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ABSTRACT The fifth generation (5G) mobile communication systems employ technologies such as
massive MIMO, millimeter-wave (mmWave), and ultra-dense networks to support higher transmission
data rate and lower latency, thereby enabling commercial deployment. Furthermore, the forthcoming sixth
generation (6G) networks will integrate terrestrial and non-terrestrial networks, aiming to achieve full
spectrum, full applications, and global coverage. Whether in the context of 5G or 6G networks, base
transceiver stations (BTS) require a substantial number of radio frequency (RF) transceiver chains and
antenna array, particularly in mmWave frequency bands. It is known that bandpass RF filters between
antenna elements and transceivers are key components for suppressing out-of-band spurs and interference.
The single board seamless integration of transceivers and antennas has become a growing trend. It means
there is no extra room for a large number of filters at mmWave bands, leading to the emergence of
integrated designs that combine filtering circuitry with antennas, known as filtenna or filtering antenna.
With illustrated examples, the design methodologies, operational principles, and implementation strategies
of filtennas are reviewed in this paper.

INDEX TERMS Filtenna, filtering antenna, 5G communications, 6G communications, radiation null,
filtering circuitry, coupled resonator theory, coupling matrix, multipath coupling, cross coupling, open-
circuited stub, collaborative type, fusion type.

I. INTRODUCTION

MOBILE communication technology has evolved
substantially over the last fifty years, delivering aston-

ishing outcomes. Each generation of mobile communication,
from the first to the current fifth, has undergone distinct
levels of advancement in channel capacity, bandwidth,
data rate, and security. Fig. 1 illustrates multiple access
technologies and transceiver chains spanning from 1G to 5G.
Specifically, the first-generation (1G) of mobile communi-
cation realized the transformation from wire communication
to wireless analog communication based on technologies
such as AMPS, TCAS, and NMT [1]. With the further
development and maturity of technologies such as integrated
circuits (ICs), microprocessors, and digital signal processing,

digital technology using TDMA is introduced into second-
generation mobile systems to substitute analog technology,
thus boosting their channel capacity, anti-interference and
safety [2]. The 1G and 2G base transceiver stations (BTS)
employ a single-input single-output (SISO) system, and their
radiation part are typically low-gain antennas to provide a
wide coverage. Given the tremendous demand for mobile
Internet access, some advanced CDMA technologies, such
as WCDMA, TD-SCDMA, and CDMA2000, have been
proposed in third-generation (3G) mobile systems to achieve
relative high uplink and downlink peak rates [3], [4]. The
primary distinction between 3G network technology and the
previous two generations of communication networks is that
it fully supports a wider range of multimedia technologies.
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FIGURE 1. Multiple access technologies and transceiver chains spanning from 1G to 5G.

Immediately afterwards, 3GPP proposed LTE and LTE-A as
the technical standards of 3.9G and 4G based on MIMO
and OFDM technologies, respectively, ushering in greater
intelligence in mobile terminals [5], [6], [7]. Diversity gain
and spatial multiplexing are implemented to the baseband in
3G and 4G BTS for MIMO architectures, and the number
of channels typically equal to or less than 8.
Starting from 2019, 5G has been officially commer-

cialized, employing sub-6GHz (FR1) and millimeter-wave
(mmWave) (FR2) bands, with a peak rate of
10 Gbps [8], [9], [10]. The 5G base stations exploit massive
MIMO [11], mmWave [12], ultra-dense networking (UDN)
technologies [13] to support higher data rate and lower
latency. The AAU in commercial 5G BTS recruits a
phased-subarray-based hybrid multibeam array, supporting
up to 64 or more transceiver chains with even more
radiating elements [14]. Although 5G has made considerable
advancements over 4G communication systems, it can be
tricky to acquire sufficiently superior connections in some
application scenarios and services, such as global coverage,
ultra-low latency, ultra-high data rate, ultra-high positioning
accuracy, and ubiquitous wireless intelligence [15]. Countries
and standardization organizations around the world have
conducted preliminary research on sixth-generation (6G)
to tackle the aforementioned limitations and challenges.
Overall, the 6G will integrate terrestrial and non-terrestrial
networks, which is expected to be descripted as “Global
coverage, all spectrum, full applications, all senses, all
digital, and strong security” [16]. In comparison to the
terahertz frequency band, the mmWave has undergone full
development of the 5G era, the device capability has been
vastly enhanced, the industrial chain is fully developed and
rich, and it can fulfill most of the application requirements
of the 6G system, so it will be the initial option for the
6G network. Among them, the full-digital multibeam based
massive MIMO in mmWave band is expected to become one
of the key technologies of 6G, which requires the number of
transceiver channels to be equal to or greater than 64 [17].

With the growth of semiconductor technology in recent
years, chips have evolved in a manner of high integration,
low power consumption, low cost, and multifunction, making

5G/6G mmWave massive MIMO array and phased-array
systems integrated into single printed-circuit-board (PCB)
using innovative multichannel beamforming chips, effec-
tively decreasing the volume, weight, cost, and power
consumption of devices [18], [19]. Fig. 2 depicts a typical
5G/6G mmWave massive MIMO system architecture based
on phased array technology. As a key component of
wireless communication system, the filter is typically resided
between the antenna and the RFIC to suppress out-of-
band spurs, local oscillator leakage, and image frequency
interference to provide excellent radiation performance.
However, it invariably brings the following issues: 1) it
requires the design of extra matching circuits, which increase
the workload and development cycle; 2) it increases the
footprint of the RF chain, which is incompatible with the
miniaturization and integration design of the RF circuit;
and 3) it introduces additional insertion loss and degrades
the cascaded noise figure [20]. Furthermore, hundreds or
even thousands of filters need to be encompassed into
the RF front-end for the emerging 5G/6G mmWave SoB
(system on board ) architecture, which drastically increases
the cost. Added to that, there is no extra room for a
large number of filters. As a result, it is critical that
the filter be merged into the antenna, and then it results
in a new component: Filtenna, which is becoming a key
technology for seamless SoB/SoP/SiP integration of antenna,
passive elements and integrated circuits of radio systems.
The concept of filtenna is stemmed from a Ph. D. dissertation
and patent reported in [21] and [22], and its merits as
reported in [170] have demonstrated that filtennas are highly
suited for miniaturized and low-cost platforms. Filtennas
have been thoroughly developed in recent years due to their
attractive features, and two distinct design methodologies
have gradually emerged: 1) collaborative type; 2) fusion
type. This paper reviews the advances in microwave and
mmWave filtennas in recent years. Section II illustrates
various collaborative-type filtennas. In Section III, the design
theory and method of filtennas based on fusion type are
summarized and compared. In Section IV, the performance
comparison and discussion between various filtenna types,
followed by conclusion in Section V.
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FIGURE 2. Typical system architecture of 5G/6G mm-Wave massive MIMO array based on phased array technology.

FIGURE 3. Scheme of IBFC-based filtenna.

II. COLLABORATIVE-TYPE FILTENNA
The collaborative-type filtennas involve the integrated design
of both the filter and the antenna. This type of filtennas is
classified into two design methodologies: 1) implanting the
bandpass filtering circuitry (IBFC) into the feeding network
of the antenna to filter out spurious signals, and 2) utilizing
the radiating element as the final stage resonator of the
filtering circuitry and employing coupled-resonator theory
(CRT) for the overall design. In the following sections, the
basic operation principle, design, and applications of the two
design methodologies of filtennas are discussed.

A. IBFC-BASED FILTENNAS
Fig. 3 delineates the scheme of the IBFC-based filtenna.
Differing from the scenario involving cascaded filter and
antenna, impedance matching at the interface is taken into
account in the filtenna design. The filtering characteristics of
the first type of filtenna mainly depend on the IBFC-based
feed network, including bandwidth, gain selectivity, and out-
of-band suppression. Different types of filtering circuits such
as resonant cavity [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], microstrip resonator [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42], [43], [44], [45] and reconfigurable
resonator are embedded in the feed network to obtain band-
limited radiation characteristics. It should be noted that
the bandwidth of the filtering circuit is usually narrower
than the operating bandwidth of the radiating element to

ensure proper system function within the desired frequency
band [56].
Metallic or substrate-integrated waveguide resonant cavi-

ties exhibit higher Q-factor, resulting in reduced losses and
enhanced frequency selectivity. As illustrated in Fig. 4(a),
a planar COCO filtenna based on alternately series-fed
microstrip antenna was proposed in [32], which achieves
high selectivity by implanting a third-order substrate-
integrated waveguide (SIW) inductive window bandpass
filter. It should be noted that the SIW filter is integrated into
the microstrip feed network of the planar COCO antenna,
which can obtain a relatively compact footprint. As a result,
unwanted out-of-band signals are effectively suppressed, and
only the signal passing through the bandpass filter excites
the radiating element.
In order to improve the gain of the RF link, a high

directional radiation beam and frequency selectivity can be
realized simultaneously by constructing a filtering power
division network. Typically, as shown in Fig. 4(b), a wide-
band 2×2 patch array filtenna based on four-way filtering
power divider was proposed in [34] with favorable harmonic
suppression. By ingeniously loading multiple short-circuited
and open-circuited stubs in the four-way differential power
divider, several transmission zeros (TZs) appear on the
both sides of the passband, which effectively improves the
harmonic suppression. The filtenna, which is based on the
power division network and sponsored by the U-slot patch
array, possesses a wide bandwidth, high gain, low cross-
polarization level, and the harmonic suppression of up to
three times the center frequency.
Furthermore, as an important form of filter, the recon-

figurable filtering circuit is critical to the scalability of
the filtenna. The frequency and bandwidth of the filtering
circuit is controlled by loading pin diodes, varactor diodes,
and MEMS switches on the resonator to accommodate the
requirements of various application scenarios to accomplish
multi-functional multiplexing. A frequency-reconfigurable
filtenna is proposed in [50] with sharp out-of-band rejection
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FIGURE 4. (a) Resonant cavity-based filtering circuitry. (reproduced from [32])
(b) Microstrip-type filtering circuitry. (reproduced from [34]) (c) Reconfigurable
resonator filtering circuitry. (reproduced from [50]).

in both its wideband and continuously tunable narrowband
states, as shown in Fig. 4(c). The filtenna is primarily
made up of a funnel-shaped monopole and a reconfig-
urable filtering circuit. A broadband multi-mode resonator,
a narrow-band resonator, and two parallel coupled lines

FIGURE 5. (a) Coupling and routing diagram of an Nth-order filtenna. (b) Planar
structure of the Nth-order filtenna (reproduced from [58]).

comprise its filtering circuit. By altering the state of the
pin diode on the multi-mode resonator, it is possible to
switch between the broadband and narrowband modes. The
two varactor diodes serve to constantly adjust the operating
frequency in the narrowband state.
In broad terms, the filtenna based on IBFC provides

superior filtering properties, which are defined by the
performance of the inbuilt filtering circuit. However, it
invariably results in relatively low radiation efficiency,
excessive circuit footprint, degrading the signal-to-noise ratio
of the receiver.

B. CRT-BASED FILTENNAS
The CRT-based filtering antenna swaps the last resonator
and load impedance of a multi-order bandpass filter with
a radiating antenna that presents a series or parallel RLC
equivalent circuit, and its design process is generally rep-
resented as a coupling matrix [57]. According to coupled
resonator theory, the coupling between different resonators,
as well as the coupling between a resonator and the last-
stage radiating antenna, is typically represented by a J/K
inverter [58]. As an outcome of the formation of several
resonance points (similar to transmission poles), CRT-based
filtennas frequently have an appropriately wide bandwidth
in comparison to conventional antennas. It should be noticed
that as the order of the CRT-based filtenna increases, the
frequency selectivity of the filtenna enhances, as does the
spur suppression level, which is consistent with the nature
of the filter.
Similar to the conventional filters, the most representative

feature in the CRT-based filtenna is the Nth-order direct-
coupled filtering response, with its coupling and routing
diagram depicted in Fig. 5(a). A co-design approach for
direct-coupled filtenna synthesis based on lumped element
model is proposed in [58] and verified with L-shaped
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radiating antenna and N-1 parallel coupled line resonators,
as shown in Fig. 5(b). The design is accomplished by first
extracting the circuit model of the antenna, then casting it
into the synthesis of a typical parallel coupled line filter.
As a proof-of-concept, a filtenna based on a third-order
Chebyshev response provides good skirt selectivity and
flat in-band gain as a design example. Without restricting
the antenna model, coupling coefficients between cascaded
resonators and I/O external quality factors (Qe) in a Nth-
order filtenna are retrieved in [57], [59]. To safeguard the
primary filtering characteristics, the radiation quality factor
of the filtenna (Qr) needs to coincide with the external
quality factor of the filter, and the coupling coefficients
between resonators and radiating antenna are calculated
by means of customary coupled resonator theory. With
merits of low-loss and high-power capability, a large number
of resonant-cavity-based filtennas such as SIW [60], [61],
[62], [63], [64], [65], [66] and waveguide [67], [68], [69],
[70], [71] have been thoroughly reported in the designs of
the microwave/mmWave antenna with excellent frequency
selectivity. To maintain high frequency selectivity, direct-
coupled filtennas typically possess relatively large size,
making them challenging to implement for multi-beam
applications. To address this issue, the fully shielded eight-
mode SIW (FSD-EMSIW) cavity with both high Q factor
and compact footprint is proposed in [60] and adopted
as resonators in the filtenna array design, as shown in
Fig. 6(a). The filtenna with a direct-coupled fourth-order
bandpass filtering response integrates the resonator and
radiating structure into a multi-layer printed circuit board,
including two stacked patch antennas and two FSD-EMSIW
resonators. The coupling between the resonant cavity and
the stacked patch is achieved through a rectangular aperture.
Furthermore, by etching orthogonal rectangular apertures
on the M3 layer, the filtenna can be extended to dual-
polarization operation. As shown in Fig. 6(b), in order to
meet the requirements of 5G mmWave applications, a 4×4-
element single-polarized phased array with a 20dB stopband
suppression level and ±45◦ beam-scanning capability has
been designed and validated, which can cover the N257 and
N258 frequency band (i.e., 24.25 GHz ∼ 29.5 GHz).
The above-mentioned direct-coupled topology is employed

in a radiating element design and demonstrates outstanding
filtering performance. Nevertheless, for the purpose to form
a high-gain filtering response in a two-dimensional array, an
all-resonator-based filtenna array is proposed in [59] [72],
[73], [74], [75], [76], [77], [78], [79], which offers the
flexibility of controllable bandwidth of array antenna as
well as the ability to avoid the extra insertion loss and
design difficulty caused by the matching circuit in the
power division network. As depicted in Fig. 7, an all-
resonator-based 8×8-element filtenna array is proposed for
the high-efficiency terahertz applications [72]. The coupling
diagram encompasses an over-mode cavity, high-order mode
(TE8,1,0 mode) waveguide transmission lines, and radiating
slots. Its ingenuity lies in achieving high-selectivity filtering

FIGURE 6. (a) Configurations of FSD-EMSIW cavity-fed filtenna with direct-coupled
response. (b) Its measured radiation patterns and frequency response. (reproduced
from [60]).

response by introducing virtual electric walls in the feeding
network, while simultaneously significantly enhancing the
radiation efficiency. It should be noted that by varying the
coupling strength between resonators, the amplitude-tapering
feed network required for low sidelobe filtennas can be
achieved [74].

In addition to the direct-coupled response, the advanced
multi-path coupling methodology [80], [81], [82], [83], [84],
[85] has also been introduced into the resonator and antenna
designs to create radiation nulls, so as to improve the roll-
off rate coefficient and stopband suppression level. The
cross coupling is strategically implemented in filtenna design
to create radiation nulls at the finite frequencies to boost
the selectivity. The typical coupling topology of cascaded
trisection (CT) and cascaded quadruplet (CQ) responses
are both verified to construct R-probes fed dual-polarized
filtering patch antenna [81]. As expected for a CT filtenna,
with an assumption that the direct-coupling and cross-
coupling paths are out of phase, a single radiation nulls
appears above or below the gain passband, the position of
which is predicted by the coupling matrix. As a solution
to introduce more radiation nulls at finite frequencies, the
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FIGURE 7. Configuration and frequency response of a high efficiency
all-resonator-based filtenna array (reproduced from [72]).

CQ topology has four cascaded nodes, each with one
cross coupling, so that a pair of radiation nulls can be
created near the gain passband. As a kind of multi-path
coupling methodology, source-load coupling is introduced
in the filtenna design by using a radiating microstrip line
to feed the antenna, and generates radiation nulls on either
side of the passband, thereby constructing a quasi-elliptic
filtering response, which has the merit of reducing the
number of resonators and providing radiation efficiency [83].
Furthermore, the concept of multi-mode resonators is also
constructed to further introduce more coupling paths and
widen the operating bandwidth and reducing the order of
the filtenna [86], [87], [88], [89], [90]. The N+2 coupling
matrix is a powerful tool to assist in the designs of
multi-mode filtenna, which can be obtained by transverse
matrix synthesis technique and matrix rotation technique. By
judiciously and skillfully designing the signs of input and
output couplings from the source and load terminations to
resonator nodes in the core matrix (i.e.,MSi andMLi), several
radiation nulls are obtained outside the gain passband [91].
Operating in multiple independent frequency bands to

access different services with multi-mode terminals builds
further demands on the multifunctional and highly integrated
design for filtenna to accommodate this multiband RF signal
reception and transmission into a single RF transceiver.
Mixed resonators or multi-mode resonators are routinely
exploited to construct such a filtenna [84], [92], [93], [94],
[95], [96], [97]. As shown in Fig. 8(a), the fully-shielded
quarter-mode SIW (FSD-QMSIW) cavity is proposed to
build the three-order dual-band filtenna by using the first
two modes, namely TE101 and TE103 modes. Among them,
the TE101 mode resonates in the n258 band, while the
TE103 mode is responsible to the n260 band. The dual band
multi-path coupling topology is accomplished by coupling
the mmWave signal in FSD-QMSIW to two pairs of ring
patches stacked on the M1 and M2 layers. As a result, four
radiation nulls appear near the gain passband to improve
the stopband attenuation for dual-polarization operation. To

FIGURE 8. (a) Configurations of CRT-based dual-band filtenna with multi-path
coupling. (b) Its measured setup, radiation patterns, and frequency response.
(reproduced from [97]).

consolidate the validity of the design strategy, the passive and
active 1×4-element filtenna array is fabricated to verify beam
scanning capability and filtering performance, as shown in
Fig. 8(b). The scanning angles of the filtenna array are
up to ±45◦ at 26 GHz and ±30◦ at 39 GHz, respectively.
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The gains drop between two bands is greater than 20dB
for dual-polarization state. In addition, the development of
multiplexing filtenna is also particularly essential to the
multi-standard communication systems, as it can not only
drastically minimize interference between different antennas
for various services, but also reduce the footprint of the
antenna.
Since the CRT-based filtennas employ the radiating

antenna as the last order resonator of the filter, their band-
widths are frequently wider than the IBFC-based filtennas.
Likewise, as compared to the IBFC-based filtennas, it can
minimize the footprint of the filtenna even further. Naturally,
whether the filtenna is based on CRT or IBFC, a portion of
filtering circuit is retained, resulting in the drawbacks of a
large footprint and relative low efficiency. As the CRT-based
filtenna still involves a trade-off between overall size and
frequency selectivity, it additionally promotes the growth of
filtenna research.

III. FUSION-TYPE FILTENNAS
In recent years, starting from solving the issue of excessive
footprint and seeking to better integrate the designs of the
antenna and filter, a fusion design strategy that does not
call for extra or fewer filtering circuits has been presented
and deeply embraced with filtenna design. This fusion-
type filtenna integrates resonant components in parallel
with a radiating antenna based on the radiation reshaping
method, establishes a filtering response by creating radiation
nulls near the gain passband. Such a bandstop function
preforms efficiently in the antenna design to choke off
signal transmission over its stopband, while maintaining a
perfect radiation for the operating frequency band. This
particular category of filtennas can be delineated into the
following quintessential domains based on the mechanisms
underlying the generation of radiation nulls: 1) evolved
radiator; 2) defected ground structure (DGS) on the ground
plane of the antenna; 3) parasitic structures near the radiator;
4) evolved feeding topologies. To generate multiple radiation
nulls for improving the selectivity of the passband, vari-
ous permutations and combinations of the aforementioned
aspects are typically employed.

A. EVOLVED RADIATOR
The adaptation of the radiator involves employing sophis-
ticated techniques such as etching slot on the radiating
element [98], [99], [100], [101], [102], [103], [104],
[105], [106], [107], [108], [109], incorporating an array
of short-circuited metallic vias [110], [111], [112], [113],
[114], [115], introducing open stubs connected to radiating
structure [116], [117], [118], [119], [120], [121], exciting
radiator with intrinsic radiation nulls [122], [123], [124],
and parallelizing multiple resonating elements [125], [126],
[127], all orchestrated to cancel the broadside radiation to
attain a refined filtering response.
In retrospect of slot-loading technique, it is found that they

hold pervasive utility in bandwidth enhancement strategies,

FIGURE 9. Fusion-type filtenna with slot-loading technique based on (a) radiating
patch (reproduced from [100]) and (b) ALTSA (reproduced from [101]).

exemplified by structures like E-shaped and U-shaped slots.
Subsequently, by ingeniously and judiciously devising slot-
loading techniques, it becomes possible to manipulate the
electric field distribution of radiators and introduce multiple
coupling paths between radiators, thus engendering the tai-
lored filtering responses. This technique typically embodies
two salient attributes: firstly, its radiation behavior within the
operating frequency range aligns with that of conventional,
unloaded radiator; secondly, it orchestrates the generation
of radiation nulls at the margins of the antenna efficiency
curve, thereby yielding a gain response characterized by a
gradual attenuation, commonly referred to as the roll-off
phenomenon [128]. Concretely, taking the patch antenna as
a prime illustration, individual slot or multiple pairs of slots
are introduced into the radiator design, as shown in Fig. 9(a).
These slots are predominantly positioned in a symmetrical
manner on either side of the feeding point [100]. As
anticipated, it retains the integrity of the current distribution
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of the fundamental TM10 mode. Even more remarkably, it
bestows radiation nulls at specific frequencies, owing to the
mutual cancellation of circumferential currents induced by
the excitation of distinctive slot modes. It is worth noting
that the incorporation of multiple pairs of slots with varying
lengths can lead to the excitation of multiple slot modes, thus
further enhancing the frequency selectivity. Furthermore,
in dielectric resonator antenna design, the incorporation of
etched slot may give rise to a combination of slot mode
and cavity mode, subsequently introducing multiple radiation
nulls at the passband edges [106]. Similarly, analogous slot-
loading techniques are also applicable to traveling-wave
filtenna design. As illustrated in Fig. 9(b), the introduction
of broad-coupled complementary split ring resonator (BC-
CSRR) within the overlapping area of two flaring plates
in ALTSA can suppress unwanted signals by introducing
strong resonances [101]. Consequently, in contrast to the
low-frequency radiation nulls generated due to the high-pass
characteristics of SIW, BC-CSRR induces radiation nulls in
the higher frequency bands. The electric field distribution
at 30.6 GHz reveals that BC-CSRR obstructs the forward
propagation of radio frequency signals. Within composite
structures featuring multiple radiators, the incorporation of
etched slots could potentially introduce augmented coupling
paths, leading to the occurrence of cross-coupling or mixed
electric and magnetic couplings [130].
Due to their inherent shunt inductive characteristics,

shorting pins often induce alterations in the original electric
field distribution and electrical dimensions of the radiating
antenna. Nevertheless, with skillful arrangement, they can
also broaden bandwidth [113], ameliorate impedance match-
ing [114], and induce radiation nulls at the edges of the
passband. As illustrated in Fig. 10(a), for the stacked patch
configuration, the introduction of several shorting pins to
the driven patch layer has altered the current distribution in
the lower frequency range [131]. It leads to an opposing
current distribution between the shorting pins and the feeding
probe, thereby creating radiation nulls in the upper stopband.
In the realm of slot-loaded patch configurations, shorting
pins also play a role in enhancing impedance matching and
generating radiation nulls at specific frequencies [132], as
exemplified in Fig. 10(b). It is evident that the electric field at
the radiating edge weakens upon the loading of shorting pins.
This phenomenon arises from the parallel-series resonance
established by the equivalent capacitance of the slot and the
equivalent inductance of the shorting pins, thus inhibiting
broadside radiation. It is vital to emphasize that the location
of radiation nulls is determined by the resonant frequency
of the parallel-series resonant circuit.
Open stubs, serving as resonant components, have been

utilized in microstrip bandstop filter [128]. In recent years,
owing to their capacity to introduce controllable radiation
nulls through their interaction with the radiating structure,
they have exerted a substantial impact on the landscape
of filtenna design. When a single stub is loaded onto the
radiating element, radiation nulls occur at a stub length

FIGURE 10. Fusion-type filtenna with multiple metallic via holes for (a) stacked
patch (reproduced from [131]) and (b) slot-loaded patch configurations (reproduced
from [132]).

FIGURE 11. Fusion-type filtenna with open stubs and without open stubs.
(reproduced from [133]).

of approximately one-quarter wavelength, thereby efficiently
shorting this point to ground plane. As depicted in Fig. 11,
four additional stubs are incorporated along the short sides
of octagonal slot to introduce supplementary radiation null
and resonant point, thereby enhancing both bandwidth and
frequency selectivity [133]. At the newly created resonant
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FIGURE 12. Fusion-type filtenna with DGS on the ground plane. (reproduced
from [140]).

point, the vector sum of the surface currents on the open
stubs, synergistically contributing to gain superposition and
bandwidth enhancement. On the other hand, at the radiation
null point, the vector sum of the surface currents on the stubs
opposes and cancels out those on the feed line, giving rise to
the generation of radiation null. Moving beyond the confines
of the single stub loading configuration, several techniques
such as Y-shaped [116] and inverted-F [119] stubs have
also been innovatively explored and developed to establish
multiple radiation nulls.
Owing to high-order mode radiation and equivalent trans-

mission line models, several radiators inherently possess
radiation nulls, example of which include dielectric resonator
antenna [122], cavity-backed antenna [123], and magneto-
electric dipole antenna [124]. Furthermore, parallelizing
multiple resonating elements not only effectively broadens
the bandwidth but also facilitates the creation of radiation
nulls through multi-path coupling [125], [126], [127]. It is
worth noting that the locations of these radiation nulls are
determined by the feeding arrangement.

B. DGS ON THE GROUND PLANE
Given its capacity to effectively incorporate inductive and
capacitive components [134], [135], DGS is frequently
employed in the design of low-pass filters. The resonant
frequency of DGS is governed by a parallel L-C circuit. As
a result, from a practical standpoint, the DGS section can
serve as a viable alternative to parallel L-C resonator in
numerous scenarios, such as filtenna design [136], [137],
[138], [139], [140], [141], [142], [143], [144], [145]. The
DGS are typically etched beneath the radiator to change
current distribution for achieving robust backward radiation,
consequently leading to the broadside null. As shown in
Fig. 12, two circles of C-shaped DGS are etched onto the
ground plane of a multi-mode monopolar circular patch
antenna to facilitate the generation of two radiation nulls
in the lower stopband. It is observable that due to the
perturbation of DGS, opposite currents are induced along
the inner and out arc-shaped patches. The surface current on
the outer patch remains relatively weak at lower radiation
null frequency, yet exhibits significant enhancement at higher
radiation null frequency. This observation signifies that these

FIGURE 13. Configuration and electric field distribution of the RGW-fed filtenna with
parasitic loop. (reproduced from [146]).

two radiation nulls are attributed to the inner and outer DGS,
respectively.

C. PARASITIC STRUCTURES NEAR THE RADIATOR
In the fusion-type filtenna design, an efficacious approach for
incorporating radiation nulls involves the parasitic structure
near the radiating aperture. These parasitic configurations
can be categorized into coplanar and non-coplanar structures
based on their spatial relationship with the radiating ele-
ment. Typically, these parasitic structures impart a marginal
increment in circuitry or a slight elevation in profile height.
Typically, coplanar parasitic structures introduce supple-

mentary circuitry into the array, encompassing elements such
as loops [146], [147], [148], [149], [150], [151], [152],
[153], patches [154], [155], [156], and strips [157], [158],
[159], [160], [161], [162], [163]. Taking the loop structure
as an illustration, as depicted in Fig. 13, the metasurface
antenna fed by printed ridge gap waveguide (PRGW)
technology is established as elucidated in [146], wherein the
parasitic loop is employed atop the driving patch layer and
encircles it. By incorporating parasitic loop, two radiation
nulls are introduced in the lower stopband, concurrently
inducing in-band resonance to further widen the bandwidth
(i.e., new resonant point). To delve into the mechanism
of radiation null generation, simulations were conducted
on the surface current of the metasurface antenna [See
Fig. 13]. As observed, at the two radiating null frequencies,
most of the energy is concentrated in the parasitic loop
and very little energy is coupled to the radiating antenna.
Therefore, a superior radiation suppression level is achieved
in lower frequency band. At the new resonant frequency,
the upper metasurface antenna is effectively excited, and its
current distribution is nearly in phase, resulting in enhanced
broadside radiation.
Non-coplanar parasitic structures are commonly employed

by superimposing an additional metallic surface above the
radiating aperture, encompassing configurations such as
stacked patches [164], [165], [166], [167], [168], [169], reso-
nant structure [170], [171], [172], [173], metamaterial [174],
near-field parasitic antenna [175], [176], vias [177], and the
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FIGURE 14. Geometry and electric field distribution of stacked patch based on SISL
platform. (reproduced from [150]).

like. The stacked patch technique facilitates the attainment
of favorable electrical performance across wide bandwidths,
consequently rendering it extensively applicable in band-
width enhancement. By adroitly exploiting the coupling
between the driven patch and the stacked patch, this tech-
nique introduces supplementary radiation nulls and resonant
points in the filtenna design. As illustrated in Fig. 14, the
differential-fed stacked patch antennas, as expounded upon
in [150], serves to elucidate the mechanism underlying
the generation of radiation nulls. Insight from the current
distribution at radiation null frequency reveals a distinct con-
centration of current along the perimeter of the rectangular
loop. These currents cancel each other in the x-direction,
while in the y-direction, their flow aligns with that of the
driven patch. Despite the heightened strength of the currents
on either side of the stacked patch, their orientation stands
in opposition to that of the rectangular loop. As a result,
far-field radiation along the boresight direction mutually
cancelling, leading to the emergence of radiation nulls.
Resonant structures typically positioned above the radiat-

ing aperture, such as frequency selective surfaces (FSS), split
ring resonator (SRR) arrays, and polarizers, confer radiating
antenna with substantial filtering responses. The locations
of radiation nulls intricately tied to the characteristics of
these resonant structures. As shown in Fig. 15, a filtenna
is properly constructed in [170] by covering FSS at horn
aperture. The high-Q substrate integrated waveguide cavity
FSS (SIWC-FSS) furnishes a radiating null in the upper
stopband to enhance frequency selectivity. The transmis-
sion responses under both normal and oblique incidence
effectively corroborate the merits of the filtenna in terms
of filtering response, anti-interference, radar cross section
(RCS) reduction.

D. MODIFIED FEEDING TOPOLOGIES
By enhancing traditional feeding topologies and fully
exploiting their transmission characteristics, it is possible
to generate radiation nulls within the desired frequency
bands. From a global perspective, the evolved methods
for feeding topology in accordance with this typically fall
into four distinct categories: 1) loading open-circuited/short-
circuited stubs; 2) Integrating filtering structures; 3) feeding
structures possessing inherent filtering properties; 4) hybrid
feeding topologies. To gain a better understanding of the

FIGURE 15. Fusion-type filtenna consisting of horn antenna and SIWC-FSS.
(reproduced from [170]).

FIGURE 16. Fusion-type filtenna with hybrid multiple stubs loading in feed
topology. (reproduced from [192]).

aforementioned methods, each of these approaches will be
analyzed and elucidated in the following sections.
According to transmission line theory, a segment of

terminated open-circuit or short-circuit transmission line,
the input impedance approaches infinity or zero at specific
frequencies [20]. This characteristic is applicable to the
generation of radiation nulls, and as such, it is captured in
the design of feeding topologies for filtenna [178], [179],
[180], [181], [182], [184], [185], [186], [187], [188], [189],
[190], [191], [192], [193], [194], [195], [196], [197], [198],
[199], [200], [201]. In the case of hybrid multiple stubs
loading configurations, the locations of radiation nulls can
be predicted using a multi-port network [192]. As depicted
in Fig. 16(a), the complementary pair of a short-circuited
stub and an open-circuited stub (CSSOS) is developed in
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the aperture-coupled stacked patch antenna to generate two
extra radiation nulls, thereby suppressing the undesired 1st

harmonic and enhancing the lower stopband suppression
level. In this design, the equivalent circuit of the antenna
is derived, and the complementary relationship between
open-circuited stub and short-circuited stub is obtained by
setting the transmission response S21 = 0 for the two-
port network. Consequently, by judiciously adjusting the
characteristic impedance of the feed line and the electrical
lengths of CSSOS, the location of the radiation nulls can
be controlled within the desired frequency band. Benefitting
from its compact dual-polarization design, this radiating
element can be extended to active phased-array applications.
T/R circuits are integrated on the backside of the filtenna
and interconnected through metallized hole. Experimental
validation has confirmed the ±40◦ beam-scanning capability
and stopband rejection level exceeding 30dB for the 32-
element active phased array, as delineated in Fig. 16(b).
Additional filtering structures are presented in the feeding

topology in the forms of parallel-coupled resonators [143],
[202], [203], [204], [205], [207], [209], resonant cavi-
ties [206], and slot resonator [208], among others. This aligns
seamlessly with the design of microstrip bandstop filters.
What sets it apart from collaborative-type filtennas is that
the integration of filtering structures in the feeding topology
is geared towards generating radiation nulls and enhancing
selectivity, without introducing excessive circuit footprint.
Typically, it involves only a single resonator.
Another significant methodology for generating radiation

nulls in the feeding topologies involves feeding struc-
tures with inherent filtering properties. By adjusting the
parameters of these feed networks, the location of the
radiation nulls can be flexibly controlled. In this regard,
the foremost consideration pertains to transmission lines
endowed with filtering characteristics, such as SIW and rect-
angular waveguide [210], [216], among others. Taking SIW
as an illustrative example, owing to its high-pass filtering
attributes, antenna designed with SIW as the guiding-wave
structure inherently exhibit steep selectivity and higher
suppression levels in the lower stopband [222]. Furthermore,
the series feed network is comprehensively analyzed for
its in-band and out-of-band response to demonstrate its
inherent filtering properties [211], [212], [215]. Within the
operating frequency range, the induced currents on the
radiating element are in phase, resulting in high boresight
gain. At the out-of-band frequencies, the radiating elements
are either not excited or the induced currents on them are out
of phase, leading to radiation suppression. Although series
feed networks can achieve excellent filtering characteristics
by creating fixed radiation nulls, their operating bandwidth
is often constrained by the array scale. Additionally, specific
feeding configuration [213], [214], due to the formation of a
resonant structure, are capable of generating radiation nulls.
Distinguished from the collaborative-type filtennas, the

fusion-type filtennas stand apart by obviating the need
for the incorporation of resonator structures. It achieves

FIGURE 17. Fusion-type filtenna based on multiple coupling slots. (reproduced
from [219])

cross-coupling or hybrid electric and magnetic coupling
solely through the introduction of multiple feeding nodes,
thereby circumventing an augmentation of the footprint of
the antenna. Taking the patch antenna as an illustrative
example, the introduction of multiple coupling slots [217],
[218], [219] and the incorporation of additional strips [220]
and feeding probes [221] along the transmission path give
rise to the induction of radiation nulls and resonant points.
Two parallel coupling slots are etched between the feed
lines and rectangular patch enclosed by U-shaped parasitic
patches [219], as depicted in Fig. 17, to furnish extra
coupling paths. Slot-2 is positioned at a quarter-wavelength
distance from Slot-1 and assumes responsibility for the
coupling pathway from the feeding port to free space. Due to
the quarter-wavelength separation between Slot-1 and Slot-2,
a 90◦ phase delay is inherent in the nascently engendered
coupling pathway. Consequently, a 180◦ phase difference
between Paths 1 and 3 ensues, thereby giving rise to a
radiation null at the upper edge of the passband.
The fusion-type filtenna, without introducing conspicuous

filtering circuits, achieves its dual capability of in-band
radiation and the suppression of extraneous out-of-band
interference by seamlessly integrating the filter and antenna
in its design. This innovative approach addresses the issue
of oversized dimensions in collaborative-type filtennas,
ultimately enabling compact, highly integrated, and multi-
functional designs.

IV. COMPARISON AND DISCUSSION
Table 1 provides a comprehensive performance compari-
son for various filtenna types. Collaborative-type filtennas
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TABLE 1. Performance comparison for various filtenna types.

commonly employ a cascading arrangement of multiple
resonators, resulting in a substantial physical footprint
and comparatively high insertion losses. Furthermore, the
additional losses introduced by supplementary filtering cir-
cuits can potentially compromise the radiation efficiency
of collaborative-type filtennas. In contrast to collaborative-
type filtenna, fusion-type strategy does not call for extra or
fewer filtering circuits, thus showcasing relatively compact
footprint. Fusion-type filtennas frequently employ parallel
resonant structures to generate stopband characteristics, min-
imizing their impact on in-band performance. Consequently,
they offer flexibility in bandwidth and frequency selectivity
control by adjusting the geometric dimensions of the
antenna without altering its fundamental structure. It is
noteworthy that, owing to the diminishing element spacing
in phased array configuration and constraints imposed by
commercial multi-layer PCB processes, fusion-type filtennas,
characterized by their compact nature and simple stacked
structures, facilitate seamless integration with silicon-based
multi-channel RF chips, thereby enabling beam scanning
capabilities. In the case of CRT-based filtennas, the incorpo-
ration of resonators with wide bandwidth, miniaturized area,
and desirable stopband suppression characteristics, coupled
with a simple stacked structure, renders them compatible
with the integration paradigm expounded in this paper.

V. CONCLUSION
In essence, this paper conducts a comprehensive review
of filtennas or filtering antennas and categorizes them
into two distinct integrated design methodologies, namely,
collaborative and fusion-type approaches. Exemplifications
are provided to elucidate the operational principles, design
methodologies, and implementation strategies for these two
different types. It is worth noting that, in comparison to
the previous four generations of mobile communication,
the 5G and 6G networks require the integration of a
greater number of RF transceiver chains, higher frequency
bands, and enhanced flexibility, all while maintaining a
significantly superior electrical performance. We believe that
seamless integration technology for filtenna will play an even
more pivotal role in future commercial telecommunications
infrastructure than ever before.
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