos expansion (PCE) [10], [11], [12],
[13], [14], [15], [16], [17], and stochastic collocation
approaches [18], [19], [20], [21], [22], [23], [24]. Some of
these methods are intrusive techniques, requiring substantial
modifications to the deterministic CEM solver and thus being
undesirable due to the implementation complexity required.
Some methods suffer the curse of dimensionality, i.e., the rate
of convergence deteriorates with the increase of dimension
of the parameter space), an important issue in UQ that is not
addressed in this work, nor we discuss ways of its mitigation.
Additionally, with the increasing involvement of machine

learning and optimization techniques in engineering projects,
robust and automated uncertainty quantification is of vital
importance. Recently, given the necessity to consider uncer-
tainty as outlined above, researchers and practitioners in
design optimization have begun to consider uncertainty

as an integral component of the applied procedures. For
instance, as outlined in [25], [26], [27], [28], UQ-augmented
machine learning techniques for optimizing designs in
electromagnetics have resulted in substantial improvements
for real-world applications. While promising, in most cases,
these techniques rely on standard Monte Carlo methods,
therefore suffering the same weaknesses hampering other
areas of engineering and numerical methods.
In recent years, sensitivity analysis and optimization

methods have been increasingly based on surrogate models
primarily due to the reduced computational cost when
compared with Monte Carlo methods. Surrogate models
replace expensive function evaluations with an analytical
model which is constructed using samples of the physical
(original) simulation (on the actual model) [6], [29], [30]. If
at some point the surrogate evaluations become sufficiently
accurate when compared to the actual (physical) model,
the surrogate can now be used instead of the prohibitively
expensive function evaluations. Several surrogate models,
such as the least square polynomial, multi-layer perceptron,
radial basis function, and Kriging models and methods were
examined in [31], and Kriging and radial basis function
methods showed the most promise.
This paper presents the implementation and use of

the Kriging methodology, i.e., surrogate models based on
Kriging interpolation, also referred to as Gaussian process
regression, in UQ in CEM. Kriging methods have been
applied in optimization and UQ problems in other fields
of science and engineering, such as aeronautics, aerospace,
geostatistics, fluid dynamics, etc. [6], [29], [30], [31], [32],
[33], [34], [35] as well as in optimization of designs in
magnetics [36] and CEM [37], [38], [39], [40], [41]. In
particular, [37] proposes a combination of the universal
Kriging with DIRECT algorithm to increase the accuracy
of the surrogate reconstruction by selecting optimum points
and using the surrogate model to optimize the size of a slot-
array frequency selective surface. In [38], the combination
of domain confinement with gradient enhanced ordinary
nested Kriging is proposed to reduce the size of the
domain of interest in the surrogate reconstruction within the
optimization of the parameters of an antenna. Further appli-
cations of Kriging interpolation to antenna optimization are
presented in [39], [40], [41]. In addition, notable examples
of UQ of electronic circuits using Kriging surrogate models
and SPICE circuit solvers are given in [42], [43].
We present consistent and unified description, deriva-

tion, implementation, and use of several advanced Kriging
approaches, namely, the universal Kriging, Taylor Kriging,
and gradient-enhanced Kriging methods, for reconstruction
of probability density function in CEM problems. We provide
in-depth and comprehensive description of Kriging and
the necessary methods to calculate covariance, adjoints,
correlation, etc. Here, the universal Kriging (UK) is a
surrogate method that is advanced from the ordinary Kriging
(OK) by the use of basis functions in the form of (typically)
power functions in the construction of the Kriging predictor.
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The Taylor Kriging (TK) method is a further advancement by
means of Taylor series polynomial basis functions centered
at the average of sample points. The gradient-enhanced
Kriging (GEK) formulation uses gradient values to advance
the accuracy of the ordinary Kriging approach. Note that
some preliminary results using one of these techniques (TK)
are presented in a summary form in [44].

Moreover, this paper proposes a completely new Kriging
methodology, the gradient-enhanced Taylor Kriging (GETK)
technique. Namely, gradient enhancements as shown in [29],
[30], [32], [45] have all been proposed and built on the
foundation of the ordinary Kriging method which has no
basis functions involved with the regression scheme. In
addition, GEK has been implemented in [29] and [32]
specifically in the context of UQ and optimization, and was
shown to be significantly more accurate than even advanced
versions of Kriging such as UK. In this work, we propose,
derive (using optimization principles), develop, test, and
demonstrate a GEK methodology based on the TK approach
which has been shown to generally be the most accurate
form of non-gradient-enhanced Kriging methods. The novel
GETK methodology has the advantage of making use of
gradient information, such as with the GEK method, and
basis functions, much like in the UK and TK formulations
(and more similarly to TK as we use Taylor series bases).
The proposed GETK methodology is novel not only to UQ in
CEM but to science and engineering in general, and not only
to UQ and general numerical analysis but to all possible uses
of Kriging interpolations, of which there are many indeed.
Furthermore, for gradient enhanced surrogate functions in

this work, i.e., the GEK and GETK models, the gradients
are calculated using our adjoint CEM methodology [2], [3],
[46], [47], [48], [49], that is, the gradients are obtained from
the suitable adjoint problem that relates the deterministic
forward problem to a specific QoI. The benefit of using
adjoints to solve for gradients is that the solution requires
exactly (only) one additional simulation solve regardless of
the dimensionality of the parameter space. Note that adjoint
solutions have become increasingly popular in computational
methods in general in recent years due to their excellent
scaling. Computational thrift is achieved through a goal-
oriented focus, with the method built around user-specified
quantities of interest.
The paper presents validation and comparative numer-

ical studies of different Kriging methodologies for UQ
CEM analysis. We compare and discuss OK, UK, TK,
GEK, and GETK solutions to UQ scattering problems and
examine the accuracy and convergence of the solution and
performance of various approaches when reconstructing an
output probability density function given an input probability
density from some uncertain quantity, with emphasis on
predicting material uncertainty impact on finite element
method (FEM) RCS computations. We also validate, eval-
uate, and discuss the accuracy of various Kriging methods
against two well-established non-Kriging UQ approaches.
The first is the general adjoint-based gradient-enhanced

higher-order parameter sampling (HOPS) UQ methodol-
ogy [2], [3]. The second is a PCE approach, the arbitrary
polynomial chaos (aPC) technique, which is nonintrusive
and has been shown to work rather well for UQ elsewhere
in applied mathematics [50]. Numerical results show that
Kriging methods provide excellent and very useful tools to
construct surrogate functions in UQ CEM simulations, with
very small numbers of input sample points, as a very efficient
alternative to Monte Carlo computations. The results also
demonstrate that the novel GETK method outperforms all
other approaches, Kriging and non-Kriging, by much faster
convergence with increasing the number of sample points and
dramatically more accurate probability density reconstruction
in all examples.

II. GENERAL PRINCIPLES
A. THE KRIGING SYSTEM
To introduce and explain the principles that all Kriging
interpolation methods share and establish the Kriging system
of equations in general terms, consider a stochastic function
of the following form, which may represent the scattered
field based on some input X [33], [36], [51],

Z(X) = μ(X) + ε(X), (1)

where X is referred to as a position vector in the parameter
space, μ(X) is a mean or drift function, and ε(X) is a random
error term with the expected value E[ε(X)] = 0. With
N observed values, Z(X1), Z(X2), . . . ,Z(XN), the Kriging
predictor, ̂Z(X), is given as a linear sum of these values
multiplied by unknown weights (λ),

̂Z(X) =
N
∑

i=1

λi · Z(Xi), (2)

where, generally, the hatted, ̂(·), symbology is used to
indicate an estimated or predicted quantity value instead
of the true value. The weights λi are selected based on
two conditions combined [51]. Firstly, ̂Z(X) is the unbiased
estimator of Z(X), that is, E[Z(X)] = E[̂Z(X)]. Secondly,
the variance of the estimator error, Var[̂Z(X) − Z(X)] =
Var[ε(X)], is minimized, which can be expanded into the
following expression:

Minimize : Var[ε(X)] =
N
∑

i=1

λi

N
∑

j=1

λjCov
[

Z(Xi), Z
(

Xj
)]

−2
N
∑

i=1

λiCov[Z(Xi), Z(X)] + Var[Z(X)] (3)

where Cov[Z(Xi), Z(Xj)] is the covariance between samples
Z(Xi) and Z(Xj), at input sample points Xi and Xj (also
referred to as training points), the total number of which is N,
and ̂Z(X) is the surrogate output reconstruction point. From
the first requirement, we take the expected value of (2) and
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use the assumption that E[Z(X)] = μ(X), i.e., a stationary
process, to come up with the Kriging system constraint

μ(X) =
N
∑

i=1

λi · μ(Xi). (4)

In the case of ordinary Kriging, μ(X) is assumed to be
constant, yielding the OK system constraint as follows:

N
∑

i=1

λi = 1. (5)

On the other hand, in advanced Kriging approaches, this
assumption is abandoned; namely, in the universal Kriging,
Taylor Kriging, and gradient-enhanced Taylor Kriging meth-
ods, rather than a constant, we instead assume that μ(X) can
be expressed as a sum of basis functions up to order M,

μ(X) = âTb(X) =
M
∑

l=0

âlbl(X), (6)

where bl(X) are basis functions and âl are unknown
coefficients. Thus (4) can be expressed as follows:

bl(X) =
N
∑

i=1

λibl(Xi), l = 0, 1, . . . ,M. (7)

B. EMPIRICAL COVARIANCE FUNCTION
Having specified the Kriging mean, we now outline the
covariance function. We consider two modalities: one based
on an empirical covariance function and the other on
maximum likelihood estimation (MLE) [29], [32], [36], [52],
[53]. The covariance used in Kriging is typically assumed
to be homogenous and isotropic [51], meaning that two
points in the parameter space have the same covariance if the
distance between them is equal and covariance is independent
of direction. This allows for the construction of a covariance
function C(h) that can be evaluated for any pair of Z(Xi) and
Z(Xj), where h = |Xi−Xj| is the Euclidean norm. Note that
anisotropic covariance functions, where the function is no
longer independent of direction within the input parameter
space, can also be included. While this can improve
performance in specific scenarios where data correlation
trends appear in specific directions, isotropic covariance
functions, especially the squared exponential kernel, are
typically chosen due to generally good performance in vast
majority of scenarios as well as flexibility and ease of use.
In the empirical approach, the distances are separated

into discrete bins with every pair of samples used for the
Kriging system being placed into one of these bins with N(h)
representing the number of sample points that fall within a
given bin, and an empirical covariance function is evaluated
as [52], [53]

C(h) = 1

|N(h)|
∑

(i,j)∈N(h)

Z(Xi) · Z(Xi+h) − mi · mi+h. (8)

Here, mi is the mean of function values at distance h
given by

mi = 1

|N(h)|
∑

i∈N(h)

Z(Xi). (9)

Once the empirical covariance function is created, it
is fitted according to one of several models, including
Gaussian, exponential, cubic, and spherical among others.
The commonly used Gaussian fit function is given by

C(h) = C0e
−
(

h
d

)2

, (10)

where C0 and d are hyperparameters to be fitted.

C. MAXIMUM LIKELIHOOD ESTIMATION
Within the MLE approach, rather than constructing an
empirical function, we instead aim to maximize a likelihood
function given the observed data, namely, to make the
likelihood function the most likely realization of the data as
in a Bayesian approach. The likelihood is given by

L(θ) =
D
∏

d=1

f (Xd|θd), (11)

where f (·) is the probability distribution of the data, X is
the input vector, whose dimension is D, and θ is the vector
of hyperparameters to be optimized via MLE. However,
the likelihood function is difficult to optimize directly, and
instead we use the log-likelihood function, i.e., the logarithm
of the likelihood function,

LL(θ) = logL(θ) = log
D
∏

k=1

f (Xk|θd)

=
D
∑

k=1

log f (Xk|θd). (12)

Given that the logarithm function is monotonic (always
increasing), the hyperparameter that maximizes the likeli-
hood function will also maximize the log-likelihood function,
and the computational benefit from invoking the log-
likelihood becomes evident at higher dimensions, where
we turn the multiplication into a summation that can be
independently optimized. Additionally, many probability dis-
tributions involve exponential functions, which are cancelled
by the logarithm function.
The log-likelihood function considered in this work

represents a Gaussian prior distribution likelihood given by

LL(θ)

= −
D
∑

k=1

[

log
(

2πσ̂ 2
)N

2 √|R| − (z− B̂a)TR−1(z− B̂a)
2σ̂ 2

]

,

(13)

where z is a vector of observed data, B is a matrix of basis
functions, σ̂ 2 is the variance of the data, and â are the
regression coefficients. R is a correlation function adopted as

R
(

Xi, Xj, θ
) = e−θ(Xi−Xj)2

, (14)
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and the covariance function is obtained as

Cov
[

Z(Xi), Z
(

Xj
)] = σ 2R

(

Xi,Xj, θ
)

. (15)

While there are many possible choices for the correlation
function, the Kriging systems solutions presented in this
paper will all use the Gaussian (squared exponential)
correlation function given in (14).
Maximizing (13) represents an MLE set of D nonlinear

optimization problems, with D standing for the dimension
of the parameter space in (11). To solve the optimization
problems, we use derivatives of (13) with respect to â and
σ̂ 2, respectively, leading to

â =
(

BTR−1B
)−1

BTR−1z (16)

σ̂ 2 = (z− B̂a)TR−1(z− B̂a)
n

. (17)

Substituting these expressions back into (13), we perform
the optimization as follows:

Maximize: −
[

Nlogσ̂ 2 + log|R|]
2

. (18)

This regression scheme is calculated using generalized
least squares (GLS), since GLS also requires a covariance
matrix for regression solution.

D. ADJOINT SOLUTION
For gradient enhanced Kriging models in this work, the
gradients are obtained from the suitable adjoint problem [2],
[3], [46], [47], [48], [49], where the solution does not suffer
from the curse of dimensionality, meaning it requires one
additional simulation solve for any number of uncertain input
parameters to solve for all gradients. Here we present the
solution to the adjoint problem in more general terms, so
that the result can be used for alternate choices of QoI
if desired. Then we narrow this adjoint solution to extract
the gradient specifically for material parameters, which is
directly applicable to the material parameter uncertainty as
a specific focus of this work.
For clarity with the numerical results section (though other

partial differential equations may be treated similarly), we
start with the double-curl wave equation to solve for the
scattered electric field (Esc):

∇ × μ−1
r ∇ × Esc − k2

0εrE
sc

= −∇ × μ−1
r ∇ × Einc + k2

0εrE
inc, (19)

where εr and μr are the relative permittivity and perme-
ability, respectively, of the medium and k0 is the free space
wave number, which we recast using a linear operator, L,
and the corresponding excitation function G,

LEsc = G. (20)

The adjoint operator, L∗, is defined using the Lagrange
identity [54],

〈Lu, v〉 = 〈u, L∗v
〉

, (21)

where 〈·, ·〉 denotes the standard L2 inner-product.
We consider a linear functional J of the forward solution

for Esc as the QoI [2],

J
[

Esc
] = 〈Esc, p〉, (22)

where p is the excitation to the adjoint problem as defined
by L∗v = p. The choice of p can be modified for different
choices of QoI, and v is the respective solution to the adjoint
problem. Following [2], if we then perturb some component
of the forward problem, a perturbed forward problem is
expressed as

˜L˜Esc = ˜G, (23)

where ˜E
sc

is the perturbed solution with respect to the
deterministic reference forward solution, Esc = Eref ,

˜E
sc = Eref + δEref , (24)

with δ standing for a linear operator that signifies the effects
of the perturbation, ˜L = L+δL, and similarly for ˜G. Taking
the inner product of (23) with the adjoint solution v and
applying the Lagrange identity,

〈

˜E
sc

, p
〉

= 〈Esc, p〉+
〈

δ G− δL˜Esc, v
〉

. (25)

In a practical case of relatively small perturbations, we apply
the definition of the QoI in (24) to obtain

J
[

˜E
sc
]

≈ J
[

Eref
]

+
〈

δG− δLEref , v
〉

. (26)

We focus now on the perturbation on the material
parameters, say on the reference relative permittivity of a
scatterer, εr = ε

ref
r , and a perturbation of 	εr = ε̃r − ε

ref
r .

The effects of the perturbation δLEref andδG are calculated
by taking a derivative of the left- and right-hand side of
(19), respectively, with respect to the perturbed parameter
and multiplying it by the perturbation. Substituting these
effects into (26), we arrive at

J
[

˜E
sc
]

≈ J
[

Eref
]

+ k2
0

〈(

Einc − Eref
)

	εr, v
〉

. (27)

In the case of multiple quantities being perturbed, the
perturbation becomes a vector, and the terms δLEref and δG
acquire matrix form. If we represent (27) in the form of a
first order Taylor series expansion,

J
[

˜E
sc
]

≈ J
[

Eref
]

+ 	εr ∇ J
[

Eref
]

, (28)

we can extract the gradient term, namely, the following
expression for the gradient of the QoI:

∇J
[

Eref
]

= k2
0

〈

Einc − Eref , v
〉

, (29)

to be used in our GEK and GETK methods in this work.
Importantly, we can implement this result into computation
of any gradient enhanced surrogate function, with a require-
ment of only one additional simulation solution solve.
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III. KRIGING SYSTEM SOLUTIONS
A. UNIVERSAL KRIGING
The variance of the estimator in the universal Kriging
(UK) method is given by (3), subject to (7), where basis
functions (b) are introduced as an advancement over the
ordinary Kriging (OK). This can easily be transformed
into an unconstrained optimization problem using Lagrange
multipliers (δl), leading to [33], [36], [51]:
Minimize:
N
∑

i=1

λi

N
∑

j=1

λjCov
[

Z(Xi), Z
(

Xj
)]− 2

N
∑

i=1

λiCov[Z(Xi), Z(X)]

+ Var[Z(X)] + 2
M
∑

l=1

δl

[

N
∑

i=1

λibl(Xi − bl(X)

]

+ Var

(

Z(X) + 2
M
∑

l=1

δl

[

N
∑

i=1

λibl(Xi − bl(X)

])

(30)

Taking partial derivatives with respect to λi and δl, we come
up with the following system of matrix equations that can
be solved for λ values:

[

λ

δ

]

=
[

C B
BT 0

]−1[
cxix
bx

]

, (31)

C =
⎡

⎢

⎣

Cx1x1 · · · Cx1xN
...

. . .
...

CxNx1 · · · CxNxN

⎤

⎥

⎦
, (32)

B =
⎡

⎢

⎣

b1(X1) · · · bM(X1)
...

. . .
...

b1(XN) · · · bM(XN)

⎤

⎥

⎦. (33)

C is a covariance matrix, where Cxixj is the covariance
between Z(Xi) and Z(Xj) and cxix is a vector of covariances
evaluated between Z(Xi) and Z(X), B is a basis function
matrix, and bx represents a vector of basis functions
evaluated at X.
In the UK technique, the basis functions are given by

bl(X) = Xl, l = 0, 1, . . . ,M, (34)

where the number of basis functions, M, is limited by
the following expression involving the dimension of the
parameter space, D, and the number of input sample
(training) points, N [36], [55]:

(D+M)!

M!D!
≤ N. (35)

With all the details above, the UK system of equations
in (31) is solved, and the computed weights λi are used to
construct the Kriging predictor ̂Z(X) in (2).

B. TAYLOR KRIGING
The Taylor Kriging (TK) methodology is an advancement
of the UK technique by means of special Taylor series
polynomial basis functions, instead of the power functions
in (34), that are adjusted to be more sensitive to sample

points, namely, they are centered at the average of sample
points. The Mth order Taylor series expansion of the mean
about X0, where X0 is the average of all sample inputs, is
given by [51]

μ(X) = âTb(X) = μ(X0) + μ(1)(X0)(X−X0)

+ . . . + μ(M)(X0)(X−X0)
M

K!
(36)

With reference to (6), the choices for bl(X) and a in (36)
are

bl(X) = (X−X0)
l, al = μ(X0)

(l), l = 0, 1, . . . ,M. (37)

C. GRADIENT ENHANCED KRIGING
As another advancement of the OK method, the gradient-
enhanced Kriging (GEK) formulation [29], [30], [32], [45],
which uses gradient values to enhance the accuracy of
the method, results in the following Kriging matrix equa-
tion [30]:

[

λ
˜δ

]

=
[

Ċ F
FT 0

]−1[
cxix
1

]

(38)

Here, Ċ is a composite matrix of the covariance matrix
in (32) and its derivatives, of size N(D + 1) × N(D + 1),

that contains the covariances between function values and
gradients, cxix is the same covariance vector as in (31), F =
[1, . . . , 1, 0, . . . , 0] (a vector with N unity values and the rest
being zeros), and˜δ is the associated Lagrange multiplier [30].
Note that F in the GEK method can be thought of as a
rudimentary version of the basis functions in UK or TK
methods with the order M = 0.

D. GRADIENT ENHANCED TAYLOR KRIGING
The use of adjoints to find gradient information has recently
become more explored and exploited in computational
science and engineering, so the utilization of gradients in
surrogate functions is increasingly of interest. However,
the gradient-enhanced Kriging method has been developed
typically based on the ordinary Kriging technique. The goal
here is to develop a gradient enhanced Kriging methodology
based on the TK approach instead. The novel gradient-
enhanced Taylor Kriging (GETK) method would then benefit
from both the gradient information and the basis functions
in the regression scheme. Moreover, in our approach,
the gradients are obtained from the adjoint solve to the
deterministic forward problem for a specific QoI.
Expanding the general Kriging predictor form in (2), we

introduce a GETK predictor given by

̂Z(X) =
N
∑

i=1

[

λi Z(Xi) + κi
∂Z(Xi)

∂Xi

]

, (39)

thus introducing the function gradient multiplied by a second
weight vector, κ . Satisfying the unbiased estimator condition,
E[Z(X)] = E[̂Z(X)], (7) is now expanded to

bl(X) =
N
∑

i=1

[

λibl(Xi) + κi
∂bl(Xi)

∂Xi

]

, l = 0, 1, . . . ,M. (40)
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Deriving Var[̂Z(X) − Z(X)], (3) now acquires a substan-
tially more complex form,

Minimize: Var[ε(X)]

=
N
∑

i=1

λi

N
∑

j=1

λjCov
[

Z(Xi), Z
(

Xj
)]

+
N
∑

i=1

κi

N
∑

j=1

λjCov

[

∂Z(Xi)
∂Xi

, Z
(

Xj
)

]

+
N
∑

i=1

κi

N
∑

j=1

κjCov

[

∂Z(Xi)
∂Xi

,
∂Z
(

Xj
)

∂Xj

]

+ Var[Z(X)]

+
N
∑

i=1

λi

N
∑

j=1

κjCov

[

Z(Xi),
∂Z
(

Xj
)

∂Xj

]

− 2
N
∑

i=1

λiCov[Z(Xi), Z(X)]

− 2
N
∑

i=1

κiCov

[

∂Z(Xi)
∂Xi

, Z(X)

]

. (41)

Using the same Lagrange multipliers (δ) approach and the
fact that

Cov

[

∂Z(Xi)
∂Xi

, Z
(

Xj
)

]

= ∂

∂Xi
Cov

[

Z(Xi), Z
(

Xj
)]

, (42)

the system in (41) can be recast as

⎡

⎣

λ

κ

δ

⎤

⎦ =

⎡

⎢

⎢

⎣

C ∂C
∂Xj

B
∂CT
∂Xi

∂2C
∂Xi∂Xj

∂B
∂Xi

BT ∂BT
∂Xi

0

⎤

⎥

⎥

⎦

−1 ⎡

⎢

⎣

cxix
∂cxix
∂xi
bX

⎤

⎥

⎦. (43)

The so obtained GETK matrix system can then be solved
for weights λ and κ , which constitute the solution for the
GETK predictor ̂Z(X) in (39).

The GETK system main matrix can be formally interpreted
as the GEK one in (38) with Ċ and F now containing
covariances and basis functions, respectively, as well as their
derivatives,

Ċ =
[

C ∂C
∂Xi

∂C
∂Xj

∂2C
∂Xi∂Xj

]

, F =
[

B
∂B
∂Xi

]

. (44)

Note, however, that the largest computational load in
performing both GEK and GETK methods comes from
inverting the composite covariance matrix, Ċ, which is the
same size for both methods. This means that there is very
little extra computational cost for using GETK as compared
to GEK.
The MLE formulation for covariance function, described

in Section II-C, has an additional benefit when used within
the GEK and GETK methods, where the gradients are
considered. Since we have an explicit form for the covariance
function as opposed to a fitted function in the case of the
empirical covariance, we can explicitly evaluate covariance

function derivatives. The derivatives in (43), which are
Jacobians in general dimension, are calculated using the form
of covariance in (14) and (15) as follows:

∂C
∂Xi

=
[

−2θ(k)
(

X(k)
i − X(k)

j

)

σ 2R
(

Xi, Xj, θ
)

]

k=1,...,D

(45)
∂C
∂Xj

=
[

2θ
(

X(k)
i − X(k)

j

)

σ 2R
(

Xi, Xj, θ
)

]

k=1,...,D

(46)
∂2C

∂Xi∂Xj

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎣

(

2θX(k)
i

2 − 4θX(k)
i X(k)

j

+2θX(k)2
j − 1

)

·−2θ(k)σ
2
R
(

Xi, Xj, θ
)

⎤

⎥

⎥

⎦

k,l=1,...,D

for k = l

⎡

⎢

⎢

⎣

−4θ(k)θ (l)

·
(

X(k)
i − X(k)

j

)

·
(

X(l)
i − X(l)

j

)

σ 2R
(

Xi, Xj, θ
)

⎤

⎥

⎥

⎦

k,l=1,...,D

otherwise

(47)

where the sizes of these Jacobian terms are N×ND for (45)
and (46) and ND × ND for (47). On the other hand,
when using the empirical covariance method, the derivatives
must be computed numerically using finite differences or
similar techniques. Additionally, matrix conditioning can be
a concern in many regression and interpolation schemes, and
to counter this issue in the Kriging methods, a small term is
added to the diagonal of the composite covariance matrix,
Ċ, which helps with numerical stability of the output.
It is interesting to note that the Kriging model itself

is inherently a stochastic model. So, while we propagate
uncertainty from a stochastic input variable to the output,
the model itself adds to the overall uncertainty, compared
with the Monte Carlo solution which is deterministic. A full
coverage of this can be found in [42], where we see that
the first moment of uncertainty, i.e., the mean, is unaffected,
whereas the variance of UQ is biased by the stochasticity
of the model. Additionally, this additional uncertainty due
to the model becomes very small as the number of samples
increases, and the study of the exact uncertainty of the model
and its effect on the overall uncertainty of the problem
becomes intractable as input parameter dimension becomes
large.

IV. RESULTS AND DISCUSSION
We now present numerical results obtained in comparison
of five different Kriging approaches, namely, OK, UK, TK,
GEK, and GETK methods, as well as two well-established
non-Kriging UQ methodologies, the HOPS adjoint sensitivity
analysis method [2], [3] and the PCE method implemented as
an aPC technique [50], [56], in UQ scattering problems. The
performance of each of the presented methods and solutions
is assessed in comparison with the 1000-point Monte Carlo
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(MC) simulation as a reference solution and a validation
norm.
The scattering analysis is done using higher order curvilin-

ear FEM modeling [57], [58], [59] to solve the double-curl
wave equation (19) for the scattered field Esc with an
anisotropic locally-conformal perfectly matched layer (PML)
for the computational domain termination [60]. The QoI
considered here is the monostatic radar cross section (RCS)
of a lossy dielectric sphere, with a goal of predicting material
uncertainty impact on FEM-PML RCS computations.
In all of the Kriging results in this work, we use MLE to

construct the covariance function (Section II-C) as an alter-
native to the empirical covariance function (Section II-B). In
UK, TK, and GETK implementations and simulations, we
adopt the number of basis functions, M, according to the
maximum limit allowed by (35) given the dimension of the
parameter space, D, and the adopted number of input sample
points, N, in particular test cases and analyses. In addition,
we separately limit the bases to a maximum of M = 5,
to avoid ringing effects from high degree polynomial basis
functions, also known as Runge phenomenon [61]. The OK
and GEK implementations are inherently limited to 0th order
bases (M = 0).

In all cases tested here, we use a uniform sampling
distribution of (N) input sample (training) points. While
individual Kriging implementations frequently construct an
initial discretization using Latin hypercube sampling (LHS)
or similar method and then adaptively and optimally refine
the distribution of points using a variety of techniques such
as adaptive sampling, an even distribution of sample points
where each method performs reconstruction using the same
set of points was deemed to be the most appropriate for
comparative numerical studies and evaluation of different
techniques in this work. Here, even sampling becomes
intractable in higher dimensions since the parameter space
volume grows exponentially with the dimension increase.
Instead, LHS or similar sampling schemes are typically
chosen for the initial data set. This also means that to
sample the input space with the same density with an
increase in dimension, N must increase exponentially as well.
Additionally, the size of the Kriging system matrix, whose
inversion represents the bulk of the computational load for
the model, grows as N(D+ 1) × N(D+ 1), which can also
become quite large as both N and D increase. This is known
as the curse of dimensionality, mentioned earlier, a well-
known phenomenon with many models involving sampling,
including aPC and Kriging. The mitigation of these effects
is a well-researched problem, which, however, is outside of
the scope of this work.
We also note that the initial set of sampled training

data can have a significant effect on the predicted value
from the trained Kriging model. In some cases, where
sampling does not adequately sample the parameter space,
the initial predicted value can have poor performance. By
either increasing the number of samples or changing the

initial sample distribution, we can dramatically increase the
accuracy of the initial Kriging prediction. LHS is a model
that generates random test points that fully sample the
input parameter space, and is thus typically used to sample
parameter space in high dimension. In this work, we avoid
using such sampling in order to keep an even distribution so
that all comparisons of different methods are done on equal
base.
In all cases, the input variable is assumed to be a random

variable, and we sample 1000 points to form the input
distribution. For the Monte Carlo reference simulation, we
compute the solution at each of the 1000 sample points using
higher order FEM modeling, which forms the deterministic
solution; however, this can very quickly become intractable
with computationally heavy simulations. The same sampled
input distribution is then used to predict the RCS and the
probability density function using the trained Kriging model,
where we evaluate the error with respect to the MC method
as our metric.

A. TEST CASE WITH SMOOTH OUTPUT FUNCTION
As our first test case, we consider the scattered field of
a spherical dielectric scatterer 2 m in diameter excited by
a plane electromagnetic wave at 70 MHz. The scatterer
material property constitutes the uncertain input parameter,
with the real part of the relative permittivity, εr, described by
a normal random variable (the dimension of the parameter
space is D = 1). The complex relative permittivity is
given by εr = {∼ N(6, 1.5),−2}, where the real part
of εr is described as a normal random distribution with
mean equal to 6 and variance 1.5 and the imaginary
part is taken to be constant with a value of −2. We
establish the validity and examine the performance of each
of the presented methods in comparison with a reference
1000-point Monte Carlo simulation, treated as an “exact”
solution.
In Fig. 1, we examine the convergence of the root mean

squared error (RMSE) of the surrogate reconstruction of
the probability density function versus the number of input
sample points by means of the five presented Kriging
methods, as well as HOPS and PCE methods, with respect to
the reference Monte Carlo simulation. We observe relatively
good convergence for many methods, coming from the fact
that a well-behaved, smooth, output function is relatively
easy to predict using different methods. However, even
with this well-behaved result, we still see that the novel
GETK method outperforms all other approaches by orders of
magnitude. In addition, note that the HOPS method is used,
along with the PCE method, as a non-Kriging comparison
case for these results, but it should be emphasized that while
this excellent UQ approach might require a larger number
of sample points to achieve accurate results, with large input
vectors, its true strength lies in the ability to accurately and
efficiently predict UQ problems with higher dimensions of
parameter spaces [2], [3].
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FIGURE 1. Convergence of the root mean squared error of the RCS surrogate
reconstruction of a dielectric spherical scatterer 2 m in diameter, with uncertain
relative permittivity given by a normal random distribution εr = {∼ N(6, 1.5), −2},
excited by a plane wave at 70 MHz: comparison of results obtained by five different
Kriging methods, HOPS, and PCE, with RMSE computed with respect to the reference
1000-point Monte Carlo simulation considered as an “exact” solution.

B. TEST CASE WITH RAPIDLY VARYING OUTPUT
FUNCTION
Our second test case deals with the RCS of a 2-m
diameter spherical dielectric scatterer with D = 1 and εr =
{∼ N(6, 1.5),-1} at 115 MHz. The goal of this second
comparative study is to examine the convergence of different
Kriging methods with a rapidly varying output solution, as
this represents a difficult case for any data reconstruction
method. The RMSE probability density function reconstruc-
tion results in Fig. 2 demonstrate that the GETK method
indeed converges much faster than all other techniques
tested. We see that the GEK method performs quite well
also, but still considerably underperforms the GETK results.
Overall, for each of the presented methods, we observe
much higher accuracy in Fig. 1, in the well-behaved output
function case, than in Fig. 2 for the same number of sample
points. Namely, in this case we see just how difficult it is
to use a surrogate model when the output gradients vary
significantly. Finally, a study like the one in Fig. 2 indeed
gives a quantitative measure of how much more accurate a
UQ method (the GETK method here) is in reconstructing
the uncertainty of CEM problems, that is, in outputting
probability density prediction for a quantity of interest given
the probability density of an uncertain (stochastic) input
parameter.
With the previously presented convergence studies having

established the novel GETK method as clearly the best
performing choice, Fig. 3 shows the GETK reconstruction
of the RCS QoI given only 6 sample points, for both the
smoothly and rapidly varying test cases of Figs. 1 and 2,
respectively. We see an almost exact agreement between
GETK surrogate function results, at an extremely small
number of sample points, and the reference 1000-point

FIGURE 2. RCS reconstruction RMSE convergence for the five Kriging methods,
HOPS, and PCE for a 2-m diameter spherical dielectric scatterer with input uncertain
relative permittivity given by εr = {∼ N(6, 1.5), −1} at 115 MHz. taking the reference
1000-point Monte Carlo results as an “exact” solution.

FIGURE 3. Comparison of output RCS surrogate reconstructions obtained by the
novel GETK method, at 6 reconstruction points, with the reference 1000-point Monte
Carlo (MC) simulations for the dielectric spherical scatterer analyzed in Fig. 1 (case
1) and that from Fig. 2 (case 2).

Monte Carlo solution, which demonstrates excellent recon-
struction capability of the GETK method. Whereas the error
convergence studies (in Figs. 1 and 2) are by all means
most relevant for validation and comparative evaluation of
different numerical approaches and techniques, the explicit
results for the probability density function reconstruction as
a function of the RCS QoI shown in Fig. 4 are perhaps the
most practically important, as the principal goal of a UQ
method is to reproduce an output probability density that
most closely matches the true value. These results show that
the probability density reconstruction by means of the novel
GETK method is extremely accurate even with as few as
6 sample points in both test cases, when compared to the
reference 1000-point Monte Carlo solution.
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FIGURE 4. Predicted output probability density function for the RCS QoI of two
dielectric spherical scatterers (cases 1 and 2) analyzed in Fig. 3: comparison of
results obtained by the novel GETK method at 6 reconstruction points with the
reference 1000-point Monte Carlo simulations.

C. TEST CASE WITH MULTI-PARAMETER UNCERTAINTY
Our third test case deals with multi-parameter or higher-
dimensional uncertainty, namely, with a problem where
more than one input parameter in the model undergoes
random variation. As this work compares and discusses
different Kriging (and non-Kriging) solutions to UQ scatter-
ing problems and examines the accuracy and convergence
of the solution and performance of various approaches
with emphasis on predicting material uncertainty impact on
FEM RCS computations, the most natural multi-parameter
uncertainty and higher-dimensional input in this context
seems to be a 2-dimensional (D = 2) perturbation of
both the real and imaginary components of the dielec-
tric permittivity of the scatterer. Hence, we consider the
RCS of a 2-m diameter spherical dielectric scatterer with
both the real and imaginary parts of εr being described
independently by a normal random variable, εr = {∼
N(4.5, 0.25),∼N(−1, 0.25)}, at 50 MHz, to verify the
accuracy of the presented UQ approaches and examine
the convergence of different Kriging methods. The output
Monte Carlo RCS reconstruction for this test case is the
classical “saddle” shape, shown in Fig. 5, which represents
an excellent test case for many numerical methods due to
an unstable critical point that acts as both a local minimum
and maximum depending on the axis. This test case should
be challenging for surrogate functions due to both the
higher dimensionality of the input as well as the output
shape.
Fig. 5 also shows the RCS reconstruction of the surrogate

function using the novel GETK method with only 9 sample
points, where we observe a perfect match with the reference
1000-point Monte Carlo simulation. In fact, the agreement
is so close that the 3-D rendering for this figure when the
two sets of results are shown on top of each other would
have a difficult time distinguishing between the two “saddle”

FIGURE 5. Comparison of the output RCS GETK surrogate reconstruction, at 9
reconstruction points, with the 1000-point Monte Carlo results for a 2-m diameter
spherical dielectric scatterer with both the real and imaginary components of the
permittivity independently undergoing random variations,
εr = {∼ N(4.5, 0.25), ∼ N( − 1, 0.25)}, at 50 MHz.

surfaces. Hence, the results in Fig. 5 are presented in two
separate figures, to better show the two data sets while still
demonstrating how similar/exact they are when compared to
each other and how the GETK RCS reconstruction is almost
an exact match with MC solution even with an extremely
small number of training input points.
Inspecting the convergence of the RMSE of the probability

density function reconstruction versus the number of sample
points using the five Kriging methods, HOPS, and PCE in
Fig. 6, we conclude that the novel GETK method indeed
converges much faster than all other techniques tested. We
also see that the PCE method, which is considered to be
an excellent surrogate model for UQ, starts to perform
quite well at large numbers of sample points; however, a
much more rapid convergence and lower error of GEK and
especially GETK methods with lower numbers of points are
observed.
Fig. 7 shows the probability density distribution of the 2-D

random case predicted using GETK from 9 sample points
compared with the 1000-point Monte Carlo simulation.
We observe that the novel GETK method matches the
reference solution remarkably well and predicts a prac-
tically “exact” output density function for the RCS QoI
with an extremely small number of points. Additionally,
the figure includes for reference the results for the 1-D
random case in which the input probability density has
been collapsed to the mean in the imaginary part of εr.
This demonstrates the importance of modeling all uncertain
input variables in the model, as the addition of a second
randomly varied parameter significantly affects the output
probability density function for the considered quantity of
interest.
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FIGURE 6. Convergence of the RMSE of the probability density function
reconstruction versus the number of sample points using the five Kriging methods,
HOPS, and PCE for the dielectric spherical scatterer with 2-D uncertainty analyzed in
Fig. 5, with the 1000-point Monte Carlo simulation as a validation norm.

FIGURE 7. Comparison of the probability density reconstruction as a function of
RCS QoI for the dielectric spherical scatterer with the 2-D parameter space from Fig. 5
generated by the novel GETK method at 9 reconstruction points with the reference
1000-point Monte Carlo solution. Overlayed are also the results for the 1-D random
case with the probability density of the imaginary part of εr collapsed to its mean,
εr = {∼ N(4.5, 0.25), −1}.

V. CONCLUSION
This paper has presented the implementation and use of
the Kriging methodology in uncertainty quantification in
computational electromagnetics. It has provided consistent
and unified description, derivation, implementation, and
use of several advanced Kriging approaches, namely, the
universal Kriging, Taylor Kriging, and gradient-enhanced
Kriging methods, for reconstruction of probability density
function in CEM problems. The paper has offered in-
depth and comprehensive description of Kriging, as well
as the necessary methods to calculate covariance, adjoints,
correlation, etc., so that interested readers could use this
material to construct their own Kriging method with little to
no extra resources needed.

The paper has also proposed, derived, and demonstrated
the gradient-enhanced Taylor Kriging methodology, novel
to science and engineering in general. The novel GETK
approach combines the advantages of all other methods.
It benefits from both the gradient information, like with
the GEK method, and basis functions in the regression
scheme, as in the UK and TK formulations. Moreover,
in our approach, the gradients are calculated from the
suitable adjoint problem that relates the deterministic forward
problem to a specific quantity of interest. This is the first
application of gradient enhanced Kriging with basis functions
to CEM problems.
The paper has presented validation and comparative

numerical studies of five different Kriging solutions to UQ
scattering problems and has examined the accuracy and
convergence of the solution and performance of various
approaches. Numerical results using higher order curvi-
linear FEM-PML scattering modeling have shown that
the presented Kriging methods are able to accurately and
efficiently output probability density prediction for a quantity
of interest (RCS of a scatterer) given the probability density
of stochastic input parameters (material uncertainties), with
very small numbers of sample (training) points, as a very
efficient alternative to Monte Carlo simulations.
The novel GETK method has vastly outperformed all other

approaches, Kriging (OK, UK, TK, and GEK) and non-
Kriging (HOPS and PCE), in terms of surrogate function
accuracy and convergence with increasing the number
of sample points in all examples. While this work has
shown Kriging and other results for 1-dimensional and
2-dimensional uncertainties that seemed to be the most
natural inputs in the context of predicting material uncer-
tainty impact on FEM RCS computations, the demonstrated
advancement of the accuracy with the novel GETK method
over all other approaches should translate to higher dimen-
sional surrogate problems as well and is not limited to lower
dimensional inputs.
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