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Introduction
In an article on Shannon’s “Mathematical Theory of Communi-
cation,” Weaver noted [1] “In communication there seem to be 
problems at three levels: technical, semantic, and influential. The 
technical problems are concerned with the accuracy of transfer-
ence of information from sender to receiver. […] The semantic 
problems are concerned with the interpretation of meaning by 
the receiver, as compared with the intended meaning of the 
sender. […] The problems of influence or effectiveness are con-
cerned with the success with which the meaning conveyed to 
the receiver leads to the desired conduct on his part.” As a mat-
ter of fact, Shannon’s information theory deals principally with 
the “technical problem” of representing (source coding) and 
reliably delivering (channel coding) information, where the latter 
is defined regardless of meaning and/or effectiveness.

Following up on the initial remarks by Weaver, several 
researchers in the past have tried to bring “semantics” back 
into the picture. Early work by Carnap and Bar-Hillel [2] models 
semantic information in terms of logical probability. A differ-
ent view is taken in [3], which argues that the notion of mean-
ing, as well as the adequacy and truthfulness of models, can 
be explained using the toolbox of entropy-based theories of 
information (i.e., Shannon information theory, Gibbs’ statistical 
mechanics, and Kolmogorov complexity), without the explicit 
need to develop a separate theory of semantic information.

More recently, “semantic information and communication” 
have re-emerged in the context of the next generation communi-
cation networks [4]. The general belief is that future information 

processing systems will be “task-oriented,” and semantic commu-
nication may provide a conceptual framework for the unification 
of the process of data generation, transmission, and usage, with 
the aim of reducing overhead and energy consumption. Howev-
er, despite the intuition that some major gains should be possi-
ble, putting these ideas into practice is still challenging.

Semantic Communication: the Search for Meaning
Probably the most concrete application of the “semantic com-
munication” framework up to date is related to the introduction 
of new “semantic-aware” metrics to complement conventional 
ones such as throughput, reliability or latency. An example is pro-
vided by the notion of “information freshness” that has emerged 
as a proxy to capture the performance of wireless systems that 
monitor the state of one or multiple sources, e.g., sensing a phys-
ical process. In this context, established approaches deal with 
age of information (AoI) and its generalizations (see [5] for an 
overview). Relevant examples are offered by IoT applications, 
e.g., for industrial and environmental monitoring, by asset track-
ing, as well as by cyber-physical systems, where proper actuation 
and control decisions shall be made relying on these newly-intro-
duced metrics. Another direction has recently appeared in the 
context of robust data transmission, where deep learning is used 
to map the source data into feature space. At the decoder side, 
the channel output is mapped back into the feature space such 
that the semantic content of the data is preserved. This approach 
is, in fact, an instance of joint source-channel coding (JSCC), with 
the novelty that the source-channel maps are learned by train-
ing suitably designed neural networks. While JSCC may indeed 
provide some advantage in terms of end-to-end performance 
for specific cases of sources and channels, we note that the 
JSCC paradigm breaks the fundamental principle of “separation” 
between system protocol layers, which is the driving principle 
according to which legacy communication systems are designed. 

Criticism and Added Value of the Semantic Framework
Based on these remarks, two critical questions arise, which 
inspire the remainder of our discussion:

C1: Is there more to semantic communication than “defining 
semantic-aware metrics” that are different from conventional met-
rics such as packet loss ratio, delay, and similar?
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C2: Is the predication of large system gains 
based on a revival of joint source-channel cod-
ing, although re-interpreted with the preserva-
tion of semantic content as the main objective, 
novel and transformative?

In light of these critical questions, we will discuss 
two perspectives on semantic communication. 

In relation to the first question (C1), the 
focus will be on the goal-oriented interpretation 
of semantic communication, roughly defined 
as “the provisioning of the right and signifi-
cant piece of information to the right point of 
computation (or actuation) at the right point 
in time” [6]. The rationale is that the goal-ori-
ented approaches that incorporate semantic 
metrics can be more effective than traditional 
system-design approaches based on the opti-
mization of conventional performance metrics, 
as they are concerned with the relevance of 
the information content being transmitted for 
the purpose of achieving the goal (for exam-
ple meeting a certain control objective), rather 
than with the utilization of the wireless channel. 

With respect to the second question (C2), 
we will focus on semantic interoperability, 
which extends the notion of interoperability 
(i.e. data exchange through standardized inter-
faces), to include the meaning or, more gener-
ally, the signifi cance of data. This interpretation includes aspects 
of generative modelling and, respectively, the communication 
of generative models over wireless channels. From an informa-
tion-theoretic perspective, some of these aspects are closely 
related to the problem of remote source coding (see, e.g., [7]), 
which also incorporates the well-known information bottleneck 
(IB) formulation (Tishby et al. [8]) as a special instance. We note 
that the IB principle has already been applied in the context of 
semantic communication (see, e.g., [9]). 

two PerSPectIVeS on “SemantIc 
communIcatIon” (and theIr ImPlIcatIonS)

goal-orIented communIcatIon
In the spirit of this discussion, goal-oriented communication 
approaches the communication problem by focusing on effi-
cient and eff ective exchange of information contributing to the 
realization of a desired goal. Besides a proper definition of a 
communication goal, this approach also requires related met-
rics that capture the notion of data signifi cance.

The fi rst steps in this direction were taken in the domain of 
vehicular communications, with the introduction of the AoI. The 
metric is simply defi ned as the diff erence between the current 
time and the time-stamp of the last update from the source of 
interest that is available at the destination and is thus agnostic 
of the actual information being transferred. However, AoI may 
capture some fundamental trade-off s and provide optimization 
criteria for goal-oriented communication. For instance, in a 
tracking problem, the deviation in position can be shown to be 
a simple linear function of the AoI. Moreover, in some control 
systems, the mean square error in state estimation, as well as 
the uncertainty at the receiver on the state of a tracked source, 
are, under proper conditions, non-decreasing penalty functions 
of age. Notably, the design insights that can be derived leaning 
on AoI may signifi cantly deviate from those prompted by tradi-
tional metrics. 

Going beyond AoI, an example of more advanced metric 
is off ered by the age of incorrect information (AoII) (see [5]), 
evolving as a function of the AoI only when the monitored 
process is actually changing, and accounting for no penalty 
otherwise. Similarly, in the perspective of goal-oriented com-

munication, the availability of fresh knowledge may only be 
important at times in which decisions are made, as captured by 
the query AoI (see [6] and references therein for an overview).

How to Integrate Control Aspects in the Goal-Oriented 
Communication Framework?: From an information-theoretic 
perspective, it is not clear how aspects of goal-oriented com-
munication relate to networked control systems with feedback 
control loops over communication channels, as studied tradi-
tionally in control theory. Earlier works by Tatikonda, Sahai, and 
Mitter study the fundamental relationship between control and 
communication problems (see, e.g., [10])1 The main message 
is that Shannon’s classical notion of capacity is not enough to 
characterize a noisy communication channel if the channel is 
intended to be used as part of a feedback loop to stabilize an 
unstable system. Instead, another sense of capacity (parame-
trized by reliability) called “anytime capacity” is necessary for 
the stabilization of the system.

We postulate that these aspects may be relevant to the 
establishment of a unifi ed framework that integrates aspects of 
data generation, communication, and control. In this regard, a 
starting point may be provided by recently introduced met-
rics such as the value of information (VoI) [11], which sys-
tematically captures the semantics of data by estimating the 
relevance of the available data samples to the point of com-
putation. From a control theory perspective, the VoI emerg-
es as a solution to the rate-regulation tradeoff between the 
communication rate and the regulation cost, with an event 
trigger (collocated with the sensor) and a controller (collocat-
ed with the actuator) as two distributed decision makers. A 
practical example considering the problem of stabilization of 
an inverted pendulum on a cart was provided in [11], showing 
that the system under the triggering policy designed based on 
the VoI was able to achieve a much better regulation quality 
than a system with a conventional periodic triggering policy. 
While the above studies provide a good starting point, further 
research is needed that will expand the theoretical frame-
works developed therein to more complex classes of systems, 
thus unifying aspects of semantic communication and control 
theory in more general settings. Another aspect that should be 
addressed is the potential impact that the adoption of these 
concepts has on the design of communication protocols. We 
discuss this issue later. 

Figure 1. Two perspectives on semantic communication: a) goal-oriented 
communication: a semantic-aware architecture for robotic control that considers 
a unifi cation of the processes of information generation, communication, and 
usage; b) semantic operability: communicating a semantic concept corresponds 
to communicating the corresponding generative model. Once a concept is 
communicated, the destination has the ability to generate instances of that 
concept. 

(a)

(b)
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SemantIc InteroPerabIlItY

In addition to the goal-oriented perspective, a somewhat diff er-
ent perspective on semantic communication is conceivable — 
based on the concept of semantic interoperability, which can be 
defi ned as the ability of two or more agents to exchange and 
understand each other’s data correctly. Interoperability is classi-
cally thought of solely in terms of data exchange (through stan-
dardized interfaces), but semantic interoperability extends this 
notion to include the meaning of data, and thus a data model 
translation becomes an essential part of the problem. In terms 
of interoperability, models and algorithms can be described 
using ontologies, which establish a formal and explicit digital 
specifi cation (conceptualization) of a domain of interest. Within 
this framework, ontology is a means of defining semantically 
relevant descriptions, which can be used to interpret data, i.e., 
to match it to an appropriate information model.

From this general idea, one can postulate that communi-
cating concepts corresponds to communicating models, and 
models are concretely defined as tools to reproduce an arbi-
trary number of instances of a given concept at the destination, 
i.e., sampling from a distribution defined on the manifold of 
the concept realization. As an example, suppose that both the 
sender and the receiver are familiar with the concept of “cat” 
(i.e. they share a common information model). According to 
the above said, to convey semantic information associated with 
the “object of interest” (i.e., cat), the sender can simply send 
the (suitably encoded) word cat. In particular, this enables the 
receiver to sample from a hypothetical distribution of existing 
cat images, and retrieve a random image of a cat. While the 
distortion (in terms of pixel-by-pixel distance, with respect to 
some suitable metric) may be very large, the semantic distortion 
is zero, since the receiver understands exactly what the trans-
mitter wanted to convey. This, in essence, corresponds to the 
intuitive idea of human-to-human semantic communication. 

Demystifying the Information Bottleneck: Under the 
assumption of a shared information model, semantic coding 
takes on the form of a remote source coding problem (see, 
e.g., [7]) where semantic information and the corresponding 
data realization are modeled as a pair of jointly distributed ran-
dom variables (Y, X), where Y denotes the semantic label (e.g., 
“cat”) and X denotes the corresponding sensory data (e.g., a 
corresponding image of a cat). In this context, the encoder pro-
duces a representation Z of the data X that aims to capture the 
most “relevant information” regarding X. This viewpoint in the 
context of semantic information has been recently proposed 
in [12]. It is apparent from the above that in the presence of 
a common information model, semantic information and com-
munication may be interpreted as being an extreme form of 
data compression that aims at eliminating as much as possible 
the irrelevant features of the data, while preserving the “mean-
ing” (in this case, the semantic class). In particular, when the 
representation variable Z is a probability distribution over the 
alphabet  of the semantic label Y and the distortion measure 
between Y and Z is “log-loss,” then remote source coding coin-
cides with the information bottleneck problem [8].

In the absence of a common information model, on the 
other hand, the intended receiver (destination) is a blank slate 

that needs to be instructed. In that case, we need to convey the 
semantic concept such that the destination effectively learns 
the (new) concept. Hence, the idea is that communicating 
the semantic concept corresponds to communicating the cor-
responding generative model. The “ground-truth” generative 
model (unknown) can be approximated to a desired degree 
of accuracy by a deep neural network (DNN), referred to as 
generator. We note that this paradigm is intimately related to 
the concept of universal coding, which is central in informa-
tion theory. In fact, there is a strong correspondence between 
learning the generative model from a data set and the universal 
compression of the data set itself.

edge/on-deVIce IntellIgence and SemantIc 
communIcatIon: a Perfect match?

The principle of semantic interoperability is fairly general and 
can be applied to more complex ontologies, not just formed 
by sets of semantic classes, but also by their causal and spa-
tial relationships. The ultimate goal is to defi ne semantic data 
encoding targeted and optimized for given tasks. For example, 
if the machine’s task consists of identifying the shape of objects 
or generating annotation of images, there is no reason to use 
standard image coding (optimized for human perception). 
Instead, the encoder at the source can be optimized according 
to the task and achieve the same end-to-end performance with 
a much smaller transmission or storage data rate. These aspects 
are of particular relevance in relation to the trend to migrate 
certain AI functionalities from the cloud to the wireless edge, 
with the aim of performing inference tasks closer to the end 
users. In the following, we provide an example of a seman-
tic-aware architecture for edge inference. 

a SemantIc archItecture for edge IntellIgence
Consider a device-edge co-inference system as illustrated in Fig. 
2. In this architecture, the device and the edge server cooper-
ate to perform a certain task (e.g. image classifi cation/object 
detection) relying on neural networks. In Fig. 2, X and Y corre-
spond to the input data and the target random variable, respec-
tively. The encoded feature vector, the received feature vector, 
and the inference result are respectively represented by ran-
dom variables Z, Ẑ and Ŷ. 

The on-device neural network (NN) learns in a joint fashion 
how to extract the task-relevant feature from the raw input X, 
and to map the feature values to the channel input symbols Z. 
The server-based NN processes the received and corrupted (by 
the communication channel) feature Ẑ, and outputs the infer-
ence result Ŷ. In this context, the IB framework can be applied 
to decrease the communication overhead by retaining in Z
only the “most relevant” information for the task in question. 
As such, IB formalizes a rate-distortion trade-off between the 
informativeness of the encoded feature and the inference per-
formance. As in practice the mutual information terms in the IB 
formulation are intractable for DNNs with high-dimensional fea-
tures, one can leverage the variational approximation, known 
as variational information bottleneck (VIB), to devise a tractable 
upper bound on the objective function, which can be then min-
imized via Monte Carlo gradient estimation.

In this context, we also emphasize the potential relevance 
of neuromorphic computing for effi  cient semantic-aware signal 
processing (see, e.g., [13]). Neuromorphic computing is particu-
larly attractive for edge inference applications due to its energy 
efficiency and native support for event-driven processing. As 
a proof of concept, we present some initial experiments for a 
classification task with the Neuromorphic-MNIST (N-MNIST) 
dataset, a spiking version of the original MNIST dataset. In the 
context of the architecture in Fig. 2, we consider a neuromor-
phic implementation where the on-device semantic encoding 
is performed by a spiking neural network (SNN), and the com-
munication is performed by using impulse-radio-based transmis-

Figure 2. A semantic-aware architecture for device-edge 
co-inference based on the IB formulation with privacy 
constraints.
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sion. As a result, in the optimization framework, 
we resort to the directed information bottleneck 
formulation (DIB) introduced in [13]. Consider-
ing a binary symmetric channel with cross-over 
probability p, we test the classification accuracy 
for a fixed communication budget, quantified 
by the bit-length of the latent representation Ẑ. 
Table 1 summarizes the performance for var-
ious channel cross-over probabilities, under a 
communication budget of k = 256 and k = 128 
bits respectively.

As a validation of the concept, we observe 
that the semantic-aware scheme implemented with neuromor-
phic processing, with learning based on the variational DIB 
(denoted as S-VDIB in Table I), provides competitive perfor-
mance compared with a state-of-the-art joint source-channel 
coding scheme (JSCC), as well with and a conventional sepa-
rate source-channel coding (SSCC), in the investigated regime.

PHY-Layer Security/Privacy in Semantic Communication
Notably, physical layer security and privacy can be integrated 
within the IB framework, relying on the formulations of privacy 
funnel (PF), and latent variable secrecy (LVS) as elaborated in 
the following examples. 

Consider first the Markov chain S – X – Ẑ – Ŷ in Fig. 2. From 
the PF viewpoint, we can interpret S, X, and Ẑ as the private data, 
observed data, and displayed data, respectively. The problem of 
PF is to maximize the mutual information between X and Ẑ such 
that the privacy leakage between S and Ẑ is below a threshold 
value which represents the privacy constraint while keeping the 
original Markov chain constraints. Therefore the goal of PF is to 
share as much information between the observed data X and 
the displayed (extracted) data Ẑ as possible, while bounding the 
leakage of the private data S to Ẑ. More formally, as illustrated 
in Fig. 2, the minimization of the functional LIB in the original 
IB framework is now performed subject to privacy constraints 
(therefore LPIB).

A related problem is the LVS, which is based on the Markov 
chain S – X – Z – (Ŷ, W) where W represents an additional 
channel output observed by an eavesdropper.

In the LVS context, the private data S has to be kept secret 
from the eavesdropper observing W. Formulated in the IB para-
digm, this means that the mutual information between X and Ŷ 
is maximized under the constraint that the information leakage 
between S and W is smaller than a prescribed threshold.

In general, the joint design of semantic communications and 
physical layer security/privacy must include an investigation of 
operational implications of the underlying privacy and confiden-
tiality measures that quantify the resilience to specific attacks. 
In case the level of protection is insufficient, the joint design 
should be based on privacy and confidentiality measures that 
offer stronger protection, such as differential privacy, respective-
ly semantic security. 

An Application Example
Consider a health monitoring system based on the architecture 
in Fig. 2 (as illustrated in Fig. 3), designed to remotely assess 
a patient’s health status (Y) by means of vital parameter mea-
surements (X) obtained via biomedical sensors. Due to the 
high requirements on privacy and data protection, parts of the 
patient data (e.g. sex, age) is required to be private (S). As a 
specific example consider a continuous electrocardiography 
(ECG) measurement to detect the risk of heart attacks at an 
early stage. For this, a general indicator is the occurrence of 
arrhythmias in the ECG signal. Thus, instead of transmitting the 
raw data (X) via the wireless channel, a semantic-aware encoder 
jointly incorporates pre-processing (e.g., feature extraction/
arrhythmia detection) and channel coding according to the 
specific monitoring task. Thus, the encoder produces transmit 
symbols (Z) that contain sufficient information for the receiver 

to infer the task-relevant information, which can be, e.g., a sta-
tistical measure related to the occurrence of abnormalities of 
the heart’s rhythm. Hence, the receiver infers the health status 
while preserving the private part of the message (formulated as 
a predefined privacy leakage constraint).

Implications on Protocol/Network Design
In the context of the above discussions, an important question 
is how current communication protocols can be adapted to 
incorporate the various aspects of semantic communication. 
To provide an example, consider a scenario similar to the one 
depicted in Fig. 1a), where a sender conveys information to 
the destination about a physical process, e.g. by sending sta-
tus updates. Of interest is the availability of a certain service, 
defined as the fraction of time over which the AoI is below 
a predefined threshold, as illustrated in Fig. 4.2 The objective 
is to jointly design the sampling of the physical process (data 
generation) with the communication over the wireless channel 
(including channel access in the multi-user setting) such as to 
increase the service availability. 

The joint optimization, however, would require abandon-
ing the conventional assumption of exogenous data arrivals on 
which legacy systems are built. Since the traffic generation pro-
cess is taken care of by the application layer, a form of “semantic 
interface” needs to be established between the application layer 
and the lower layers of the protocol stack. While this can be 
perceived as an unnecessary complication of protocol design, 
the approach can be justified if significant savings are demon-
strated. Another aspect that should be considered is that today 
most traffic on the internet is end-to-end encrypted through 
(D)TLS, meaning that application data can not be accessed by 
on-path elements such as routers or switches. While it is feasible 
that transport layer encryption can be forgone in private (cam-
pus) networks, some form of encryption, e.g., on the physical 
layer, may be desirable (as discussed earlier). 

Toward A Semantic Cross-Layer Networking
Going beyond the joint optimization of data generation and 
communication, various aspects of semantic communication 
can have an impact on the design of the different layers of 
the protocol stack. In this perspective, integrating aspects of 
semantic communication in the protocol stack would effectively 
require a form of cross-layer optimization, which would break 
the classical assumption of the separation between the layers. 

One example of such semantic architecture is provided by 
the introduction of a semantic-effectiveness plane, as envisioned 
in [14]. The challenges involved in the implementation of this 
new “semantic plane” pass through some of the mechanisms 
already addressed by the QoS community, with the addition of 
a new perspective where the figure of merit is data significance 
(e.g., freshness, relevance, and value), rather than accurate data 
reconstruction at the destination. 

When it comes to the actual semantic plane implementa-
tion, one has to consider where the semantic information is 
contained. As every layer of the protocol stack is supposed to 
be able to access and modify the semantic information-related 
parameters, these can not be stored in the header of any indi-
vidual layer as that layer will strip the header along with the 
information (meaning higher layers will no longer have access 

Table 1. Comparison of models’ accuracy (in %) for different channel parameters.

N-MNIST p = 0 p = 0.05 p = 0.1 p = 0.15 p = 0.2 p = 0.25

256-bit SSCC
256-bit JSCC
256-bit S-VDIB

98.03
98.27
98.4

98.02
98.16
98.13

97.05
97.97
97.98

80.9
97.58
97.69

58.89
96.26
97.02

36.71
88.75
96.01

128-bit SSCC
128-bit JSCC
128-bit S-VDIB

96.9
98.14
98.15

96.8
98

98.1

96.3
97.54
97.7

87.7
96.7

97.34

72.54
95.03
96.79

56.22
85.83
95.48
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to it). In addition, encapsulation is also not a viable option as 
it would require knowledge of which network components do 
not support the semantic plane. This knowledge is needed to 
ensure that packets get decapsulated in advance in order to 
keep backward compatibility intact. While it seems challeng-
ing to integrate aspects of semantic communication into the 
existing Internet ecosystem, the situation might be different in 
private/campus networks (e.g., for industrial automation) where 
more flexibility and application awareness is desirable. In such 
smaller, single-domain networks, it can be assured that every 
network component supports the semantic plane, and a “float-
ing” header can be used. This header would be read, potentially 
changed, and then moved to the next layer. Depending on the 
relevance of information in the semantic header, e.g., freshness, 
the packet could be dropped, as illustrated in Fig. 5.

Examples and Implications
We will now provide two further examples of how the semantic 
header can be used to allow information to flow between lay-
ers. This can happen in a bottom-up approach, where the lower 
layers (PHY and MAC) provide information about their current 
state that is then considered by the application layer. Alterna-

tively, the application layer might provide certain parameters or 
requirements it has for any data it sends that can then be acted 
upon by the lower layers (op-down). 

Bottom-Up: As an example, consider a robot swarm appli-
cation where a group of robots is coordinated in a centralized 
fashion via a wireless infrastructure. Here, each robot can either 
pursue an individual task (e.g., logistics within a warehouse) 
or a common task (e.g., surveillance of an industrial plant). 
To keep formation and/or cooperation between individual 
agents, the centralized controller requires accurate and fresh 
updates on the positions and status of the individual robots’ 
trajectories. Continuous transmission of updates from all robots 
via the shared wireless channel is challenging, especially under 
stringent latency requirements, as the wireless channel can be 
degraded or congested (due to the channel access mecha-
nism). A goal-oriented approach jointly considers traffic gen-
eration and channel access and communication according to 
the value of the information encapsulated in a data packet for 
the specific goal. Freshness and/or novelty can be used as a 
measure for prioritizing data packets within the communica-
tion network, where novelty can be, e.g., derived from apriori 
knowledge of the physical process behind the sensor readings. 
Transmission of relevant information (e.g., changes in the direc-
tion of movement) can relieve the radio communication while 
still providing sufficient information for the control task. 

Top-Down: In a top-down approach, the application layer 
adds additional information about preferences or requirements 
it poses to the connection. For example, an application might 
indicate that it has a preference for lower latency, even if it 
comes at the cost of reliability. For example, in a multi-connec-
tivity scenario, a base station that could transmit to a user either 
directly or indirectly (e.g., via an intelligent reflective surface) 
might make the decision to take the direct link (even though it 
might be less reliable), as it induces lower latency. The advan-
tage of a top-down approach is that there is no need for verifi-
cation on the side of the network that the supplied information 
is accurate (a correctly functioning application would never 
provide parameters that go against its own interests). Hence, 
there is only one set of parameters that needs to be considered 
and what matters is that the demands and requests of the appli-
cation will remain stable during the lifetime of the connection.

Concluding Remarks
This paper revisited the theoretical foundations of semantic com-
munication and discussed some implications on system design. 
Two perspectives on semantic communication were addressed:
1. A goal-oriented perspective, with emphasis on the need for 

joint optimization of the processes of data acquisition, com-
munication, and control

2. A semantic operability perspective, with emphasis on the 
information-theoretic foundations and the relevance to edge 
intelligence applications.
In the context of (1), a major and novel research challenge 

is the integration of networked control aspects. In this respect, 

Figure 3. An example of a semantic-aware architecture for device-edge co-inference in a health monitoring application.

Figure 4. AoI and service availability.

Figure 5. Depiction of an additional semantic header that floats 
through the layers to allow all of them to access it. Each layer 
removes the semantic header, adds its own header, and then 
reattaches it. The application itself is the origin of this header.
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a more fundamental understanding of the relationship between 
control and communication problems needs to be developed, 
where concepts such as the anytime capacity and the VoI can 
serve as starting points. We postulate that resolving these chal-
lenges would eventually lead to a unified framework that inte-
grates the aspects of data acquisition, communication, and 
control, with relevance to application fields such as collabora-
tive robotics and autonomous systems.

In the context of (2), we introduced the principle of seman-
tic interoperability and addressed the related information-the-
oretic concepts. This perspective is of particular relevance to 
edge intelligence applications, in light of the migration of AI 
functionalities from the cloud to the wireless edge. To illustrate 
the potential of the considered framework, we provided an 
example of a generic semantic-aware architecture for edge 
inference. In a novel contribution, we sketched how aspects of 
privacy and physical layers security can be natively integrated 
in an end-to-end learning framework based on the information 
bottleneck principle. In this context, we foresee an increased 
relevance of neuromorphic computing, where processing is 
performed by spiking neural networks (SNNs). Initial experi-
ments illustrate the potential of neuromorphic, semantic-aware 
architectures, to provide support for energy-efficient, event-driv-
en processing in such scenarios. 
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FOOTNOTES
1 As pointed in [10], Shannon himself had suggested looking to control problems 

for more insight into reliable communication.
2 As discussed, in spite of its simplicity, AoI can capture some key trade-offs also in 

terms of data relevance and is chosen here for ease of discussion.


