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ABSTRACT In this paper, a wide-angle linearly scanning leaky-wave antenna (LWA) based on spoof
surface plasmon polaritons (SSPPs) with a very high scanning rate is proposed. A sine curve period is
introduced to construct the SSPPs transmission line in the form of a sine curve, which can transform
the dispersion curve to the fast wave region to realize the desired dispersion properties for linearly high
scanning rate LWA. The simulated results show that the proposed LWA achieves a scanning angle range of
109◦ over a narrow operation bandwidth of 7.73–8.13 GHz, implying high linearity, and a high scanning
rate. A prototype is fabricated and measured, indicating that the measured scanning angle range is 100◦
within the frequency band of 7.82–8.21 GHz, and the relative average scanning rate (RASR) is 2053.4◦.
Compared with ideal linear scanning in the operating frequency band, the mean absolute value error
(MAVE) of the measured scanning angle-frequency curve is 1.032◦, which validates the proposed design
with good agreement between the simulated and measured results. The high scanning rate and scanning
linearity performances of the LWAs exhibit great value in reducing both the occupation of electromagnetic
spectrum resources and the requirements of accuracy for transmitters and receivers, respectively.

INDEX TERMS Leaky-wave antenna (LWA), high scanning rate, linear scanning, spoof surface plasmon
polaritons (SSPPs).

I. INTRODUCTION

THE LEAKY wave antenna is a guided wave structure
that continuously couples electromagnetic waves to

space along the transmission line, for which the radiation
direction is determined by the phase propagation constant on
the transmission line and period of periodic antenna structure
[1], [2]. LWAs are widely used in radar and communication
systems due to their advantages of beam scanning without
the need of mechanical scanning, as well as the performances
of low cost and high gain [3], [4], [5], [6], [7], [8].
High scanning rate LWAs have tremendous advantages in

radar and electromagnetic imaging, reducing the bandwidth
requirements of digital-to-analog converters and baseband
signal processing systems [9], [10], [11], [12]. LWAs can be
divided into two categories, which are fast wave antennas
and slow wave antennas [13], [14], [15], [16]. For fast wave
antennas, the phase propagation constant is smaller than the
wave number k0 of the free space, which means it can radiate
energy into free space as the wave travels faster than the wave
speed in free space. Since the phase propagation constant is
greater than 0, fast wave antennas can only radiate forward.
The phase propagation constant of the slow wave antenna
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is larger than k0, for which the periodic structure is needed
to generate the higher harmonics appearing in the fast wave
region.
There are three general methods to achieve periodic LWA

of planar structures. One method is to utilize periodic
structures on the transmission line itself [9], [17], [18],
[19], [20], [21], [22], such as SSPPs LWAs with periodic
impedance modulation [23], SSPPs LWAs that utilize their
own periodicity [24], and metagrating [25], [26], [27].
However, the periodic structure itself can affect the trans-
mission line’s dispersion curve, increasing the difficulty of
adjustment. The second method is to load periodic patches
around the transmission line or periodically open gaps on
the transmission line [18], [28], [29], [30], [31], [32]. This
does not affect the dispersion curve of the transmission line,
but the size of the patches or gaps limits the minimum
period of the LWA. The third method is to periodically
bend the transmission line, such as the Goubau line LWAs
with periodic bending [33], [34] and the SSPPs LWAs with
periodic bending [35]. This simple structure avoids affecting
the dispersion curve of the transmission line and achieves
small periods, increasing the adjustment range of the periodic
LWAs.
In wireless systems with the requirement of beam scan-

ning, the scanning rate of a LWA is an important evaluation
metric [36]. An LWA with a high scanning rate can achieve
a large angle beam scanning in a narrow frequency band,
reducing the band occupation and transceiver requirements
while maintaining the device’s performance. In recent years,
related researchers have conducted in-depth research on
high scanning rate LWAs [9], [10], [11], [12], [36], [37],
[38], [39], [40], [41], [42], which not only greatly improve
the scanning rate of LWAs, but also realize circularly
polarized [39], [43], dual-beam [12], wide-angle [9], [11],
[38], [42], gain-stabilized high scanning rate LWAs [38], etc.
Also, the scanning linearity of the LWA is another important
index to evaluate the antenna performance. With linear
scanning, the scanning beam of the antenna varies uniformly
when the operating frequency changes, reducing the accuracy
requirements of radar and communication systems. To the
best knowledge of the author, only one paper combined
these two indexes to achieve a linear scanning of 6.7◦- 67.5◦
operating from 11.1 to 12.1 GHz [36], but it has a high
profile and can only radiate forward because it is a fast wave
waveguide LWA.
In this paper, a SSPPs LWA with sine period-bending is

proposed to implement wide-angle linear scanning and a high
scanning rate. The dispersion curves for the linear scanning
and high scanning rate leaky antenna are investigated. SSPPs
structure is used to manipulate the dispersion characteristic of
the transmission line, and the sine period-bending structure
makes it coincide with the desired dispersion curves of
the designed LWA. Measurement results show that the
proposed antenna achieves a linear scanning of 100 ◦ and
a high scanning rate within 7.82-8.21 GHz. This antenna
shows important applications in reducing the bandwidth and

FIGURE 1. Schematic of the proposed LWA with high scanning rate and linear
scanning performances.

equipment accuracy requirements of radar and communica-
tion systems.

II. PRINCIPLE AND ANALYSIS
Fig. 1 shows the schematic of the proposed LWA with a
high scanning rate and linear scanning performance. The
transmission line is bent along the sine curve (1) to transform
the equivalent propagation constant into the radiation region
and the nth-order equivalent propagation is shown in (2) [36].
A high scanning rate means the beam can cover a wide range
within a narrow operational frequency band, while linear
beam scanning property means the scanning angle varies
with frequency uniformly. To achieve these desired functions,
the dispersion curve of the LWA is studied, which determines
the beam scanning characteristics of the LWA [36].

O(x) = M sin(2π/Λx) (1)

where M is the amplitude of the sine function, and Λ is the
period.

βn = βunit + 2πn/Λ (2)

where βn is the equivalent propagation constant of the nth
order and βunit is the transmission line propagation constant.

A. PRINCIPLE OF LINEAR SCANNING
The relationship between the operating frequency of the LWA
and the radiation angle for linear beam scanning performance
can be described as:

θ = af + b (3)

where f is the operating frequency, θ is the angle between the
beam direction and the normal of the antenna surface, a and
b are arbitrary constants. As shown in (4), the radiation angle
is determined by the propagation constant of the LWA [36]:

sin(θ) = β

k0
(4)

where β is the propagation constant and k0 is the wave
number in free space. According to (3) and (4), the relation
between desired dispersion curves and constants a and b can
be obtained, as shown in (5):

β = 2π

c
· f · sin(af + b) (5)
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FIGURE 2. Dispersion curves of linear scanning LWA with variables of (a) a =
2×10–9, b = 0, (b) a = 7×10–9, b = 0, and (c) a = 2×10–9, b = 10.

Linear dispersion curve with a low slope in the fast wave
region can achieve linear beam scanning performance. Fig. 2
shows the typical dispersion curves with different a and
b according to (5). The red and green lines are k0 and
−k0, which represent radiation angles of 180 ◦ and −180 ◦,
respectively. The black lines are the dispersion curves of
linear beam scanning as we proposed. Any section of the
black line starting with the green line and ending with the
red line represents a scanning range of −180 ◦ to 180 ◦.
According to Fig. 2 (a) and (b), the constant a only affects
the slope of the dispersion curve, and the dispersion curve
can be regarded as a straight line in the region from −k0
to k0 as a increasing. On the contrary, the constant b only
changes the initial phase of the dispersion curves, without
any effect on the slope. In other words, the β can almost all
overlap with any linear dispersion curve with a low slope
when a is large enough and b is suitable.

B. PRINCIPLE OF HIGH SCANNING RATE
PERFORMANCE
The scanning rate describes the speed of beam scanning
with the change of frequency, which can be quantitatively
analyzed by the relative average scanning rate (RASR), as
shown in (6) [36].

SRASR = Δθ

Δf /fc
(6)

here �θ (Deg.) is the beam scanning range, �f is the
scanning frequency bandwidth and fc is the center frequency.
To investigate the relationship between scanning rate and
linear scanning, equation (3) is substituted into (6), as shown

FIGURE 3. The value of RASR(Deg.) with different a.

FIGURE 4. SSPPs unit cell.

in (7), from which we can find that the RASR is only affected
by a with a constant coefficient fc:

SRASR(rad) = fc · a (7)

Fig. 3 shows the RASR with different a with center
frequency of 8 GHz. As we discussed, a high scanning rate
and high scanning linearity can be achieved with a large
value of a in (3).

III. DESIGN AND ANALYSIS OF THE PROPOSED LWA
To achieve a LWA with a high scanning rate and scanning
linearity, the dispersion curve of the open transmission line
needs to be designed with a low slope. Then, its equivalent
dispersion curve can be overlapped with the desired disper-
sion curve in the fast wave region by introducing period
structure. SSPPs are utilized here to realize the desired open
transmission line. Fig. 4 shows the proposed SSPPs unit cell
structure, which is composed of a perfect electric conductor
(PEC) ground, a lossless dielectric substrate with a relative
permittivity of 2.2, and a cross-shaped PEC patch on the
top. Here p is the period, and h is the thickness of the
unit cell, l1, l2, w are the parameters of the cross-shaped
patch. To analyze the electromagnetic characteristics of the
proposed unit, the commercial electromagnetic simulation
software CST Microwave Studio is used to simulate the
dispersion curve. With an air box that has a thickness of
60 mm placed on the unit cell, the boundaries along the x
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FIGURE 5. Dispersion curves with different (a) period p, (b) gap width p-w, and
(c) metal strip length l1, respectively.

and y axes are set to be periodic and the boundary along
the z axis is electric (Et = 0).

Fig. 5 shows the dispersion curves with different param-
eters. Fig. 5 (a) shows the effect of period p on the
dispersion curve while w/p keeps to be a constant. The cutoff
frequency and the maximum propagation constant increase
as p decreases. So a long enough dispersion curve with a low
slope can be obtained with a smaller value of p to overlap
the desired dispersion curve. Fig. 5 (b) shows the effect of
the gap width (p-w) between two branches while p keeps
to be 4 mm. It can be seen that the gap width has almost

TABLE 1. Parameters of LWA unit cell structure.

no impact on the dispersion curve of the unit cell. Fig. 5
(c) shows the effect of length l1 on the dispersion curve
while p and w are set to be 4 mm and 2 mm, respectively.
It illustrates that the cutoff frequency of the dispersion curve
becomes smaller and the slope becomes more uniform with a
smaller slope change at the end range as l1 increases, which
can overlap with the desired dispersion curve better. So by
optimizing two parameters p and l1, the desired dispersion
curve can be realized.
To obtain a quasi-linear dispersion curve segment with a

low slope, p and l1 are optimized to be w = 0.5p, and the
optimized parameters are shown in Table 1. Then, to make
the dispersion curve of the −1st order coincide with that of
(3), the modulation period Λ, a, and b are optimized at the
same time.
The optimization process of antenna parameters is as

follows:

1. Determine the a of the antenna in (3) as required.
According to (7), a can be determined according to
the required scanning rate and operating frequency.
Take any value b and plot the ideal linear scanning
dispersion curve as shown by the black line in Fig. 6.

2. Change the period p of the unit and the length l1 of
the branch to simulate the dispersion curve βunit of
the unit. Then the transmission line formed by this
unit is bent along the sine curve of period Λ, and
the equivalent transmission constant obtained is βunit−
2π /Λ, as shown in the purple curve in Fig. 6.

3. Adjust b and Λ so that the purple and black lines
coincide. If it does not coincide, go back to step 2
and change the values of l1 and p until the purple and
black lines coincide.

Fig. 6 shows the ideal −1st order dispersion curve and
beam directions of the optimized linear scanning SSPPs LWA
with a = 4.333 × 10–9, b = 3.0291, and modulation period
Λ = 6.5 mm. The purple line in Fig. 6 (a) is the −1st order
dispersion curve of the optimized unit cell after bending
along Msin(Λx). According to [35], when almost all of the
energy is radiated out, M has little effect on the gain of the
antenna. Through simulation, it is verified that when M =
0.4, almost all the energy of the antenna can be radiated
out. The lower right corner is a local zoomed-in view, and
it can be seen that in the fast wave region, the purple and
black lines almost completely overlapped, indicating that it
can achieve linear scanning over a large scanning range. The
slope of the purple line is very large in radiation range, which
can achieve a high scanning rate. The red and black lines in
Fig. 6 (b) are the relationships between the scanning angle
and operating frequency for the ideal and the modulated unit,
respectively, corresponding to the black and purple lines in
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FIGURE 6. The ideal −1st order (a) dispersion curve and (b) beam directions of
optimized linear scanning SSPPs LWA.

Fig. 6 (a). It can be found that theoretically a quasi-linear
scanning of 100 ◦ from 7.75 to 8.15 GHz can be achieved.

IV. SIMULATION AND EXPERIMENTAL RESULTS
To verify its performance, the proposed antenna prototype is
simulated, fabricated, and measured. The feeding structure
and the radiation performance of the proposed antenna and
the effect of material loss are discussed in turn.

A. DESIGN OF FEEDING STRUCTURE
Firstly, a tapering SSPPs transmission line is designed to
match the antenna to a 50 � microstrip line, as shown in
Fig. 7 (a). The width of the microstrip line is 2.3 mm with
the characteristic impedance of 50 �, which is the same
with the width of the connecting line in the center of the
SSPPs unit. The tapering transmission line is composed of
18 SSPPs units with successively narrower widths, and the
width difference of adjacent individual cells keeps the same
value of dl. The terminal is a microstrip line of length lc
connected to the SMA port. To verify the performance of the
matching lines, the ends of SSPPs transmission lines with
the length of ls are connected to the microstrip lines using
the designed matching lines. The parameters of the overall
structure are shown in Table 2. The substrate of the overall

FIGURE 7. (a) Configuration and (b) simulated S Parameters of SSPPs transmission
line with gradual matching line.

TABLE 2. Parameters of SSPPs transmission line.

FIGURE 8. (a) Configuration and (b) fabricated prototype of proposed LWA based on
period modulation.

structure remains the same. Fig. 7 (b) shows the simulated
S parameters of the transmission line, a significant cutoff
frequency, and very low insertion loss are verified, proving
the excellent performance of the designed feeding structure.

B. DESIGN AND SIMULATION OF THE PROPOSED LWA
Fig. 8 shows the configuration and fabricated prototype
of the proposed LWA based on spatial phase modulation.
As shown in Fig. 8 (a), the propagation constant of the
transmission line can be shifted to −1 order by bending the
transmission line periodically. The implementation method
is to bend the narrow central connecting line of SSPPs
according to the sine function Msin(Λx). The long branches
float up and down with the narrow central line, which keeps
at the midpoint of the branch. After optimization, M is taken
as 0.4, and Λ is 6.5 mm as discussed in Section III. Fig. 8
(b) shows the prototype fabricated utilizing Rogers 5880 of
which the copper thickness is 9 μm, surface roughness is



WANG et al.: LINEARLY SCANNING SSPPs LWA WITH HIGH SCANNING RATE 158

FIGURE 9. The simulated radiation electric field Ex of the proposed LWA at
(a) 7.9 GHz, (b) 8.0 GHz, (c) 8.1 GHz, (d) 8.2 GHz, respectively.

FIGURE 10. Simulated radiation patterns of the proposed LWA at (a) 7.9 GHz,
(b) 8.0 GHz, (c) 8.1 GHz, and (d) 8.2 GHz, respectively.

about 1.3 μm and relative dielectric constant is 2.2 with a
loss tangent of 0.0009.
To verify its performance, the proposed antenna is sim-

ulated with lossless material and PEC. Fig. 9 and Fig. 10
present simulated electric field distributions and radiation
patterns at four operating frequencies, respectively. The
wavefront distribution of the radiation electric field at each
frequency point is very uniform. The performance of the
radiation pattern also agrees very well with the theoretical
prediction in Section III.

C. INFLUENCE OF THE DIELECTRIC LOSS TANGENT OF
THE SUBSTRATE
In fact, the antenna is fabricated using lossy materials, so
it is necessary to analyze the influence of dielectric loss
on the antenna performance. Fig. 11 shows the effect of
dielectric loss on directionality and gain. Firstly, the antenna
is simulated when the metal is PEC and the roughness of
surface is 0. The loss tangents of two common dielectric
substrates (Rogers 5880 of 0.0009 and Rogers 4350B of
0.0037) are chosen for comparison with lossless material. It
can be seen that when the loss tangent increases, the gains
of the antenna decrease in the whole operational bandwidth,
but the radiation directions remain almost the same with
good linearity and a high scanning rate. For the proposed

FIGURE 11. Simulated (a) radiation gain and (b) beam direction with different
dielectric loss tangents (tanδ).

SSPPs LWA, when the frequency is beyond 8.25 GHz, the
phase propagation constant is larger than k0 and there will be
no obvious radiation main lobe, as shown that larger errors
occur at high frequencies.

D. INFLUENCE OF METAL CONDUCTIVITY AND
SURFACE ROUGHNESS
Fig. 12 shows the effect of metal loss and surface roughness.
The LWA is simulated when the patch is made of PEC
and the copper with four surface roughness is chosen
for comparison. Typical roughness values of rolled cop-
per, electrodeposited copper with thicknesses of 9μm and
18μm of Rogers 5880 are utilized here as 0.4μm, 1.3μm
and 2.0μm, respectively, which are offered by ROGERS
CORPORATION [44]. It can be seen that the gains of the
antenna decrease, and the radiation direction shifts as the
decrease of metal conductivity and the increase of surface
roughness. However, the scanning linearity and the high
scanning rate can remain satisfactory.
The decrease of the gain is mainly due to the structure.

Because near the cutoff frequency, the propagation constant
(real part of the k-vector) of SSPPs is so large that the
field is spatially squeezed, leading to strong absorption [45].
According to the above simulation results, the source of high
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FIGURE 12. Simulated (a) radiation gain and (b) beam direction with PEC and
copper with different surface roughness.

FIGURE 13. Schematic diagram of the measurement setup.

loss is mainly the dielectric loss and the surface roughness of
the metal, rather than the main source of the usual thought is
only the dielectric loss. Therefore, the high-frequency circuit
board with a lower dielectric constant and lower surface
roughness can improve the gain.

E. SIMULATION AND MEASUREMENT
To obtain the performance of the prototype, the near-field
measurement system is used to measure the S parameter
and radiation patterns. As shown in Fig. 13, the antenna is
surrounded by a ring-shaped housing, in which many pyra-
midal absorbers and dual-polarized microwave probes are

FIGURE 14. Simulated and measured S parameters of the prototype.

evenly distributed to measure the electric field distribution
in a plane.
The platform on which the antenna is located can be

rotated horizontally by 360 ◦ to obtain the electric field
distribution on a spherical surface surrounding the antenna.
The entire measurement system is housed in a metal cabinet
with absorbers inside. The vector network analyzer is con-
nected to this measurement system to provide S-parameters.
A computer is connected to both the measurement system
and the vector network analyzer to provide control and data
post-processing. The three-dimensional radiation direction
pattern can be obtained using the near-field to far-field
algorithm provided by the measurement system of SATIMO.
The main polarization and cross-polarization of the antenna
are measured together.
To make the simulation closer to the real application

scenario, the material parameters of Rogers5880 with a
relative dielectric constant of 2.2, a loss tangent of 0.009,
copper, and surface roughness of 1.3μm are used for
simulation.
Fig. 14 shows the simulated and measured S parameters of

the prototype. The overall trend of S parameters is consistent,
and the measured results only have a very narrow frequency
offset. This may be caused by errors between the relative
dielectric constant of the substrate and the nominal value, as
well as errors in fabrication, since the antenna proposed is
very sensitive to material parameters as we discussed above.
Fig. 15 shows the simulated and measured normalized

radiation patterns of the prototype. The simulated results
show that the proposed LWA achieves a scanning angle
range of 109 ◦ over a narrow operation bandwidth of 7.73–
8.13 GHz, implying a high scanning rate and scanning
linearity. The measured scanning angle range is 100 ◦ in the
frequency band of 7.82–8.21 GHz, and the relative average
scanning rate is 2053.4 ◦. Although there is an offset of about
0.1 GHz between the simulation and measured results, both
the simulation and measured results maintain good scanning
linearity and high scanning rate.
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FIGURE 15. (a) Simulated and (b) measured normalized radiation patterns of the
prototype.

Fig. 16 shows the cross-polarized radiation pattern of
simulation and measurement. At the operating frequency, the
cross-polarized radiation energy is very low and has little
effect on the radiation characteristics.
Fig. 17 shows the simulated and measured radiation gain

and beam direction of the prototype. There is a shift of about
0.1 GHz between the simulated and measured gains, which
is consistent with the S parameter results, but the overall
trend remains the same. The gain error of 1 dB is caused
by a fabricated error as shown in Fig. 17 (a). The radiation
pattern and gain trend of the antenna in the measurement and
simulation results are basically consistent after correction,
as shown in Fig. 17 (a). The reason of 1dB loss in the gain
maybe machining errors, SMA adapter losses, and material
errors. Fig. 17 (b) shows the simulated and measured beam
radiation direction.
The solid black line is the ideal beam scanning curve

for our design, as shown in Fig. 17. The red circle line

FIGURE 16. (a) Simulated and (b) measured cross-polarization radiation patterns of
the prototype.

is the simulated beam scanning curve, which is very close
to the ideal value, proving the correctness of the proposed
theory. The blue cross line is the scanning curve of the
measured beam, which deviates from the design value by
about 0.1 GHz. To better evaluate the scanning linearity of
the measured results, the solid black line has been shifted
horizontally by about 0.1 GHz to become the dashed black
line, keeping the slope constant and making it as close to
the blue line as possible. It can be found that the scanning
linearity of the measurement results shows good agreement
with the theoretical design.
To evaluate the scanning linearity, the mean absolute value

error (MAVE) is used to calculate the error between the
measured and ideal results as in (8):

MAVE = 1/N
N∑

i=1

|θi − Ti| (8)
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FIGURE 17. Simulated and measured (a) radiation gain and (b) beam direction of
the prototype.

TABLE 3. Comparison of different high RASR antennas and linear antennas.

here N is the number of measured points of radiation
patterns, θi and Ti are ith measured and ideal points of
radiation pattern, respectively. The MAVE of the results in
Fig. 17 (b) is 1.032.
To prove the advantages of our design, the results

of previously reported LWAs in Table 3 are listed for
comparison. Few works consider the scanning linearity of
LWAs except [36]. The RASR of our design is the largest
compared to other published LWAs, meanwhile, the best
scanning linearity with a large scanning range can be
achieved. The gain of our proposed work can be further
improved by utilizing metals with lower electrical conduc-
tivity, like gold and silver, and metals with lower surface
roughness.

V. CONCLUSION
A SSPPs LWA with a high scanning rate and linear scanning
is proposed. Dispersion properties of linear high scanning
rate LWA are studied in fast wave regions. The measured
scanning angle range is 100 ◦ in the frequency band of
7.82–8.21 GHz, and the RASR is 2053.4 ◦. The MAVE of
the measured scanning angle-frequency curve is 1.032 ◦,
showing good linearity as designed. This antenna may find
application potential in reducing the accuracy and bandwidth
requirements of A/D converters in radar systems.
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