
IEEE Internet of Things Magazine • September 2020 35© IEEE 2020. This article is free to access and download, along with rights for full text and data
mining, re-use and analysis

Adlen Ksentini and Bouziane Brik

An Edge-Based Social Distancing Detection
Service to Mitigate COVID-19 Propagation

Introduction
COVID-19 is a new virus belonging to the coronavirus family.
So far, more than 10 million people have been affected in the
world, and over half a million have died due to the direct con-
sequences of the virus [1]. While waiting for a vaccine or an
efficient treatment, it is mandatory to find solutions for reducing
the spread of the virus. In other words, the world needs to deal
with the virus while waiting for a treatment or a vaccine. In this
context, information communications technology (ICT) can play
a key role, where combining IoT and other recent technologies,
such as edge computing, software defined networking (SDN),
network function virtualization (NFV), and machine learning
(ML), can allow the definition of new applications or services to
be used by doctors, governments, and persons to fight against
the spread of the virus. So far, several use cases have been
envisioned to use IoT as a way to help in facing the virus. For
instance, we can mention the case of elderly people, which
would be followed up closely. In this case, panic buttons, and
sensors that monitor movement, energy, and even doors can
be used in hospitals and rest homes, but also for people who
still live at home, allowing anomaly reporting so that timely
action can be taken. Another use case can be the monitoring
of people in quarantine. Sensors can be used to track people
who should live in (self) quarantine, but do not always follow
the rules and sometimes dare to go outside their zone, pos-
ing a high risk of spreading the virus. In addition, new applica-
tions for mobile devices have appeared, such as the StopCovid
application [2], which allows warning persons who have been
in contact with infected persons, and hence track clusters of
infected persons and isolate them. The StopCovid application
uses Bluetooth in order to save the ID of persons who were
close during a certain period. If one of these persons declares
in the application that they have been affected, an alarm is sent
to all the users who have been in contact with them. The weak-
ness of this application is the usage of Bluetooth (it must be
turned on in the smartphone), which is known for its concern
with security.

On the other hand, it is well established that one of the key
solutions that needs to be adopted to reduce the spread of the
virus is to keep a minimum distance between persons, namely
social distancing. In fact, many studies have shown that there
is a minimum distance to keep between persons in order to
avoid contagion; the minimum distance varies from 1 m to 2 m
according to the country. Therefore, there is a need to have an
application or a service that, in runtime, detects if users, located
in a certain area, do not respect social distancing. StopCovid

does not include such features as it just records the persons
who were in contact, and if one of them is contaminated by
the virus, it has to declare it in the application; then all the per-
sons who were in contact with that person are warned. Besides
being reactive (i.e., after contamination), the StopCovid appli-
cation needs people to actively participate in the application
usage. Other solutions have been developed toward checking,
in runtime, the respect of social distancing. We can mention
applications using cameras and machine learning (ML) tech-
niques, such as the system used by Amazon to enforce social
distancing at its warehouse [3], or the one used in [4] to track
social distancing. However, these applications do not warn con-
cerned persons, but police or managers.

In this work, we propose a novel social distancing detec-
tion service that runs at the edge of the network, and aims to
detect if users are not respecting the minimum recommended
distances to avoid contamination and warn them accordingly.
To this aim, the proposed service is composed of an application
that runs on user’s smartphones, equipped with sensors — most
notably, a global navigation satellite system (GNSS), which
periodically sends GPS coordinates to a remote application
sitting at the edge. The remote application’s role is to compute
the distances (Euclidean), using the GPS coordinates, between
users located under the edge server coverage (i.e., geographi-
cal location). Users that are close to each other, and hence not
respecting social distancing, are warned through messages sent
by the remote application to the smartphone. It is worth noting
that the proposed service requires low-latency communications
as users need to be warned rapidly (in near real time) in case
of non-respect of social distancing. Thanks to edge computing,
and particularly to the European Telecommunications Standards
Institute (ETSI) multi-access edge computing (MEC) system,
the proposed service will be deployed at the edge and benefit
from the ETSI MEC ecosystem [5]. Besides ensuring low-la-
tency communication and hence near-real-time reaction, the
usage of MEC will guarantee system scalability, as MEC servers
are deployed in a distributed fashion inside a mobile network,
hence accommodating a high number of users compared to
a centralized solution. Also, the proposed service will ensure
privacy and anonymity as no personal information needs to
be disclosed in order to use the application. User identifiers
are generated and linked only to a valid email address, hence
ensuring anonymity. Last but not least, the proposed solution
does not need high involvement from users as in StopCovid.
The only requirement is that the application is running on the
smartphones, and the end users have to be alert to the notifi-
cations.

The remainder of this article is organized as follows. We
give the envisioned use case and architecture. We introduce

Abstract
COVID-19 virus has strongly impacted our everyday life. Without the availability of a vaccine or a well-established and efficient treatment,

we have to live with it. One way to mitigate the propagation of the virus is to respect social distancing between persons. Indeed, many govern-
ments have adopted it as one of the key solutions to reduce the propagation of the virus. However, it is difficult to enforce social distancing
among the population. In this article, we propose to combine IoT and multi-access edge computing (MEC) technologies to build a service that
checks and warns people in near real time if they are not practicing social distancing. The proposed service is composed of a client application
side installed on the users’ smartphone, which periodically sends GPS coordinates to remote servers sitting at the edge of the network (i.e.,
at MEC). The remote servers use a local algorithm to detect and warn users who are not practicing social distancing. The proposed service

respects privacy and anonymity by hiding the user identity, and is capable of warning users in near real time thanks to the usage of MEC.

Digital Object Identifier: 10.1109/IOTM.0001.2000138

KSENTINI_LAYOUT.indd 35KSENTINI_LAYOUT.indd 35 10/15/20 10:15 PM10/15/20 10:15 PM

IEEE Internet of Things Magazine • September 202036

our proposed solution and algorithm. Potential applications
and extensions of our solution are highlighted. We discuss the
obtained results and conclude the article.

Envisioned Use Case and Architecture
Before describing the envisioned architecture, we will start by
introducing MEC. The latter is a new trend that enables a new
generation of services which operate close to end users aimed
at reducing the end-to-end latency. MEC allows the deployment
of two types of service:
• Applications that require low-latency access to user plane traf-

fic
• Context-aware applications that adapt the delivered service

according to users’ environments
MEC is an operator-oriented architecture, which adds comput-
ing capability in the vicinity of base stations, and proposes an
orchestration and management framework to handle the life
cycle management (LCM) of edge applications. ETSI is provid-
ing specifications on MEC via the ISG MEC group [6, 7], who
released several documents to describe: envisioned use cases, a
reference MEC architecture, a MEC application model (descrip-
tor), MEC services, MEC orchestrator, and so on. Besides run-
ning applications at the edge, MEC provides services, accessible
via a high-level application programming interface (API), which
give information in the mobile users’ and cellular base stations’
contexts, such as radio channel quality of users, allowing build-
ing context-aware applications.

In this work, we envision the system architecture as depicted
in Fig. 1, which is composed of MEC servers, and users con-
nected to the servers via the application installed on their smart-
phones. We assume that the network operator uses a set of
MEC servers to cover different areas, which allows deploying
several instances of the service to guarantee scalability. The
size of the area to be covered by a MEC server depends on
the density of users. We assume that a MEC server is associ-
ated with a set of base stations (or eNBs in LTE and geNBs
in 5G). The number of base stations associated with a MEC
server depends on the density of the users. In rural areas, we
can imagine having one MEC server covering a high number of
macrocells, whereas in dense and urban areas, one MEC server
covers a low number of macrocells or a high number of small
cells. This deployment can also be envisioned in the context
of smart cities, where servers are deployed to cover neighbor-
hoods, and the service is managed by the city. In this case, the
service is deployed by the network operator as a network slice
[8] and fully managed by the city, considered then as the ver-
tical. The social distancing detection application runs inside a
container, and can be duplicated on all the MEC servers. Since
users are mobile, they can be migrated from one MEC server
to another MEC server when they move between two cells that
do not belong to the same MEC server coverage. Readers may
refer to [9] for more details on service migration in MEC.

We assume the scenario represented in Fig. 1, where users
are spread over locations covered by different MEC servers.
The users have installed the client side of the service on their
smartphone, and are already connected with the server side of
the service located at the closest MEC server (i.e., the one that
is covering the geographical location of the user). While walk-
ing, the client side of the application periodically communicates
the GPS coordinates to the remote detection application server.
The latter receives all the GPS coordinates of users under the
coverage of the MEC server. A local algorithm is used, which
takes as input the GPS coordinates of all users and gives as
output the Id of users that are not respecting social distancing.
The concerned users will receive a warning message from the
server, visible directly on their smartphone as a notification indi-
cating that they are not respecting social distancing.

On the other hand, the social distancing detection instances
are connected to a remote application located in the central

cloud, which backs up the information on how many people
have been warned and the different locations of the persons.
It should be noted that the identity of users is protected; only
their Ids are disclosed. The cloud application can use the
obtained information to report statistics to the government and
the city mayor on locations where high warning messages have
been triggered, which may help, for instance, to understand
and organize the concerned locations (i.e., streets) in order to
reduce warning alarms in the future.

Proposed Solution and Algorithm
As stated earlier, the proposed social distancing detection ser-
vice is composed of a client application and a server applica-
tion. The client side of the application is very simple, consisting
of being connected to the remote server (at the edge) and
periodically sending GPS coordinates. The most intelligent part
of the service is at the server side, which uses the received GPS
coordinates of users in order to calculate the distances and gen-
erate warning messages if deemed appropriate.

The proposed algorithm to be run at the server side is shown
as Algorithm 1. We distinguish three steps, as depicted in Fig. 2:
1.	The collection of all the GPS coordinates of users connected

to the server (i.e., under its coverage)
2.	The computation of the distance between users, on a pair-by-

pair basis
3.	The detection of users not respecting the distance threshold,

and the warning message generation
For step 1, the collection of GPS coordinates is done periodical-
ly and saved in two vectors: Ft(i) corresponding to the latitude
coordinates and Lt(i) for the longitude coordinates, indexed by
the user id (i.e., i). In step 2, a function distance is called for
each pair of users (i, j) and takes as inputs Ft(i), Ft(j), Lt(i), and
Lt(j). The details of this function are not included in this work,
but it can be based on any well-known method such as Pythag-
ore or Sinus law. Then the distance function saves the distances
in a matrix dist(i, j) corresponding to the distance between i
and j. In step 3, the algorithm checks for each user the distance
from the other users by pair. If the distance is not respected, the
concerned user (noted i) is warned, and the loop is stopped for
that user (i.e., no need to check for other users as she is already
close to at least one person, and should be warned). User (j) is
also warned if he has not been warned before; otherwise, he
is ignored as there is no need to warn him twice. The two last
actions allow reducing the execution time of the algorithm, as
the loop is stopped when a person is not respecting a distance
with at least one other person. In fact, in terms of computation
complexity, the proposed algorithm has a complexity of N  M,

Figure 1. MEC-based architecture for social distancing detection.

KSENTINI_LAYOUT.indd 36KSENTINI_LAYOUT.indd 36 10/15/20 10:15 PM10/15/20 10:15 PM

IEEE Internet of Things Magazine • September 2020 37

where 1  M  N – 1, as the first loop stops when the first per-
son not respecting social distancing is found. It is worth recall-
ing that N is the number of users connected to the MEC server
(i.e., users under the coverage). This number is kept low thanks
to the distributed MEC architecture, which allows duplicating
the instances of the server side of the application.

As mentioned before, the algorithm will run periodically. To
avoid synchronizing all the clients with the servers, we propose
that each server opens a window or a period to collect the
GPS coordinates of users sent by the client applications. At the
end of the period, the algorithm is run, and concerned persons
are warned. The duration of the period is critical and needs to
be well investigated and tuned when deploying the service.
Indeed, long period duration may decrease the accuracy of the
algorithm to detect users who are not respecting social distanc-
ing, but reduce the exchanges of messages with the client side
of the application. One way to improve the algorithm in order
to be less dependent of this period is to use, in addition to the
GPS coordinate, persons’ speed and the acceleration that can
be obtained from the smartphone’s accelerometer. However,
this will increase the complexity of the algorithm, and hence the
time to run it. The current version of the algorithm is very fast
to run. Even if we consider a short period to improve accuracy,
the size of the message to exchange is negligible, so no impact
on the network is expected. Indeed, the messages sent by the
clients contain four fields: User Id, timestamp, GPS coordinates
(longitude and latitude), which require only a few bytes of data.

Discussion and Potential Applications
Privacy and anonymity

In order to keep users’ privacy, the proposed social distancing
detection service does not require personal details such as
name and mail address to run. At the registration step, a user
may create an account just by providing a valid email address
(any valid email address; no link to the identity of the user).
Then the system generates an account ID linked to the email
address, and a password is requested and associated with the
user account. Everything is stored in a distributed database
(DB) shared by all the instances of the application (server side),
which helps to handle migration of users among MEC serv-
ers. When the user installs the application on her smartphone,
she needs to have access to the GNSS/accelerometer of the
smartphone and to use the login (account ID) and its associ-
ated password. The client part of the application then opens a
socket with the remote server, and after being authenticated,
the communication flows starts between the client and server.
At the server side, the only information that is available is the
account ID and its associated email, so no direct link can be
established with the person’s identity.

Data Collection and Analytic
As mentioned earlier, all the server instances report statistics
to a cloud back-end server; for example, on the number of
warnings sent during the days, the GPS coordinates (mobility
of users) based only on the ID of users to keep anonymity. This
information is critical in order to fight against the virus prop-
agation. One extension of the proposed service is to use the
collected data to help the local government or city mayor, for
instance, to understand the correlation between the number of
generated alerts and the location. This will allow detecting loca-
tions where social distancing is not well respected; then actions
can be taken to better organize the locations concerned.

Another direction we are thinking about is the usage of
warning alerts to detect contamination and the size of the
cluster (i.e., a group of contaminated persons who are linked
together). Indeed, ML techniques can be used, which take as
input the alarms and the locations as well as inputs from the
health agency about the locations of contaminated persons.
The ML tool will be trained to find a relation between the
alarms, the locations, and the number of contaminated persons.
The ML will be used later to predict, according to the generated
alarms, the probability of contaminated people in the consid-
ered location, hence helping to detect a cluster of contaminat-
ed people, and take actions such as quarantine or locking down
those locations. Moreover, if the probability of being infected
in a location is high, the warning sent to users who are not
respecting social distancing may include this probability as addi-
tional information. This can be an incentive to respect social
distancing or to leave that area.

On the other hand, the proposed service can behave like
the StopCovid application, by allowing a user to indicate
through the application that he has been contaminated. Then
the algorithm will be run at the central cloud, by taking as input
only that user ID, and applied on the collected data for a win-
dow of one week. All users who were not respecting the social
distancing with that contaminated person will be warned and
invited to go as soon as possible to test for contamination.

Finally, the gathered GPS coordinates can be used in real
time to identify persons sharing the same mobility behavior in
terms of daily itinerary, working in the same company, living in
the same district, and so on. Therefore, the ML discussed in the
preceding paragraph can be extended to associate the proba-
bility of contamination according to the group of users.

Performance Evaluation
We evaluate the proposed social distancing detection service
through two different methods. First, we implement our dis-
tance detection scheme in Python. As input for the algorithm,
we used a real existing dataset of mobile people. Second, we
have implemented a prototype of the application and tested

Figure 2. The concept of the social distancing detection service.

KSENTINI_LAYOUT.indd 37KSENTINI_LAYOUT.indd 37 10/15/20 10:15 PM10/15/20 10:15 PM

IEEE Internet of Things Magazine • September 202038

it using EURECOM’s MEC platform [10], developed on top of
OpenAirInterface (OAI) [11]. While the first method allows us
to check the efficiency of the social distancing detection algo-
rithm, introduced in Algorithm 1, the second method permits us
to show how MEC can help to ensure near-real-time communi-
cation, and hence guarantee short latency to receive warnings
when not respecting the distances.

StudentLife Dataset
In the first method of evaluation, we have used a real dataset
named StudentLife [12] to apply our social distancing detec-
tion algorithm on it and extract its performance. StudentLife
is a large and longitudinal dataset that contains sensing data
from the phones of a class of 48 students over a 10-week
spring term. The StudentLife dataset includes rich and in-depth
information over 53 GB of sensed data. Among these data, it
comprises location-based data, corresponding to real-time GPS
coordinates obtained from students’ smartphones. It is worth
noting that this dataset is anonymized in order to protect the
privacy of the participant students. The dataset is used to pro-
vide GPS coordinates to our algorithm, which in turn will detect
users who are not respecting the social distancing and hence
generate alerts accordingly. We used this dataset instead of
simulated GPS coordinates to see the behavior of our algorithm
when facing a real mobility model.

Evaluation of the Distance Detection Scheme
Figure 3 depicts the number of warning messages sent to the
students during two different days while varying the social dis-
tancing that students have to respect as well as the collection
frequency (CF) (or period to collect the data and run the algo-
rithm) of persons’ GPS coordinates (each 100 ms for Figs. 2a
and 2b, and each 1 s for Figs. 2c and 2d). It should be noted
that in these results, we randomly select five students studying in
the same class, and we focus on two different days (03/27/2013
and 04/15/2013); we focused only on five persons. Clearly,
we observe that the number of sent warning alarms increases
as the social distancing threshold increases. We argue this by
the fact that initially the students are far away from each other
(more than half a meter); but if we increase the social distancing
threshold, the number of generated alarms increases as well.
We also remark that the number of warning alarms decreases
as we decrease the CF of GPS coordinates (Figs. 2c, 2d). In this
case, when decreasing the CF, the MEC server collects less fresh
GPS coordinates, which reduces the accuracy of the algorithm.
Indeed, the non-respect of social distancing between two suc-
cessive messages (i.e., GPS coordinates) will not be detected,
leading to generation of fewer warning messages. In this con-
text, it is preferable to increase the CF, aiming to increase the
application accuracy to detect persons who are not respecting
social distancing. Although this solution means increasing the
exchanged messages between the client and the server, the bur-
den on the network remains low. Only a few bytes of data are
needed to send one message, which is very negligible compared
to the expected high data rate in the new generation of mobile
networks like 5G. One solution to keep the algorithm accuracy
while reducing CF is to use additional inputs, such as users’ speed
and acceleration, in order to predict future user positions, which
in turn adds complexity to the distance detection algorithm.

On the other hand, for each social distancing threshold, we
see that from 12 p.m. to 02 p.m., the number of alarms is high-
er than in the other time periods. This is mainly due to the fact
that in this time period, students are out of their classes (and/or
school), which results in more non-respect of social distancing,
as the distances between students become shorter.

Prototype
We have developed a prototype of the service, where the
client part runs on top of an Android phone, and the server
is a docker container at a MEC server. For the infrastructure

we have used the OAI platform to provide 4G connectivity,
and the MEC platform developed by EURECOM to run the
application server at the edge. We have done the test with two
smartphones connected to the server. We have measured the
latency at the client side when a notification is obtained. The
measurements have been done at the application level, which
runs on top of a TCP connection. Here, since only two phones
have been tested, the latency due to Algorithm 1 execution is
negligible; the shown values mainly include the network laten-
cy.

Table 1 illustrates the obtained results, showing the average,
maximum, minimum, and standard deviation of the measured
latency. We see that using a MEC server allows reducing the
end-to-end latency to an average of 14.63 ms, which means
that the user is warned practically in near real time if social dis-
tancing is not respected, which is one of the ultimate objectives
of the proposed service.

Conclusion
In this article, we introduce a novel social distancing detection
service that runs at the edge of the network. It aims to detect,
in near real time, if persons are not respecting the minimum
recommended distances to avoid contamination, and hence to
reduce the propagation of COVID-19. Our scheme relies on
the scalable MEC ETSI system, which ensures low-latency com-
munication and hence guarantee a near-real-time reaction. In
addition, the proposed scheme ensures users’ privacy since no
personal information is required to run the service.

To demonstrate the feasibility of our scheme, we evaluated
its behavior using a real dataset of mobile people as well as
a prototype based on the OAI platform. The obtained results
show the efficiency of our scheme in alerting users in near real
time regarding the minimum distance to respect, regardless of
users’ mobility behavior (indoor or outdoor).

We expect, in future work, to improve the proposed algo-
rithm by considering other parameters, such as speed and
acceleration, and use ML to predict the locations where the
probability of contamination is high. In addition, we aim to test
our solution in a real deployment with a high number of users.

References
[1] WHO, “Coronavirus Disease (covid-19)”; https://www.who.int/emergencies/

diseases/novel-coronavirus-2019, accessed July 14, 2020.
[2] “Stopcovid”; https://www.economie.gouv.fr/stopcovid, accessed July 14,

2020.

Table 1. Measured end-to-end latency.

Average Maximum Minimum Deviation

14.63 ms 55 ms 11 ms 3.59 ms

Algorithm 1. Distance detection.

Require: GPS coordinates Ft, Lt, threshold.
Ensure: Send Warning Messages to Users.
1:
2: for i from 1 to N – 1 do
3: for j from i+1 to N do
4: Dist (i, j) = Distance (i, j)
5: end for
6: end for
7: while i  N and Warn (i) == False do
8: for j from 1 to N do
9: if Dist (i, j)  threshold then
10: Send a warning Message to user i
11: if Warn(j) == False then
12: Send a warning Message to user j
13: end if
14: end if
15: end for
16: end while

KSENTINI_LAYOUT.indd 38KSENTINI_LAYOUT.indd 38 10/15/20 10:15 PM10/15/20 10:15 PM

IEEE Internet of Things Magazine • September 2020 39

[3] “Amazon Using Cameras to Enforce Social Distancing Rules at Warehouse”;
https://www.cnbc.com/2020/06/16/amazon-using-camerasto-enforce-so-
cial-distancing-rules-at-warehouses.html, accessed July 14, 2020.

[4] “Artificially Intelligent (AI) Cameras Track Social Distancing”; https://www.
mygreatlearning.com/blog/artifi cially-intelligent-aicameras-track-social-distanc-
ing/, accessed July 14, 2020.

[5] A. Huang et al., “Low Latency MEC Framework for SDN-Based LTE/LTE-A Net-
works,” IEEE ICC 2017, Paris, France, May 21–25, 2017, pp. 1–6.

[6] “Mobile Edge Computing (MEC); Mobile Edge Management; Part 2: Appli-
cation Life Cycle, Rules and Requirements Management,” ETSI Group Spec.
MEC 010, July 2017.

[7] “Mobile Edge Computing (MEC); Framework and Reference Architecture,”
ETSI Group Spec. MEC 003, Mar. 2016.

[8] A. Ksentini and P. Frangoudis, “Toward Slicing-Enabled Multi-Access Edge
Computing in 5G,” IEEE Network, vol. 34, no. 1, Jan./Feb. 2020, pp. 99–105.

[9] P. A. Frangoudis and A. Ksentini, “Service Migration Versus Service Replication
in Multi-Access Edge Computing,” 2018 14th Int’l. Wireless Commun. Mobile
Computing Conf., 2018, pp. 124–29.

[10] S. Arora, P. Frangoudis, and A. Ksentini, “Exposing Radio Network Informa-
tion in a Mec-in-Nfv Environment: The Rnisaas Concept,” Proc. 2019 IEEE
Network Softwarization Conf., ser. Netsoft’19, 2019.

[11] N. Nikaein et al., “Openairinterface: A Flexible Platform for 5G Research,”
SIGCOMM Comp. Commun. Rev., vol. 44, no. 5, Oct. 2014, p. 33–38.

[12] R. Wang et al., “Studentlife: Assessing Mental Health, Academic Performance
and Behavioral Trends of College Students Using Smartphones,” Proc. 2014
ACM Int’l. Joint Conf. Pervasive and Ubiquitous Computing, ser. UbiComp ’14,
New York, NY, USA, 2014, p. 3–14.

bIogrAPhIEs
Adlen Ksentini (adlen.ksentini@eurecom.fr) is an IEEE Com-
munications Society Distinguished Lecturer. He obtained
his Ph.D. degree in computer science from the University
of Cergy-Pontoise in 2005. Since March 2016, he has been
a professor in the Communication Systems Department of
EURECOM. He has been working on several EU projects on
5G, network slicing, and IoT.

Bouziane Brik (bouziane.brik@eurecom.fr) received his Ph.D.
degree from Laghouat and La Rochelle Universities, France, in
2017. He is currently a research fellow at the Communication
Systems Department, EURECOM, France. He has been work-
ing on network slicing in the context of the H2020 European
project on 5G. His research interests also include IoT, IoT in
industrial systems, smart grid, and vehicular networks.

Figure 3. The number of generated alarms in two diff erent days with diff erent GPS collection frequency (CF): a), b) CF each 100 ms.;
c), d) CF each 1 s.

(a) (b)

(c) (d)

KSENTINI_LAYOUT.indd 39KSENTINI_LAYOUT.indd 39 10/15/20 10:15 PM10/15/20 10:15 PM

