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Connected AR for Combating COVID-19

Introduction
The dramatic sophistication and miniaturization of augment-
ed reality (AR) and mixed reality (MR) devices have brought 
a lot of success in industrial uses cases such as infrastructure 
maintenance, product design and assembly, and building con-
struction where efficacy of work and the safety of workers have 
increased [1]. Generally, the abilities of people are augment-
ed by the 2D/3D spatial sensing and recognition functions of 
AR devices, which are or will be equipped with RGB/depth 
cameras, inertial sensors, and 5G or faster wireless communi-
cations devices. Our idea is to leverage AR/MR devices with 
spatial computation functions supported by data-rich sensors to 
detect, share, and visualize risky situations involving surround-
ing humans, objects, and environments to prevent COVID-19 
infection.

To this end, in this article, we first introduce our developed 
AR/MR application prototypes:
• Social distance measurement
• Fever detection
• Touched object detection
Second, leveraging these applications, we introduce a secure
platform named Secure Connected AR Platform (SCARP) for
sharing the situations in a privacy-aware, anonymous fashion if
the detected information is privacy-sensitive. The platform has
been tested in a lab environment to demonstrate its capabilities
and effectiveness.

We assume use case scenarios where employees and own-
ers of restaurants, security guards in shopping malls, and admin-
istrative staff in offices/schools wear AR/MR glasses. In the 
social distance measurement application, the state-of-the-art 
object recognition techniques such as YOLOv4 are exploited 
to recognize the surrounding persons and their locations in the 
wearer’s vision. In the fever detection application, using plug-in 
thermography cameras, the body temperatures of the detected 
persons in the above social distance measurement applica-
tion are measured, and those with high fever are identified. 
In these applications, the detected information is highlighted 
in the wearer’s vision through the AR/MR glasses to allow the 
wearer to take appropriate actions. The touched object detec-
tion application is enabled by glasses with 3D depth-sensing 
functions (e.g., Microsoft Hololens). By detecting the wearer’s 
hands and the objects in the surroundings from the depth data, 
the wearer’s touching activities and the touched objects can be 
detected.

Based on these applications, we design SCARP, a secure 
platform to allow us to share the situations in the same space 
(Fig. 1). It contains a spatial database, which can store infor-

mation about people and objects in the 3D space with their 
attributes. Examples of people-relevant information are people 
locations, distances among them, their densities, and their body 
temperatures, while those of object-relevant information are 
object locations, types, and touch frequencies. All this informa-
tion is stored in the spatial database and are accessible via AR 
devices in the place. If a wearer detects personal information 
such as the body temperature of a nearby person, it should not 
be public to everybody in the space but be private to the per-
son, to let her/him be aware of the situation. The wearer can 
set a privacy level to each information item to be posted to the 
database. We consider three privacy levels, public, local, and 
private, which are referred to as levels 0, 1, and 2, respectively 
(the details are explained later). To secure level 2 information, 
the wearer posts the private information to the spatial database 
with a signature that is unique to the target person. Then the 
platform allows only the person who owns the signature to 
access the information without revealing her/his private ID. We 
leverage the attitude of smartphones as a signature -- matching 
the attitude signature of the target’s smartphone estimated 
by computer vision techniques running on the wearer’s AR 
device and that calculated by the smartphone’s inertial sensors. 
Our platform also implements a protocol to send a message 
to notify the private information to the person’s smartphone in 
a secure, anonymous fashion. Consequently, AR wearers can 
share public, local, and private information captured by the AR 
devices with the right people in the right way.

This article shows the proof of the above concept by design-
ing and implementing those applications and the platform. We 
hope our platform is helpful for administrators who should pre-
vent COVID-19 infections in their managed spaces such as 
restaurants, airports, and shopping malls, securing customers’ 
and visitors’ private information.

AR Applications for Situation Recognition
In this section, we introduce our applications for situation 
awareness by AR devices.

Social Distance Measurement
It has been widely recognized that social distancing is vital to 
prevent infection. However, people often forget it when they 
enjoy/concentrate on their activities such as shopping, eating, 
and talking. Measuring the distance between persons in public 
space and letting them be aware of it will help to prevent unin-
tentional violations of social distancing.

As illustrated in Fig. 2a, a wearer of AR glasses (e.g., an 
employee of a restaurant, a shop owner, or a security guard) 
can measure the distance between herself and others, the gaps 
between them, and the level of overcrowding. This function 
is implemented using start-of-the-art object recognition like 
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YOLOv4. The locations of detected persons in the vision are 
transformed into spatial coordinates, relying on the angle and 
direction tracking function of the AR device. Such location 
information of persons will be shared via a spatial database. 

feVer detectIon
Detecting persons with high fever in public space will help to 
reduce the risk of infection. Notably, such a function will be 
required by administrative persons at stations, airports, and so on.

Leveraging the AR’s person detection function described in 
the previous section, we assume the AR device has a thermog-
raphy camera as a plug-in sensor. It tracks a detected person’s 
body temperature, which adds a vital attribute to the person’s 
information. As illustrated in Fig. 2b, we have demonstrated in 
our lab environment that a person wearing EPSON Moverio 
smart glasses and a FLIR ONE thermography camera detects 
persons in the space and their body temperatures. This also 
demonstrates part of our person identifi cation function based 
on smartphone attitude matching, which is explained later.

touched obJect detectIon
People intentionally and unintentionally touch their surrounding 
objects such as doorknobs, walls, desks, shelves, and many 
other items in offi  ces, shops, and restaurants. Monitoring and 
visualizing what, where, and how often people touch will moti-
vate the staff  to sanitize their hands and things periodically.

Hand touch detection can be implemented using AR glasses 
with depth sensors (or MR glasses) like Microsoft Hololens. Fig-
ure 2c shows our Hololens application prototype that records 
the touched points and the number of touches. Hololens pro-
vides two crucial application programming interfaces (APIs), the 
spatial mapping API and the hand tracking API. These APIs pro-
vide the 3D location and 3D meshes of the surrounding objects 
and hands, and combining them makes it possible to detect the 
objects touched by the AR wearer. The application can also 
visualize the number of touches and the touched places in the 
wearer’s vision. It also displays “dirty levels” of the hands based 
on the number of touches.

secure connected Ar plAtforM
The core component of SCARP is a spatial database. The data-
base contains the 3D model of a target space, where informa-
tion on people and objects in the space and their attributes 
can be stored. As already explained, all the information recog-

nized by the AR applications is sent to the spatial database on a 
secure cloud for information sharing purposes.

When an AR wearer posts information, one of the three 
privacy levels, 0 (public), 1 (local), and 2 (private) is set to con-
trol the access. As illustrated in Fig. 1, crowded locations, the 
average distance between persons and places where people 
frequently touch are level 0 information (public), which should 
be disclosed for public safety and convenience. Some informa-
tion, such as locations of items and shelves, are level 1 informa-
tion (local), which is not necessary to be public but is shared 
by those who reside in the place. Spatial anchors, which link a 
particular entry in the spatial database and the corresponding 
location in the physical space, enable this access control based 
on the physical space. Recent AR technologies, including Mic-
rosoft Hololens, Google ARCore, and Apple AR Kit, provide 
spatial anchor APIs. These APIs allow AR/mobile users to store 
spatial information to the database using spatial image features 
captured by cameras as keys. They also enable other people 
to use the anchors to retrieve the information. Finally, since 
person-relevant information such as abnormal body tempera-
tures, social distancing violations, and not wearing masks are 
very personal, it should be level 2 (private) and be accessible 
only to the intended persons. To realize this, similar as with the 
spatial anchor concept, it is necessary to set a link between the 
target persons and their features. Using the features as keys, 
only these persons with keys can access the private information. 
Since using private features like facial information as keys caus-
es severe privacy invasion, we design the concept of “human 
anchor,” which is a privacy-preserving way of publishing and 
subscribing information anonymously. This is explained in the 
following section.

huMAn Anchor: concept And desIgn
A human anchor works like a key to secure personal informa-
tion (level 2 information), which is recognized by the AR appli-
cations but should be private to an intended individual. The 
necessary procedure of data storing/retrieving using a human 
anchor is the following:
• An AR wearer detects a person with her/his personal infor-

mation, such as body temperature.
• The wearer also obtains her/his human anchor from the RGB

camera as our AR applications assume computer vision to
recognize the persons in the wearer’s scenes.

• The wearer uploads the obtained information to the spatial
database with the human anchor information.

• Assuming that only the target person has her/his human
anchor information, she/he can access the stored data and
others cannot.
Table 1 summarizes popular authentication methods that

have been considered so far, and personal features such as 
faces, irises, and unique gaits are useful in the authentication of 
persons. However, revealing personal features to the system is 
not preferable. Wireless beacons such as Bluetooth Low Energy 
(BLE) beacons can be used as proof of presence. However, 
they do not fi t with our purpose since our objective is to iden-
tify the persons in the AR wearer’s vision. Instead, we focus 
on a smartphone held by a target person and use smartphone 
attitudes as a human anchor. The attitudes can be estimated 
from computer vision at the wearer side and calculated from its 
inertial sensors at a target person side. Assuming only the smart-
phone holder can obtain the inertial sensor readings, we guar-
antee that only the target person can access the information.

Figure 3 shows how the smartphone attitude is measured 
on the smartphone and is estimated from an AR device. In 
the proposed platform, the smartphone attitude is defined as 
its angles formed by three axes with the direction of gravity. 
Each AR wearer continues detecting and tracking persons in 
her/his vision, by combining a fast and accurate object detec-
tion algorithm, YOLOv4 [9], and an online real-time tracking 
algorithm, DeepSORT [10]. Once a person is detected, the 

Figure 1. Secure platform involving AR glasses wearers and 
smartphone users. Information such as distance between 
persons, their fever (high body temperature), and touched 
objects are stored in a spatial database on a secure cloud 
server. Private data can only be accessed by the intended 
users.
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regions of her/his hands and the handheld smartphone are 
detected using YOLOv4. Then the shape mesh of the hand 
with the smartphone is generated from each captured image, 
utilizing the state-of-the-art deep neural network (DNN)-based 
hands and objects reconstruction method [11]. By identifying 
the smartphone’s three axes in the obtained shape mesh and 
estimating gravity direction using the camera angle, the smart-
phone attitude can be estimated at the wearer side. Our prelim-
inary experiment confi rmed that the attitude estimation errors 
are mostly within 10˚ on each axis.  Meanwhile, at the target 
person side, the smartphone attitude is captured by the Gravity 
Sensor API. This API provides the gravitational accelerations 
applied to each axis measured by acceleration sensors,  and the 
smartphone attitude can be calculated by applying arccosine to 
the ratio of each axis’s gravitational acceleration to the magni-
tude of gravitational acceleration.

For efficiency, each AR wearer transmits BLE beacons to 
let the surrounding smartphone users know her/his presence 
and activity.  After knowing it, each smartphone that wishes to 
access the information continues capturing the smartphone atti-
tudes by its accelerometers.  By transmitting a series of attitudes 
with timestamps, access to an exactly matched entry is granted 
to the smartphone.

Access protocol usIng huMAn Anchor
Human anchors can be used to identify target persons’ smart-
phones in the vision, but it is necessary to secure the platform 
when we employ the human anchor system. For example, if an 
AR device wearer is an attacker, she/he can post spam mes-
sages to a particular person, as many as she/he wishes. Even 
worse, the attacker can steal the posted private information 

of other persons as she/he can generate human anchors of 
persons in the scene. To cope with these situations, we design 
an access protocol exploiting human anchors and the public 
key infrastructure. In the following, an AR wearer who posts 
a person’s information to the spatial database is referred to as 
uploader agent or simply uploader, and a smartphone user try-
ing to obtain information posted by the uploader is referred to 
as retriever agent or retriever for simplicity of explanation.

protocol oVerVIeW
The database access protocol between an uploader and a 
retriever is illustrated in Fig. 4. Besides these two players, there 
are a spatial database, and a trusted identification server with 
two databases called ID store and key store.

First, the retriever continuously generates a random ID with 
a timestamp.  This is used as its user ID (denoted as UID). UID 
should be long enough to avoid ID collisions. The retriever 
records the UID on its local storage and also registers for the 
key store with its public key at regular intervals. When the 
uploader captures the situation, it generates a random ID 
(referred to as AR ID and denoted as AID) and broadcasts it 
via BLE or some proximity communication methods. Once the 
retriever receives the AID, and if it wants information that will 
be posted by the uploader, it measures the accelerometers to 
generate its human anchor and sends it to the ID store, with the 
received AID, the latest UID, and the timestamp. The uploader 
also captures the retriever’s human anchors from a series of 
RGB images and sends it to the ID store as a query. In response 
to the submitted query, the ID store compares the received 
human anchors with stored ones and returns the corresponding 
UID to the uploader. The uploader queries the key store for the 
retriever’s public key using the UID. After obtaining the public 
key, it encrypts the information with the key and uploads the 
encrypted information associated with the UID to the spatial 
database. The retriever can retrieve the information from the 
database anytime using the UID, and the information can be 
decrypted using the corresponding private key. 

protocol VAlIdAtIon
Given privacy concerns, the following three threats should be 
taken into account:
• Threat-I: Spoofi ng. An attacker mimics a retriever and retrieves

her/his information from the spatial database.
• Threat-II: Remote Spamming. An attacker uploads a number

of spam messages to the spatial database from a remote site.
• Threat-III: Tracing/Stalking. An attacker tracks a retriever

in physical and cyber spaces by exploiting her/his human
anchor.
In this section, we validate how the designed protocol

resolves the above threats.

Figure 2. AR applications for situation recognition.
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First, regarding spoofing (Threat-I), if there is a malicious 
retriever who can completely mimic the behavior of the surround-
ing victims’ smartphone attitudes, it can steal the information 
intended for the victim. This can be avoided by using a more 
extended sequence of human anchors because it becomes hard-
er to mimic the behavior as the sequence length becomes longer. 
Second, the protocol is protected from remote spamming (Threat-
II) as it introduces a proximity detection and temporary UID.
More concretely, when the uploader stores information about a
retriever, we may set expiration time and dates to human anchors
and UIDs so that the related messages and entries can be made
invalid after a certain period. The retriever can also intentionally
make them invalid at any time, depending on their privacy con-
cerns. Finally, a UID’s periodic change prevents the uploader,
the identifi cation server, and the database from tracking users in
cyberspace (Threat-III). Public key cryptography can prevent any
interception, man-in-the-middle attacks, and leaking information.
For example, the identifi cation server and key store know all user
IDs and can retrieve the database, while they cannot decrypt any
encrypted entities. Only the retriever that the uploader has inten-
tionally specifi ed via human anchors can decrypt them.

We note that passing the uploader’s encrypted user ID via 
the database allows the retriever to obtain the uploader’s public 
key. With passing the user ID and public key, uploaders can 
add a digital signature, which prevents the information from 
being tampered with.

deMonstrAtIon
feVer detectIon In scArp

We have prototyped the three applications, and have used the 
fever detection application to demonstrate SCARP. The demon-
stration video has been posted on our website [12]. 

As shown in Fig. 5, we have tailored Android-based smart 
glasses, EPSON Moverio BT-300, to be equipped with an RGB 
camera and a mobile thermography camera (FLIR ONE). The 
AR wearer can see both RGB and thermal views through the 
system, and can choose any person in the view as a retriev-
er. Image processing is performed on the connected PC with 
NVIDIA GeForce GTX 1080 GPU and Intel Xeon E5-1680 
v3@3.20 GHz CPU. The RGB frame rate was about 10 fps. In 
this environment, we asked three subjects in a room to hold 
their smartphones with an Android app to access the spatial 
database, detected these subjects in the RGB view, and mea-
sured their body temperatures using the thermal view.

The demonstrated scenario is that there was one with a high 
fever (target person) among three persons, and the detected 
temperatures are uploaded.  Finally, only the target person 
receives a notification about the fever from the system to let 
her/him be aware of the fever and take appropriate action. 
This may be realized by the administrative staff of the space 
wearing AR glasses, who go around to detect those with high 
temperatures.

user IdentIfIcAtIon AccurAcY
In the same experiment, we measured the ratio of successful 
and unsuccessful identifications for 5 minutes.  About 3000 
video frames were obtained as human anchors.

The identifi cation failures are classifi ed into three types. The 
first one is identification denial, which indicates that a pair of 
smartphones with the same attitudes exist, and hence, an AR 
wearer cannot distinguish them by their attitudes. The second 
one is false rejection, which means no attitude matching is 
found, although there is one. False rejection may occur due to 
the error of attitude estimation by an AR wearer. The last one 
is false acceptance, which indicates a matching is wrong. False 

Figure 4. Database access protocol between an uploader and a retriever.
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acceptance is fatal for SCARP since it results in disclosing pri-
vate information to someone else.

These ratios may be affected by the “angular slack value” 
used in the smartphone attitude matching procedure. In this 
experiment, the smartphone attitudes are matched if the angu-
lar difference of the captured and measured axes is less than 
10˚ in each axis. The smaller this slack value is, the identifi ca-
tion denial and false acceptance ratios become more modest, 
while the false rejection ratio becomes larger. 

From the experimental result, the human anchors of all 
three subjects were obtained by the AR wearer in 2190 frames, 
which means 73 percent of the total time was successful in 
user identifi cation. As a breakdown of the failures, 10 percent 
were identifi cation denial due to the collision of identifi cation 
features, and 17 percent were false rejections. We would like 
to emphasize that false acceptance did not occur in this experi-
ment.  Achieving zero false acceptance while keeping a reason-
able identifi cation successful ratio is the most signifi cant feature 
in privacy preservation.

Consequently, we have proved that the intended subject 
with a high fever could successfully obtain her/his information 
through the experiment. By investigating user identifi cation suc-
cess and failure ratios and the breakdown of the latter, we have 
also shown that the achieved success ratio was reasonable, and 
false identifi cation did not occur with three subjects who acted 
similarly, sitting down nearby and using smartphones.

reseArch chAllenges
IMAge processIng At edge deVIces

To pursue more privacy, the captured images should be 
processed in edge devices (i.e., AR glasses) without sending 
them to a cloud server. In our application demonstration, 
we used a workstation for image processing using DNNs 
such as Yolo and DeepSort. However, running them on 
small AR glasses is still a big challenge.  Model compression 
approaches are promising to run DNNs in a resource-limited 
environment [13].  Moreover, dedicated hardware chips 
such as Goya/Gaudi by Habana Lab will help speed up the 
executions. By leveraging such hardware and software tech-
niques, real-time detection should be realized to fully utilize 
AR devices’ potential.

leVerAgIng VArIous sensors
We may employ various types of sensors in our platform to 
enhance the capability of spatial recognition. For example, con-
versation levels can be detected by a microphone of the AR 
device to let those people be aware of the risk. A black-light 
can highlight environmental dirty levels in a dark place and is 
effective if it is co-used with our touch detection application. 
Enriching the spatial database by aggregating all such infor-
mation related to COVID-19 will contribute to the analysis of 

potential risks of infection — how our living space is dirty and 
how it should be sanitized.

One of the advantages of SCARP is that it can recognize not 
only the environment but also the information about people in 
the space, being aware of privacy constraints. This means that 
SCARP can deal with any human-relevant private information. 
With more advanced sensors, it might be possible to recognize 
humans’ biological information in the surroundings (e.g., heart 
sounds, fatigue, and headache) that cannot be seen by human 
eyes.  Recently, wireless sensing has been more popular where 
millimeter waves can remotely monitor heartbeats and so on [14, 
15]. Incorporating state-of-the-art sensing technologies will bring 
new applications and research issues to be addressed: stricter 
privacy preserving and consideration of social acceptance.

conclusIons
We have introduced an approach of recognizing and visualizing 
situations around us that cannot directly be seen by our eyes 
using AR technology.  By collecting the information in a single 
spatial database, people can know the public information such 
as congestion levels of fl oors and shops, and the average social 
distance. The spatial database is a projection of the real world 
into cyberspace, and AR/MR devices can create a lot of useful 
information to prevent COVID-19 infection. The real-world phe-
nomena and objects are associated with their physical positions 
via spatial anchors in the spatial database, and personal infor-
mation is tagged by human anchors. To cope with issues such 
as tracking and stalker risks and privacy invasion by collect-
ing more personal data, we have designed a platform named 
SCARP that enables secure access to the spatial database. We 
have prototyped three AR applications to incorporate physical 
world things and phenomena into cyberspace and demonstrat-
ed the fever detection system using a thermography camera. 
Again, we hope that our AR-based situation awareness system 
can be realized, and the proposals and proofs of concept in this 
article will help combat COVID-19.

AcKnoWledgMent
This work was supported in part by Society 5.0 Realization 
Research Support Project funded by the Ministry of Education, 
Culture, Sports, Science and Technology (MEXT).

references
[1] P. Vávra et al., “Recent Development of Augmented Reality in Surgery: A

Review,” J. Healthcare Engineering, vol. 2017, 2017.
[2] Z. Wu et al., “A Comprehensive Study on Cross-View Gait Based Human

Identification With Deep CNNs,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 39, no. 2, 2016, pp. 209–26.

[3] M. Muaaz and R. Mayrhofer, “Smartphone-Based Gait Recognition: From
Authentication to Imitation,” IEEE Trans. Mobile Computing, vol. 16, no. 11,
2017, pp. 3209–21.

[4] J. Ranjan and K. Whitehouse, “Object Hallmarks: Identifying Object Users
Using Wearable Wrist Sensors,” Proc. 2015 ACM Int’l. Joint Conf. Pervasive
and Ubiquitous Computing, 2015, pp. 51–61.

Figure 5. Demonstration of SCARP with fever detection application.

RGB
Camera

Thermography
Camera

Smart 
Glasses

Laptop

Video Frames

Workstation for Image Processing

36.5℃ 38.5℃36.4℃
“You have 
a high fever”

38.5℃

Private
Local

Public

Spatial 
Database

AR Wearer Subjects

Upload Receive

Notification:
“You have a high fever”

Camera View Thermal View

Detected/Tracked Persons Message 
Form

36.4℃
36.5℃

AMANO_LAYOUT.indd   50AMANO_LAYOUT.indd   50 10/15/20   10:16 PM10/15/20   10:16 PM



IEEE Internet of Things Magazine • September 2020 51

[5] X. Li et al., “Touch Well Before Use: Intuitive and Secure Authentication for
IoT Devices,” Proc. 25th Annual Int’l. Conf. Mobile Computing and Network-
ing, 2019, pp. 1–17.

[6] T. Takafuji et al., “Indoor Localization Utilizing Tracking Scanners and Motion
Sensors,” 2014 IEEE 11th Int’l. Conf. Ubiquitous Intelligence and Computing
and 2014 IEEE 11th Int’l. Conf. Autonomic and Trusted Computing and 2014 
IEEE 14th Int’l. Conf. Scalable Computing and Communications and Its Associ-
ated Workshops, 2014, pp. 112–19.

[7] H. Li et al., “IDmatch: A Hybrid Computer Vision and RFID System for Rec-
ognizing Individuals in Groups,” Conf. Human Factors in Computing Systems
— Proc., 2016, pp. 4933–44.

[8] Y. Park, S. Yun, and K.-H. Kim, “When IoT Met Augmented Reality: Visualizing
the Source of the Wireless Signal in AR View,” Proc. 17th ACM Int’l. Conf.
Mobile Systems, Applications and Services, 2019, pp. 117–29.

[9] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and
Accuracy of Object Detection,” 2020; http://arxiv.org/abs/2004.10934.

[10] N. Wojke, A. Bewley, and D. Paulus, “Simple Online and Realtime Tracking
with a Deep Association Metric,” 2017 IEEE Int’l. Conf. Image Processing, 
2017, pp. 3645–49.

[11] Y. Hasson et al., “Learning Joint Reconstruction of Hands and Manipulated
Objects,” CVPR, 2019.

[12] T. Amano, H. Yamaguchi, and T. Higashino, “Connected AR for Combating
COVID-19: Demonstration”; http://www-higashi.ist.osaka-u.ac.jp/tamano/
connected-ar, 2020, accessed 19 July 2020.

[13] Y. Cheng et al., “Model Compression and Acceleration for Deep Neural Net-
works: The Principles, Progress, and Challenges,” IEEE Signal Proc. Mag., vol.
35, no. 1, 2018, pp. 126–36.

[14] K. Chooruang and P. Mangkalakeeree, “Wireless Heart Rate Monitoring
System Using MQTT,” Procedia Computer Science, vol. 86, Supplement C,
2016, pp. 160–63.

[15] Z. Wang et al., “Wi-Fi CSI-Based Behavior Recognition: From Signals and
Actions to Activities,” IEEE Commun. Mag., vol. 56, no. 5, Mah2018, pp.
109–15.

Biographies
Tatsuya Amano received his B.E. and M.E. degrees in informa-
tion and computer sciences from Osaka University, Japan, in 
2016 and 2018, respectively. His research interests include 
mobile computing and applications.

Hirozumi Yamaguchi [M] received his B.E., M.E., and Ph.D. 
degrees in information and computer sciences from Osaka 
University in 1994, 1996, and 1998, respectively. He is cur-
rently an associate professor at Osaka University. His current 
research interests include design, development, modeling, and 
simulation of mobile and wireless networks and applications. 

Teruo Higashino [SM] received his B.S., M.S., and Ph.D. 
degrees in information and computer sciences from Osaka 
University in 1979, 1981, and 1984, respectively. He joined 
the faculty of Osaka University in 1984. Since 2002, he has 
been a professor with the Graduate School of Information Sci-
ence and Technology, Osaka University. His current research 
interests include design and analysis of distributed systems, 
communication protocol, and mobile computing. He is a Fel-
low of IPSJ.

AMANO_LAYOUT.indd   51AMANO_LAYOUT.indd   51 10/15/20   10:16 PM10/15/20   10:16 PM


