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ABSTRACT In this paper, a novel dielectric resonator antenna (DRA) characterized by a compact size
and wide bandwidth is proposed. The achievement of wideband performance involves the introduction of a
metallic ring structure inside the dielectric resonato, ensuring that the antenna’s volume remains compact.
Fundamental and higher-order modes, TM01δ , TM021+δ of the cylinder DRA are first investigated by
using E-field distribution analysis, and it is found that these two modes are hard to resonate in proximity
to each other. Therefore, a thin metal ring, acting as a perturbation structure is inserted into the DR to
perturb the E-field of the higher-order mode and reduce its resonant frequency. Consequently, the resonant
frequency of the TM021+δ mode is significantly decreased, with only a slight effect on the TM01δ mode.
The resonant frequencies of the three resonances, i.e., TM01δ , TM021+δ and probe-mode, are moved in
proximity to achieve a wide impedance bandwidth. For experimental validation, a prototype is fabricated
and tested. The measured results show the proposed antenna achieves a bandwidth of 51.1% with a low
profile of 0.156λc, where λc represents the wavelength at the center frequency. With these advantages,
the proposed design is well-suited for mounting on vehicle platforms, particularly for 4G (2.6 GHz) and
5G (3.5 GHz) communications.

INDEX TERMS Dielectric resonator antenna (DRA), bandwidth improvement, vehicular communications.

I. INTRODUCTION

DIELECTRIC resonator antennas (DRAs) have been
studied extensively over the past years since they were

reported by Long et al. in 1983 [1]. With the advantages of
compact size, light weight, low cost and more degrees of
freedom than 1-D-type and 2-D-type antennas [2], [3], [4],
they have become a promising candidate for many wireless
communication systems, such as vehicular communications
and mobile communications. In vehicular communications,
except for a wide band to cover more wireless frequencies,
low profile and small footprint are also highly desired.
By employing compact wideband antennas, systems can
achieve high data rates and throughout in complex vehicular
networks [5], [6], [7].
Seceral bandwidth enhancement techniques have been

developed for the design of DRAs. One straightforward
method involves using stacked structures or introducing

parasitic dielectric elements around the feeding probe. In [8],
[9], an impedance bandwidth of more than 35% was achieved
by vertically stacking two different DRs. To further broaden
the bandwidth, various designs, such as multi-segment
DRA [10], T-shaped DRA [11], or multi-layered DRA [12],
have been developed. These designs can achieve a 10-dB
impedance bandwidth of higher than 60%. The introduction
of parasitic elements has been shown to increase bandwidth,
as demonstrated in [13]. However, these reported designs
tend to increase the complexity or profile of DRAs, even with
the enhanced bandwidth. Low-profile DRAs with a height of
approximately 0.1λ0 (where λ0 is the free-space wavelength)
was exploited in [14], [15], [16]. Nonetheless, the achieved
bandwidth in these cases was relatively narrow.
The impedance bandwidth of DRAs can be enhanced

through the use of modified shapes, as explored in [17], [18],
[19], [20]. In [17], an inverted truncated DRA with a 50%
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bandwidth was successfully implemented. Additionally, [18]
conducted an investigation on a probe-fed isosceles triangular
DRA (TDRA), demonstrating an impedance bandwidth
of 47.4%. However, these designs still faced challenges
associated with high profiles.
In addition to the methods mentioned above, using higher-

order modes of the DR can also expand the bandwidth of
the DRAs [21], [22], [23], [24], [25], [26]. In [21], [22],
[23], [24], the higher-order mode of the cylindrical DRA
(HEM113 mode) [21], [23] or rectangular DRA (TE113

y

mode [22] or TE131 mode [24]) was utilized and can be
moved in proximity to its fundamental mode by finely-
tuning the geometric parameters of the DR, thus achieving
an improved bandwidth by merging these two resonance
modes. However, these designs have a limited increment
in bandwidth as only one higher-order mode is utilized.
In [25], [26], multiple higher-order modes such as TM02δ ,
TM03δ and TM04δ of the DRAs are amalgamated to enhance
the bandwidth. However, the introduction of an annular
column adds complexity to the antenna design. Additionally,
this approach aims at enhancing bandwidth by leveraging
the benefits of small-size DRAs and thin planar monopole
antennas. As documented in [27], [28], [29], [30], hybrid
antennas comprising ring DRAs excited by an axi-symmetric
coaxial monopole were explored, resulting in an ultrawide
bandwidth (UWB) response. Nevertheless, this method is
constrained by a high profile with a height of 0.25λ0.
In [31], a UWB DRA named inserted DRA excited by a
coplanar waveguide with 5.08 mm thickness, approximately
0.1λ0, was exploited. Whereas, the antenna gain is below
3 dBi within the desired frequency band. Consequently,
achieving a DRA with both a wide operating bandwidth
and compactness simultaneously remains a challenging
task.
In this paper, an effective design method is presented

to widen the impedance bandwidth of the DRA by com-
bining its fundamental TM01δ mode, higher-order TM021+δ

mode and the probe mode. To reallocate the three radi-
ating resonant modes in close proximity, a thin metal
ring is inserted into the DR surrounding the feeding
probe to perturb the E-field distribution of the higher-
order mode. In this aspect, the resonant frequency of
the TM021+δ mode gradually decreases while the other
two frequencies are maintained. Consequently, the three
modes can be merged for bandwidth improvement. appli-
cation of the perturbation technique [32], [33] to adjust
the resonant frequency of the higher-order TM021+δ mode
for enhancing the bandwidth of the DRA. Compared to
the aforementioned designs, the proposed configuration is
much more compact and simple. With the benefits of
wide bandwidth and a compact geometry, the proposed
antenna emerges as a promising choice for vehicular
applications.
The rest of this paper is organized as follows. In

Section II, the basic principle of the DRA is investigated

FIGURE 1. Geometry of the cylindrical DR with a permittivity of εr . (a) 3-D view;
(b) front view.

based on the E-field distributions and theoretical analysis.
Section III presents the antenna geometry and measurement
performances. Section IV provides a parametric study and
corresponding discussion. Finally, Section V concludes the
paper.

II. THEORY
In this section, the basic principle of the proposed DRA
is studied to illustrate how the resonant frequency of the
higher-order mode of the antenna is decreased by loading
the metal ring structure through the theoretical analysis.

A. E-FIELD DISTRIBUTIONS OF TM01δ AND TM02δ

MODES
Considering a cylindrical DR as depicted in Fig. 1, it is
with a permittivity of εr, a height of 2H and a radius of r0,
respectively. By using the eigenmode solver in Ansys HFSS,
this DR is analyzed and the simulated E-field distributions
of TM01δ and TM02δ modes are plotted in Fig. 2. It is
observed that for TM01δ mode, the E-field mainly focuses
on the central of the DR with two nulls occurred at a
distance of r away from the central of the DR. As for
TM02δ mode, the E-field intensities at the above two nulls
are comparatively strong. It means that if a perturbation is
introduced herein by using the metal structure, it would exert
a serious influence on the Ez component of TM02δ mode but
only with a slight effect on that of TM01δ mode. Thus, to
facilitate it, the null areas of TM01δ and TM02δ modes are
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FIGURE 2. Simulated E-field distributions inside the DR. (a) TM01δ mode; (b) TM02δ

mode.

primarily necessary to mathematically calculate for guiding
the addition of the possible metal structure. The subsequent
section provides a thorough presentation of the calculation
processes for detailed analysis.

B. CALCULATION
According to [34], the Ez component of the TM01δ or TM02δ

modes can be expressed as:

Ez = J0(hr)cos(βz) (1)

where J0 is the zero-order Bessel function of the first kind.
The values of h and β are the wavenumber in the r-direction
and z-direction, respectively. The rough values of h and β

can be determined by the assumption that the DR surfaces
(including top, bottom and side surfaces) are considered as
perfect magnetic walls. Then, h is enforced to satisfy the
requirement [32]:

J′
0(hr0) = 0 (2)

For the case of the TM01δ mode, h and β can be derived as

h = X′
01

r0
= 3.832

r0
(3)

β = π

2H
(4)

For the case of the TM02δ mode, h1 and β1 can be
derived as

h1 = X′
02

r0
= 7.016

r0
(5)

β1 = π

2H
(6)

where

J′
0

(
X′

0n

) = 0 (n = 1, 2, 3, . . .) (7)

Substituting (3) and (4) into (1), and let Ez = 0, it can
be derived:

J0

(
X′

01

r0
r

)
= 0 (8)

Thereafter, the ratio of r and r0 can be calculated by

X′
01

r0
r = X01 (9)

r

r0
= X01

X′
01

= 2.405

3.832
= 0.63 (10)

The results of the TM02δ mode can be analyzed and
derived in the similar way as follows:

J0

(
X′

02

r0
r

)
= 0 (11)

X′
02

r0
r = X0i(i = 1, 2) (12)

r

r0
= X01

X′
02

= 2.405

7.016
= 0.34 (13)

r

r0
= X02

X′
02

= 5.520

7.016
= 0.79 (14)

The calculation results show that at the radius of r =
0.34r0 and r = 0.79r0, the Ez component of the TM02δ mode
becomes zero. And as for the TM01δ mode, the null point
of the Ez component is occurred at r = 0.63r0. Based on
the analysis in Section II-A, it can be determined that the
perturbation structure can work at the vicinity of r = 0.63r0.
The calculation results are also marked in Fig. 2.
It should be noted that the above calculations are also

suitable for the TM021+δ mode, because the value of h in the
TM02δ and TM021+δ modes is the same under the perfect
magnetic wall assumption. Therefore, the perturbation tech-
nique can be applied in the case of the TM01δ and TM021+δ

modes which are employed in this design.

C. RELATIONSHIP BETWEEN E-FIELD AND RESONANT
FREQUENCY
The preceding subsections focus on the examination and
calculation of the radius suitable for introducing the per-
turbation technique, as determined through an analysis of
the E-field distribution. The main objective of this paper
is to devise a compact DRA with enhanced bandwidth
by diminishing the resonant frequency of the TM021+δ

mode using the perturbation technique. To demonstrate the
perturbation mechanism, the relationship between the E-field
and the resonant frequency is investigated. For the TM01δ

mode of a cylindrical DR, the wavenumber k0 in the air and
the resonant frequency f0 can be given by

εrk
2
0 = h2 + β2 (15)

f0 = k0c

2π
(16)

where c is the velocity of light in the free space. Once
the values of h and β are known, f0 can be calculated
through (15) and (16). According to (1), h and β are used
to describe the Ez component of the TM01δ mode, and
with reference to (15) and (16), the resonant frequency
of the TM01δ mode is also determined by h and β.
It indicates that the perturbation of the E-field can be
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reflected on the resonant frequency through h and β. Other
modes of the DR can also be analyzed in a similar way.
Therefore, the perturbation of the E-field will result in the
variation of the resonant frequency.
Based on the above analysis, it can be concluded that at

the radius of r = 0.63r0, the perturbation can be introduced
to alter the resonant frequency of the TM021+δ mode. In this
design, a thin metal ring serves as the perturbation structure.
It is acknowledged that the metal surface can be treated as a
perfect electric wall, and the E-field will be perpendicular to
the perfect electric wall. Conversely, the E-field component
parallel to the metal surface will minimize since the E-field
distribution must adhere to the boundary condition. Hence,
if a thin metal ring with a radius of r = 0.63r0 is positioned
axially within the DR, it can strongly influence the resonant
frequency of the TM021+δ mode by changing its E-field
distribution. In contrast, the resonant frequency of the TM01δ

mode is only slightly affected because its Ez component at
this location is the weakest. Most significantly, by judiciously
introducing the metal structure, the volume of the DR can be
significantly reduced [35], [36], [37]. Therefore, the metal
ring serves not only as a perturbation structure to broaden the
impedance bandwidth, but is also instrumental in creating a
compact DRA geometry. These two advantages are of utmost
significance for vehicular platform applications.

III. ANTENNA GEOMETRY AND MEASUREMENT
In order to validate the enhancement of bandwidth, this
section compares the performance of DRA with and without
the perturbation structure.

A. DRA WITHOUT PERTURBATION STRUCTURE
Fig. 3 shows the 3-D view of the DRA without the pertur-
bation structure. It is a cylindrical DR with a permittivity
of εr = 16, a height of H1 = 14 mm and a radius of a1 =
23 mm. A thin substrate (εr = 2.2) with a thickness of hs =
1 mm is sandwiched between the ground and the DR. The
ground plane is with a radius of rg = 46 mm. The antenna is
centrally fed by a coaxial probe to radiate the monopole-like
pattern. To illustrate its frequency response, Fig. 4 shows the
simulated |S11| of the structure. It can be seen from the figure
that three resonant frequencies are generated in the frequency
band of interest, but the impedance matching in the high-
frequency band is worse, resulting in a narrow bandwidth.
Fig. 5 displays the E-field distributions inside the DRA at 2.5
and 4.26 GHz, indicating that the first resonance is caused
by the TM01δ mode and the third one is due to the TM021+δ

mode. Also, it can be analyzed that the second mode is
introduced by the feeding probe.

B. DRA WITH PERTURBATION STRUCTURE
To overcome the aforementioned impedance matching issue,
a thin metal ring with a height of hr and a thickness of
t1, acting as a perturbation structure, is added inside the
DR as part of the proposed design, as depicted in Fig. 6.

FIGURE 3. 3-D view of the DRA without the perturbation structure.

Based on the above investigation in Section II, the inner
radius of the inserted metal ring is set as r1 = 0.63a1.
In the following discussion, the sizes of the ground and
the DR remain the same as those in Section III-A to
facilitate a direct comparison. Fig. 8 depicts the simulated
|S11| of the proposed antenna. Referring to the figure, it
is observed that the third resonant frequency is notably
shifted downward from 4.26 GHz to 3.94 GHz, whereas the
resonant frequency of the TM01δ mode slightly moves from
2.5 GHz to 2.58 GHz. To verify the operating modes of the
DRA with inserted metallic ring, the E-field distributions
of the DRA at 2.58 GHz and 3.94 GHz are given in
Fig. 7. With reference to Fig. 5(a) and Fig. 7(a), the E-field
distributions inside the DRA with and without inserted
metallic ring are nearly the same when operating at the
TM01δ mode. As for the TM021+δ mode, the DRA with
and without the inserted metallic ring own similar E-field
distributions, as shown in Fig. 5(b) and Fig. 7(b). This is as
expected because, as discussed above, the inserted metal ring
has a very slight perturbation effect on the TM01δ mode due
to the weak E-field intensity. Therefore, it can be concluded
that the addition of the metal ring structure contributes
to the bandwidth improvement. By merging the operating
band of the TM01δ , TM021+δ and probe modes together,
a wide bandwidth is achieved. The −10 dB impedance
bandwidth is significantly increased from 23.5% to 51.6%
(2.39 GHz∼4.05 GHz). Owing to the simple bandwidth-
enhanced mechanism, the entire DRA configuration is very
compact.

C. MEASUREMENT
For demonstration, a bandwidth-improved DRA was fabri-
cated and tested. Photographs of the fabricated prototype are
depicted in Fig. 8. Its geometrical parameters are listed in
Table 1. In the prototype, the inserted metal ring inside the
DR is realized through the metal plating process rather than
by physically inserting a metal inside. Since the metal plating
process is well-established, it does not introduce fabrication



GU and GE: COMPACT DRA WITH IMPROVED BANDWIDTH VIA LOADING OF METAL RING 400

FIGURE 4. |S11| of the DRA without the perturbation structure.

FIGURE 5. E-field distributions of the DRA without the perturbation structure.
(a) 2.5 GHz; (b) 4.26 GHz.

complexity or high cost. The reflection coefficient was
measured with a Keysight N5225A network analyzer, whereas
the antenna gains and radiation patterns were obtained by
using a near-field measurement system.
The measured |S11| of the prototype are presented in

Fig. 9. It is observed that the measured operating band
slightly shifts upward compared to the simulated one.
The measured −10 dB impedance bandwidth is 51.1%
(2.49 GHz∼4.2 GHz), which is very close to the simulated
one. The simulated and measured gains are also compared in
Fig. 9. As can be seen from the figure, the measured in-band
peak gain is given by 6.4 dBi, which corresponds well with
the simulated result of 5.7 dBi. The simulated and measured
efficiencies are compared in Fig. 10. As can be observed
from the figure, the measured efficiency of the proposed
DRA antenna is higher than 88% over the impedance pass-
band. Good agreement is obtained between the simulated and
measured results. The small deviation is mainly attributed
to manufacturing, assembly and experimental tolerance.
The simulated and measured radiation patterns of the

prototype in the elevation (xoz-plane) and azimuth (xoy-
plane) planes at 2.6 GHz and 3.9 GHz are plotted in Fig. 11.
In the elevation plane, there is a radiation null in the
boresight direction (θ = 0o), while the azimuth radiation

FIGURE 6. Geometry of the antenna with perturbation structure. (a) 3-D view;
(b) Bottom view; (c) Cross section view.

pattern is omnidirectional. Moreover, the elevation angle
corresponding to the maximum radiation decreases as the
frequency increases. This is reasonable because the electrical
size of the ground plane increases with frequency. Radiation
patterns at other frequencies are also measured and they
remain stable across the passband.

IV. PARAMETRIC STUDY AND DISCUSSION
A parametric study is carried out to further demonstrate the
working mechanism of the design. The simulated |S11| with
different values of hr is depicted in Fig. 12. It is observed
that the resonant frequency of the TM021+δ mode gradually
decreases as the value of hr increases, and the resonant
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FIGURE 7. E-field distributions of the DRA with the perturbation structure.
(a) 2.58 GHz; (b) 3.94 GHz.

FIGURE 8. Photographs of the prototype: (a) Disassembly view; (b) Assembly view.

TABLE 1. Dimensions of the proposed antenna.

FIGURE 9. Simulated and measured results of the proposed antenna.

frequency of the TM01δ mode moves slightly. It is reasonable
because as the value of hr increases, h and β of the TM021+δ

mode vary significantly, resulting in a large fluctuation in
the resonant frequency. On the other hand, the values of h
and β in TM01δ mode are affected slightly, maintaining a
relatively stable resonant frequency.
The comparison of the proposed design with some

previously reported works in terms of the footprint, profile,
impedance bandwidth, etc. is summarized in Table 2. It can
be seen that the designs in [9], [18], and [20] use stacked

FIGURE 10. Simulated and measured efficiency of the proposed antenna.

FIGURE 11. Simulated and measured radiation patterns of the antenna. (a) 2.6 GHz;
(b) 3.9 GHz.

DR, triangular DR and high aspect ratio DR structures for
impedance-bandwidth improvement. However, this method
has an effect on antennas’ profile, hence are not suitable
for low-profile platform applications. A conical-shaped DRA
in [17] is developed to reduce the antenna height to 0.17λ0.
In [15], [16], the DRA mode and the shorting-pin mode [15]
or aperture mode [16] are skillfully combined to enhance
the bandwidth with a height of ∼ 0.1λ0. In [24], a lower-
profile DRA (0.07λ0) with extended bandwidth by properly
modifying the dielectric characteristics of the designated
region is presented. However, the obtained impedance
bandwidths of these designs are not wide enough. A broad
bandwidth of more than 90% is realized by combining a
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TABLE 2. Comparison of the proposed and reported antennas.

FIGURE 12. Simulated |S11| of the antenna with different values of hr .

monopole antenna and a DRA, but its profile is as high
as 0.43λ0 [28]. The designs presented in [25] and [26]
have similar antenna profiles and impedance bandwidths
as the proposed one, nevertheless, these designs have the
disadvantages of bulky volume or a large footprint. In
contrast to many previously reported designs, the proposed
work not only has a simple and compact antenna structure,
but also possesses a bandwidth of more than 50%. Moreover,
the structure is simple and easy to be fabricated. Hence,
the results indicate that the proposed design is a promising
candidate for vehicular platform applications.

V. CONCLUSION
A compact DRA with improved bandwidth has been inves-
tigated in this paper. A thin metal ring was employed as
a perturbation structure to reduce the resonant frequency
of TM021+δ mode of DRA. It has been shown that the
fundamental TM01δ mode, the higher-order TM021+δ mode

and probe mode can be simultaneously excited to achieve
a wide bandwidth with conical radiation patterns. The
proposed bandwidth-improved methodology results in a
simple and compact antenna configuration. A prototype was
fabricated and measured to validate the design. Simulation
and measurement results showed good agreement, revealing
that the −10 dB impedance bandwidth could be increased
from 23.5% to 51.6% using the proposed perturbation
structure. With advantages such as wide bandwidth, well-
controlled radiation patterns, compact size, and ease of
fabrication, the proposed design holds promising prospects
for applications in vehicular communication systems.
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