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Introduction
COVID-19 is a new virus belonging to the coronavirus family. 
So far, more than 10 million people have been affected in the 
world, and over half a million have died due to the direct con-
sequences of the virus [1]. While waiting for a vaccine or an 
efficient treatment, it is mandatory to find solutions for reducing 
the spread of the virus. In other words, the world needs to deal 
with the virus while waiting for a treatment or a vaccine. In this 
context, information communications technology (ICT) can play 
a key role, where combining IoT and other recent technologies, 
such as edge computing, software defined networking (SDN), 
network function virtualization (NFV), and machine learning 
(ML), can allow the definition of new applications or services to 
be used by doctors, governments, and persons to fight against 
the spread of the virus. So far, several use cases have been 
envisioned to use IoT as a way to help in facing the virus. For 
instance, we can mention the case of elderly people, which 
would be followed up closely. In this case, panic buttons, and 
sensors that monitor movement, energy, and even doors can 
be used in hospitals and rest homes, but also for people who 
still live at home, allowing anomaly reporting so that timely 
action can be taken. Another use case can be the monitoring 
of people in quarantine. Sensors can be used to track people 
who should live in (self) quarantine, but do not always follow 
the rules and sometimes dare to go outside their zone, pos-
ing a high risk of spreading the virus. In addition, new applica-
tions for mobile devices have appeared, such as the StopCovid 
application [2], which allows warning persons who have been 
in contact with infected persons, and hence track clusters of 
infected persons and isolate them. The StopCovid application 
uses Bluetooth in order to save the ID of persons who were 
close during a certain period. If one of these persons declares 
in the application that they have been affected, an alarm is sent 
to all the users who have been in contact with them. The weak-
ness of this application is the usage of Bluetooth (it must be 
turned on in the smartphone), which is known for its concern 
with security.

On the other hand, it is well established that one of the key 
solutions that needs to be adopted to reduce the spread of the 
virus is to keep a minimum distance between persons, namely 
social distancing. In fact, many studies have shown that there 
is a minimum distance to keep between persons in order to 
avoid contagion; the minimum distance varies from 1 m to 2 m 
according to the country. Therefore, there is a need to have an 
application or a service that, in runtime, detects if users, located 
in a certain area, do not respect social distancing. StopCovid 

does not include such features as it just records the persons 
who were in contact, and if one of them is contaminated by 
the virus, it has to declare it in the application; then all the per-
sons who were in contact with that person are warned. Besides 
being reactive (i.e., after contamination), the StopCovid appli-
cation needs people to actively participate in the application 
usage. Other solutions have been developed toward checking, 
in runtime, the respect of social distancing. We can mention 
applications using cameras and machine learning (ML) tech-
niques, such as the system used by Amazon to enforce social 
distancing at its warehouse [3], or the one used in [4] to track 
social distancing. However, these applications do not warn con-
cerned persons, but police or managers.

In this work, we propose a novel social distancing detec-
tion service that runs at the edge of the network, and aims to 
detect if users are not respecting the minimum recommended 
distances to avoid contamination and warn them accordingly. 
To this aim, the proposed service is composed of an application 
that runs on user’s smartphones, equipped with sensors — most 
notably, a global navigation satellite system (GNSS), which 
periodically sends GPS coordinates to a remote application 
sitting at the edge. The remote application’s role is to compute 
the distances (Euclidean), using the GPS coordinates, between 
users located under the edge server coverage (i.e., geographi-
cal location). Users that are close to each other, and hence not 
respecting social distancing, are warned through messages sent 
by the remote application to the smartphone. It is worth noting 
that the proposed service requires low-latency communications 
as users need to be warned rapidly (in near real time) in case 
of non-respect of social distancing. Thanks to edge computing, 
and particularly to the European Telecommunications Standards 
Institute (ETSI) multi-access edge computing (MEC) system, 
the proposed service will be deployed at the edge and benefit 
from the ETSI MEC ecosystem [5]. Besides ensuring low-la-
tency communication and hence near-real-time reaction, the 
usage of MEC will guarantee system scalability, as MEC servers 
are deployed in a distributed fashion inside a mobile network, 
hence accommodating a high number of users compared to 
a centralized solution. Also, the proposed service will ensure 
privacy and anonymity as no personal information needs to 
be disclosed in order to use the application. User identifiers 
are generated and linked only to a valid email address, hence 
ensuring anonymity. Last but not least, the proposed solution 
does not need high involvement from users as in StopCovid. 
The only requirement is that the application is running on the 
smartphones, and the end users have to be alert to the notifi-
cations.

The remainder of this article is organized as follows. We 
give the envisioned use case and architecture. We introduce 
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our proposed solution and algorithm. Potential applications 
and extensions of our solution are highlighted. We discuss the 
obtained results and conclude the article.

Envisioned Use Case and Architecture
Before describing the envisioned architecture, we will start by 
introducing MEC. The latter is a new trend that enables a new 
generation of services which operate close to end users aimed 
at reducing the end-to-end latency. MEC allows the deployment 
of two types of service: 
• Applications that require low-latency access to user plane traf-

fic
• Context-aware applications that adapt the delivered service

according to users’ environments
MEC is an operator-oriented architecture, which adds comput-
ing capability in the vicinity of base stations, and proposes an 
orchestration and management framework to handle the life 
cycle management (LCM) of edge applications. ETSI is provid-
ing specifications on MEC via the ISG MEC group [6, 7], who 
released several documents to describe: envisioned use cases, a 
reference MEC architecture, a MEC application model (descrip-
tor), MEC services, MEC orchestrator, and so on. Besides run-
ning applications at the edge, MEC provides services, accessible 
via a high-level application programming interface (API), which 
give information in the mobile users’ and cellular base stations’ 
contexts, such as radio channel quality of users, allowing build-
ing context-aware applications.

In this work, we envision the system architecture as depicted 
in Fig. 1, which is composed of MEC servers, and users con-
nected to the servers via the application installed on their smart-
phones. We assume that the network operator uses a set of 
MEC servers to cover different areas, which allows deploying 
several instances of the service to guarantee scalability. The 
size of the area to be covered by a MEC server depends on 
the density of users. We assume that a MEC server is associ-
ated with a set of base stations (or eNBs in LTE and geNBs 
in 5G). The number of base stations associated with a MEC 
server depends on the density of the users. In rural areas, we 
can imagine having one MEC server covering a high number of 
macrocells, whereas in dense and urban areas, one MEC server 
covers a low number of macrocells or a high number of small 
cells. This deployment can also be envisioned in the context 
of smart cities, where servers are deployed to cover neighbor-
hoods, and the service is managed by the city. In this case, the 
service is deployed by the network operator as a network slice 
[8] and fully managed by the city, considered then as the ver-
tical. The social distancing detection application runs inside a
container, and can be duplicated on all the MEC servers. Since
users are mobile, they can be migrated from one MEC server
to another MEC server when they move between two cells that
do not belong to the same MEC server coverage. Readers may
refer to [9] for more details on service migration in MEC.

We assume the scenario represented in Fig. 1, where users 
are spread over locations covered by different MEC servers. 
The users have installed the client side of the service on their 
smartphone, and are already connected with the server side of 
the service located at the closest MEC server (i.e., the one that 
is covering the geographical location of the user). While walk-
ing, the client side of the application periodically communicates 
the GPS coordinates to the remote detection application server. 
The latter receives all the GPS coordinates of users under the 
coverage of the MEC server. A local algorithm is used, which 
takes as input the GPS coordinates of all users and gives as 
output the Id of users that are not respecting social distancing. 
The concerned users will receive a warning message from the 
server, visible directly on their smartphone as a notification indi-
cating that they are not respecting social distancing.

On the other hand, the social distancing detection instances 
are connected to a remote application located in the central 

cloud, which backs up the information on how many people 
have been warned and the different locations of the persons. 
It should be noted that the identity of users is protected; only 
their Ids are disclosed. The cloud application can use the 
obtained information to report statistics to the government and 
the city mayor on locations where high warning messages have 
been triggered, which may help, for instance, to understand 
and organize the concerned locations (i.e., streets) in order to 
reduce warning alarms in the future. 

Proposed Solution and Algorithm
As stated earlier, the proposed social distancing detection ser-
vice is composed of a client application and a server applica-
tion. The client side of the application is very simple, consisting 
of being connected to the remote server (at the edge) and 
periodically sending GPS coordinates. The most intelligent part 
of the service is at the server side, which uses the received GPS 
coordinates of users in order to calculate the distances and gen-
erate warning messages if deemed appropriate.

The proposed algorithm to be run at the server side is shown 
as Algorithm 1. We distinguish three steps, as depicted in Fig. 2: 
1.	The collection of all the GPS coordinates of users connected

to the server (i.e., under its coverage)
2.	The computation of the distance between users, on a pair-by-

pair basis
3.	The detection of users not respecting the distance threshold,

and the warning message generation
For step 1, the collection of GPS coordinates is done periodical-
ly and saved in two vectors: Ft(i) corresponding to the latitude 
coordinates and Lt(i) for the longitude coordinates, indexed by 
the user id (i.e., i). In step 2, a function distance is called for 
each pair of users (i, j) and takes as inputs Ft(i), Ft(j), Lt(i), and 
Lt(j). The details of this function are not included in this work, 
but it can be based on any well-known method such as Pythag-
ore or Sinus law. Then the distance function saves the distances 
in a matrix dist(i, j) corresponding to the distance between i 
and j. In step 3, the algorithm checks for each user the distance 
from the other users by pair. If the distance is not respected, the 
concerned user (noted i) is warned, and the loop is stopped for 
that user (i.e., no need to check for other users as she is already 
close to at least one person, and should be warned). User (j) is 
also warned if he has not been warned before; otherwise, he 
is ignored as there is no need to warn him twice. The two last 
actions allow reducing the execution time of the algorithm, as 
the loop is stopped when a person is not respecting a distance 
with at least one other person. In fact, in terms of computation 
complexity, the proposed algorithm has a complexity of N  M, 

Figure 1. MEC-based architecture for social distancing detection.
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where 1  M  N – 1, as the first loop stops when the first per-
son not respecting social distancing is found. It is worth recall-
ing that N is the number of users connected to the MEC server 
(i.e., users under the coverage). This number is kept low thanks 
to the distributed MEC architecture, which allows duplicating 
the instances of the server side of the application.

As mentioned before, the algorithm will run periodically. To 
avoid synchronizing all the clients with the servers, we propose 
that each server opens a window or a period to collect the 
GPS coordinates of users sent by the client applications. At the 
end of the period, the algorithm is run, and concerned persons 
are warned. The duration of the period is critical and needs to 
be well investigated and tuned when deploying the service. 
Indeed, long period duration may decrease the accuracy of the 
algorithm to detect users who are not respecting social distanc-
ing, but reduce the exchanges of messages with the client side 
of the application. One way to improve the algorithm in order 
to be less dependent of this period is to use, in addition to the 
GPS coordinate, persons’ speed and the acceleration that can 
be obtained from the smartphone’s accelerometer. However, 
this will increase the complexity of the algorithm, and hence the 
time to run it. The current version of the algorithm is very fast 
to run. Even if we consider a short period to improve accuracy, 
the size of the message to exchange is negligible, so no impact 
on the network is expected. Indeed, the messages sent by the 
clients contain four fields: User Id, timestamp, GPS coordinates 
(longitude and latitude), which require only a few bytes of data. 

Discussion and Potential Applications
Privacy and anonymity

In order to keep users’ privacy, the proposed social distancing 
detection service does not require personal details such as 
name and mail address to run. At the registration step, a user 
may create an account just by providing a valid email address 
(any valid email address; no link to the identity of the user). 
Then the system generates an account ID linked to the email 
address, and a password is requested and associated with the 
user account. Everything is stored in a distributed database 
(DB) shared by all the instances of the application (server side), 
which helps to handle migration of users among MEC serv-
ers. When the user installs the application on her smartphone, 
she needs to have access to the GNSS/accelerometer of the 
smartphone and to use the login (account ID) and its associ-
ated password. The client part of the application then opens a 
socket with the remote server, and after being authenticated, 
the communication flows starts between the client and server. 
At the server side, the only information that is available is the 
account ID and its associated email, so no direct link can be 
established with the person’s identity. 

Data Collection and Analytic
As mentioned earlier, all the server instances report statistics 
to a cloud back-end server; for example, on the number of 
warnings sent during the days, the GPS coordinates (mobility 
of users) based only on the ID of users to keep anonymity. This 
information is critical in order to fight against the virus prop-
agation. One extension of the proposed service is to use the 
collected data to help the local government or city mayor, for 
instance, to understand the correlation between the number of 
generated alerts and the location. This will allow detecting loca-
tions where social distancing is not well respected; then actions 
can be taken to better organize the locations concerned.

Another direction we are thinking about is the usage of 
warning alerts to detect contamination and the size of the 
cluster (i.e., a group of contaminated persons who are linked 
together). Indeed, ML techniques can be used, which take as 
input the alarms and the locations as well as inputs from the 
health agency about the locations of contaminated persons. 
The ML tool will be trained to find a relation between the 
alarms, the locations, and the number of contaminated persons. 
The ML will be used later to predict, according to the generated 
alarms, the probability of contaminated people in the consid-
ered location, hence helping to detect a cluster of contaminat-
ed people, and take actions such as quarantine or locking down 
those locations. Moreover, if the probability of being infected 
in a location is high, the warning sent to users who are not 
respecting social distancing may include this probability as addi-
tional information. This can be an incentive to respect social 
distancing or to leave that area.

On the other hand, the proposed service can behave like 
the StopCovid application, by allowing a user to indicate 
through the application that he has been contaminated. Then 
the algorithm will be run at the central cloud, by taking as input 
only that user ID, and applied on the collected data for a win-
dow of one week. All users who were not respecting the social 
distancing with that contaminated person will be warned and 
invited to go as soon as possible to test for contamination.

Finally, the gathered GPS coordinates can be used in real 
time to identify persons sharing the same mobility behavior in 
terms of daily itinerary, working in the same company, living in 
the same district, and so on. Therefore, the ML discussed in the 
preceding paragraph can be extended to associate the proba-
bility of contamination according to the group of users.

Performance Evaluation
We evaluate the proposed social distancing detection service 
through two different methods. First, we implement our dis-
tance detection scheme in Python. As input for the algorithm, 
we used a real existing dataset of mobile people. Second, we 
have implemented a prototype of the application and tested 

Figure 2. The concept of the social distancing detection service.
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it using EURECOM’s MEC platform [10], developed on top of 
OpenAirInterface (OAI) [11]. While the first method allows us 
to check the efficiency of the social distancing detection algo-
rithm, introduced in Algorithm 1, the second method permits us 
to show how MEC can help to ensure near-real-time communi-
cation, and hence guarantee short latency to receive warnings 
when not respecting the distances. 

StudentLife Dataset
In the first method of evaluation, we have used a real dataset 
named StudentLife [12] to apply our social distancing detec-
tion algorithm on it and extract its performance. StudentLife 
is a large and longitudinal dataset that contains sensing data 
from the phones of a class of 48 students over a 10-week 
spring term. The StudentLife dataset includes rich and in-depth 
information over 53 GB of sensed data. Among these data, it 
comprises location-based data, corresponding to real-time GPS 
coordinates obtained from students’ smartphones. It is worth 
noting that this dataset is anonymized in order to protect the 
privacy of the participant students. The dataset is used to pro-
vide GPS coordinates to our algorithm, which in turn will detect 
users who are not respecting the social distancing and hence 
generate alerts accordingly. We used this dataset instead of 
simulated GPS coordinates to see the behavior of our algorithm 
when facing a real mobility model.

Evaluation of the Distance Detection Scheme
Figure 3 depicts the number of warning messages sent to the 
students during two different days while varying the social dis-
tancing that students have to respect as well as the collection 
frequency (CF) (or period to collect the data and run the algo-
rithm) of persons’ GPS coordinates (each 100 ms for Figs. 2a 
and 2b, and each 1 s for Figs. 2c and 2d). It should be noted 
that in these results, we randomly select five students studying in 
the same class, and we focus on two different days (03/27/2013 
and 04/15/2013); we focused only on five persons. Clearly, 
we observe that the number of sent warning alarms increases 
as the social distancing threshold increases. We argue this by 
the fact that initially the students are far away from each other 
(more than half a meter); but if we increase the social distancing 
threshold, the number of generated alarms increases as well. 
We also remark that the number of warning alarms decreases 
as we decrease the CF of GPS coordinates (Figs. 2c, 2d). In this 
case, when decreasing the CF, the MEC server collects less fresh 
GPS coordinates, which reduces the accuracy of the algorithm. 
Indeed, the non-respect of social distancing between two suc-
cessive messages (i.e., GPS coordinates) will not be detected, 
leading to generation of fewer warning messages. In this con-
text, it is preferable to increase the CF, aiming to increase the 
application accuracy to detect persons who are not respecting 
social distancing. Although this solution means increasing the 
exchanged messages between the client and the server, the bur-
den on the network remains low. Only a few bytes of data are 
needed to send one message, which is very negligible compared 
to the expected high data rate in the new generation of mobile 
networks like 5G. One solution to keep the algorithm accuracy 
while reducing CF is to use additional inputs, such as users’ speed 
and acceleration, in order to predict future user positions, which 
in turn adds complexity to the distance detection algorithm. 

On the other hand, for each social distancing threshold, we 
see that from 12 p.m. to 02 p.m., the number of alarms is high-
er than in the other time periods. This is mainly due to the fact 
that in this time period, students are out of their classes (and/or 
school), which results in more non-respect of social distancing, 
as the distances between students become shorter.

Prototype
We have developed a prototype of the service, where the 
client part runs on top of an Android phone, and the server 
is a docker container at a MEC server. For the infrastructure 

we have used the OAI platform to provide 4G connectivity, 
and the MEC platform developed by EURECOM to run the 
application server at the edge. We have done the test with two 
smartphones connected to the server. We have measured the 
latency at the client side when a notification is obtained. The 
measurements have been done at the application level, which 
runs on top of a TCP connection. Here, since only two phones 
have been tested, the latency due to Algorithm 1 execution is 
negligible; the shown values mainly include the network laten-
cy. 

Table 1 illustrates the obtained results, showing the average, 
maximum, minimum, and standard deviation of the measured 
latency. We see that using a MEC server allows reducing the 
end-to-end latency to an average of 14.63 ms, which means 
that the user is warned practically in near real time if social dis-
tancing is not respected, which is one of the ultimate objectives 
of the proposed service. 

Conclusion
In this article, we introduce a novel social distancing detection 
service that runs at the edge of the network. It aims to detect, 
in near real time, if persons are not respecting the minimum 
recommended distances to avoid contamination, and hence to 
reduce the propagation of COVID-19. Our scheme relies on 
the scalable MEC ETSI system, which ensures low-latency com-
munication and hence guarantee a near-real-time reaction. In 
addition, the proposed scheme ensures users’ privacy since no 
personal information is required to run the service.

To demonstrate the feasibility of our scheme, we evaluated 
its behavior using a real dataset of mobile people as well as 
a prototype based on the OAI platform. The obtained results 
show the efficiency of our scheme in alerting users in near real 
time regarding the minimum distance to respect, regardless of 
users’ mobility behavior (indoor or outdoor).

We expect, in future work, to improve the proposed algo-
rithm by considering other parameters, such as speed and 
acceleration, and use ML to predict the locations where the 
probability of contamination is high. In addition, we aim to test 
our solution in a real deployment with a high number of users. 
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Figure 3. The number of generated alarms in two diff erent days with diff erent GPS collection frequency (CF): a), b) CF each 100 ms.; 
c), d) CF each 1 s.
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