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Once upon a time, there was a course at MIT in the Elec-
trical Engineering and Computer Science department
called 6.253, Theoretical Models of Computation. It
was developed in the time when computer science was
not such a large field and all computer scientists were
expected to know everything, including theory, pro-
gramming, architecture, and systems. Rivalries between
different parts of the field were just starting to appear.

In the mid-1960s, a tremendous outpouring of new
insights from Noam Chomsky and his students in the
Department of Linguistics occurred at MIT. They were
uncovering unsuspected relationships between formal
languages and automata. In particular, they proposed
that each category of automata—finite state, push-
down, linear-bounded, and Turing machines—could be
characterized by the classes of languages they could rec-
ognize. They found that each class of language could be
described by the structure of formal grammar needed to
define it. They also found that they could construct
automata from the grammars and grammars from
automata. For example, a language would be classified
as pushdown-recognizable if a pushdown automaton
could tell whether a given input string is in the lan-
guage. A context-free grammar could be converted to a
description of a pushdown automaton for recognizing a
language, and a context-free grammar could be con-
structed from a pushdown automaton. These insights
were extremely valuable in the construction of com-
pilers for higher-level language such as Algol.

Jack Dennis was a faculty member in the Laboratory
for Computer Science at the time that Chomsky’s stu-
dents were presenting their results at seminars. He
became convinced that it was important for computer
scientists to learn this perspective. At that time, the
only related books were Marvin Minsky’s course notes,
which were eventually published by Prentice Hall,1 and
several books on switching theory and logic circuits.
These books did not take the view that the automata
they discussed were language recognizers. That omis-
sion was Jack’s motivation for creating the course 6.253.
David Kuck and he designed the course and taught it
together in the spring of 1965. Peter Denning joined
him as a teaching assistant in 1966 and soon became a
full partner in refining and extending the notes, devel-
oping problem sets, and lecturing.

In 1967, the computer science editor of Prentice
Hall, John Davis, found out about the notes for 6.253
and persuaded us (Jack and Peter) to make a book from
them. At the time, we envisioned that we could com-

plete the manuscript in 1968. Unfortunately, that did
not come to be. Peter was writing his PhD thesis in 1968
and then he joined the electrical engineering faculty at
Princeton. Jack found that members of the theory sec-
tion of the Lab for Computer Science could not accept
that a couple of systems guys would teach a good course
and write a good book on a formal topic. We were not
card-carrying theorists! Because he wanted to devote
himself to developing a course on computer systems
(numbered 6.232), Jack recruited Joseph Qualitz to take
over 6.253 after Peter left. Joe kept the course going and
helped complete the book project. The 6.253 course
was taught for last time in the fall of 1973.

With all the distractions, and our reduced involve-
ment in teaching the course, it took us 10 years to com-
plete the book. Machines, Languages, and Computation
(MLC) was published in 1978, a decade later than we
had originally estimated.2

At Princeton, Peter encountered a similar reaction
from the theorists as Jack had at MIT. Princeton had
some of computer science’s greatest theorists either
on the faculty (Jeff Ullman) or closely affiliated (Al
Aho and John Hopcroft). Hopcroft and Ullman were
working on their own book about automata and lan-
guages, which was published in 1979.3 Peter taught a
few sections of the automata theory course from the
draft of his MLC book. But the Hopcroft-Ullman book
was more popular among the Princeton faculty and
students. Jeff and Peter had frequent conversations
about the formulation of the MLC book. Jeff liked
some parts of MLC, but intensely disliked the con-
struction we had for relating context-free grammars
to pushdown automata. He said it was backward from
the standard normal forms used in the formal lan-
guage literature. One day Peter approached Jeff and
said that he thought he had a short proof that prece-
dence grammars were deterministic context free. The
only existing proof occupied most of Susan Graham’s
PhD thesis. Peter wanted a short proof that would fit
on two or three pages of the MLC book, which was
then still in draft. A short proof had eluded Jeff for
several years. Peter started presenting draft proofs to
Jeff. At first, Jeff kept sending Peter away saying,
“There is a bug in your proof.” Then one day he said,
“I think you’ve got it. Your unconventional backward
construction for pushdown automata gives the key.”
Peter joined with Aho and Ullman on a paper that
described the shorter proof in 1972.4 The systems
guys had found a short proof that eluded the
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theorists, but the theorists thought it was
dumb luck for our having got a key defini-
tion backward.

While the teaching of the course, we dis-
covered a short proof for the noncomputa-
tiblity of the Correspondence Problem.5 It
was based on a construction where we put
the allowable moves of a Turing machine on
the dominoes such that you could get the
dominoes to spell out a Turing machine com-
putation if and only if the machine halts.6

We wrote that up and sent it to one of the
theory journals. We soon heard from Robert
Floyd that he had also found a short proof,
which was in press. It did not depend on any
kind of domino construction. Thus, we never
published our short proof, except of course in
our MLC book.6 Years later, we learned that
other teachers were using a domino-type con-
struction to teach the proof to their stu-
dents,7 confirming what we already knew—
namely, that we had a student-friendly proof
even if the theoreticians of the day had
shorter mathematical proofs.

The 6.253 course and MLC book brought a
systems view to automata and languages. We
found that our students struggled with defini-
tions like “A finite state machine is a five-
tuple consisting of …” They much preferred
when we could draw state graphs and then
express the operation of the machine as a
program of simple instructions. In our home-
work exercises, we had students write pro-
grams for each of the four categories of
machines. Our approach was not as compact
and mathematically elegant as the formula-
tion in Hopcroft and Ullman. We tried hard
to be student-friendly while bringing the sys-
tems view.

A more important difference, we think, is
that Hopcroft and Ullman included a chapter
on the emerging field of computational com-
plexity. We had briefly considered adding a
chapter on complexity but decided against it
because we were having enough difficulty
reaching closure on the original table of con-
tents, which was defined before the complex-
ity field emerged. In retrospect, that omission
was a strategic error for our book.

Despite these difficulties, the book did
well and remained in print until 1990. When
we pursued our true callings, the modeling
and analysis of computer systems, we did
much better. The theorists came to us to find
out if the assumptions of a current model
matched reality and whether we thought a
formal result would be of interest to anyone.
It turned out well.
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