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Abstract: This paper proposes a reduced complexity Maximum-Likelihood (ML) decoding
Algorithm for Linear Block Codes based on the Kaneko decoder and incorporating ruling out

conditions for useless iteration steps.

The proposed decoding scheme is evaluated over the

Additive White Gaussian Noise (AGWN) channel using Binary Phase Shift Key (BPSK) signalling
by simulation. Simulations results show that for negligible performance loss, there is significant

reduction in the complexity of decoding.
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I. INTRODUCTION

INEAR block codes have proven to be efficient codes

that provide good performance at large block lengths.
The performance of large linear block codes can
approach the Shannon Limit of a given transmission
channel as explained in [2]. Decoding of such lincar
block codes has been done by soft-decision decoding.
This method of decoding provides improved decoding as
compared to hard decision decoding as it utilizes
probabilistic information of the received sequence at the
decoder.  Maximum Likelihood (ML) Decoding is an
optimized decoding procedure that decodes a received
sequence to an output codeword such that the probability
of a received codeword, given a transmitted sequence is
as high as possible. There has been a number of decoding
procedures proposed that offer ML decoding to lincar
block codes [6]. It has been shown that the performance
of a given coding system improves with increase in code
length. However the complexity required for performing
ML decoding escalates exponentially with increasing
code length.

The decoder proposed by Kaneko, et al in [1] performs
ML decoding on linear block codes, with ML decoding
defined such that the most likely candidate transmitted
codeword is included in the list of codewords analyzed
for decoding. Therefore the decoder always converges to
the most likely codeword.

Given that all codewords have equal probability of being
transmitted, the complexity required for decoding grows
exponentially with code length n. In the Kancko decoder
the approach to reducing complexity is to find an efficient
technique to generate codewords that will contain with
high probability the most likely transmitted codeword.
The Kancko decoder generates a set of codewords such
that the probability that, the most likely candidate
is contained in the set of candidate

codeword sent

codewords is 1. The algorithm generates a larger set of
codewords when a noisy sequence is received and smaller
sets when cleaner sequences are received. Thus the
average decoding complexity is reduced without loss of
performance as compared to fixed codeword set
decoders. This paper proposes to reduce the complexity
further, by ruling out useless iterative steps in the
decoding procedure and thus reducing the total number of
iterations during decoding.

II. DECODING PROCEDURE
A. The Kaneko Decoder

The Kancko decoder uses a calculated reliability
sequence for the decoding of received data. At the
receiver the demodulator generates  the reliability
sequence o = (0, O, ..., 0,,) from the received sequence
Yy = (¥}, Y2, --., Ya), Where y; is a received signal when x; is
transmitted. The reliability «¢; matched to the AWGN
channel is the bit-log-likelihood ratio

|1
nL"). i=1,2,....n (1)
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where K is an arbitrary positive constant and p(y[x,) is the
probability of receiving y; when x; is transmitted. The
hard decision sequence y'" = (y", y'h. ..., y'') of y is
then

o, =Kl
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yl = :
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where ¢; indicates the reliability of y"if the codeword is

transmitted using BPSK signalling across an AWGN

Channel. The clements with the least reliability are

considered to be the elements with the most probability of
error.

Let U be the set of all positions of a codeword, i.c.,
U= 11,2, ....,n}. Now divide the set U/ into S, and S," for
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. i S
the codeword x. If x; = ", then the position i belongs to
S., otherwise the position i belongs to S, i.e.,

v 3 . . g o .
S, ={ix; :.\'”,, ie U} and S," ={ilx; # y'i, 1 € U}.
Therefore, U= S, + S,".

The Maximum Likelihood Metric (MLM) of the received
sequence is then defined as

I(y.x)=) || (3)
i€ S,

where S.¢ ={ily, # »", i € U}. The main aim of the
Kaneko decoder is to find the codeword x from the
received sequence v, such that the value of /(y,x) is
minimized. This value of /(y,x) is calculated for a
generated set of codewords based on the received
information sequence. Once the MLM is calculated for a
candidate codeword, x, we look for the codeword with the
lowest MLM among the previously generated candidate
codewords and determine that the codeword with the
lowest MLM is most likely. If x satisfies equation (4),
then we can determine that x is the most likely codeword
given the received sequence and can terminate the
algorithm. This early termination condition is shown in
the equation below.

|
my+m

d

)

I(y.x)< Y, lag ()] (4)
i=1
where my = || S, || and m = || S} ||. x; is the output of
0
the algebraic decoder when v is the input sequence. Here
IS" stands for the number of elements in the set S .

The Kaneko decoder calculates this MLM for 7 =1 to
2" 1 decoded codewords. Where T is the number of
least reliable bit positions in the received sequence
assumed to be in error, i.e. the positions where the
amplitudes of the received sequence are smallest.  For
cach of the iterations, an error pattern is generated and
added to the hard-decision received word, which is then
decoded using an algebraic decoder producing a
codeword.

The number of error patterns that are generated depends
on the equation given below.

my+m
d-| -1

lyx)< Y

i=l
The number of error bits that are generated is determined
by the value of j, which satisfies equation (5) calculated
during the initial iteration. The Kancko decoder thus
calculates the number of bits assumed to be in error, and
then performs a number of decoding iterations that is
limited by the number of bits assumed to be in error. [If
the most likely codeword is decoded and satisfies
equation (4) during the iterative process, the decoder
terminates and outputs the codeword.

t=]
lag )|+ e, (i+D]  (5)
i=1
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B. Ruling Out Condition

The Kaneko decoder has improved decoding complexity
in that the iterations are terminated once the condition of
optimality is satisfied by a decoded codeword. Each of
the iterations performs algebraic decoding of the received
sequence plus a generated error pattern.  This error
pattern generated is depended on the iteration number as
well as the reliability of the received sequence. It can be
shown that for a received sequence, decoding of a
number of error patterns will result in the same
codeword. This implies that some error patterns
generated will be useless as they do not produce any new
information. In [5] a set of ruling out conditions were
proposed, which rule out iterations that are considered
useless. These conditions make use of the fact that the
error patterns are generated in increasing binary order
with the bit number increasing with increasing reliability
of the received bit information.

At each stage of the iterative process, when a new
nonzero test error pattern is generated, the condition
given in the equation below is tested.

L(u,,) < LU, (e)u,,d,;,)] (6)
where u, is the latest decoded candidate codeword and
Uy 18 the best among all the candidate codewords that
have been generated previously. If equation (6) holds, the
current iteration is skipped and the next candidate error
pattern is generated until the iteration limit is reached.
Otherwise, algebraic decoding is performed on the
received sequence plus candidate error pattern. L(u)is a
correlation discrepancy of the given vector u and is
defined as

L) Y |yl (7)

ieDy(u)

A

where D, (u)2 {i:u, # ", and 1<i<n}.
The useless iteration bound is defined as

m

L[U/((‘)(“I‘dmm )] = z| ’;‘ |+ z |II I (8)
j=1

i€ D(uy)
Where m is the number of bits in error, i.e. the number of
I's in the candidate error pattern.

The condition given in equation (6) is tested at the start of
sach iteration of the Kaneko decoder; if the condition is

satisfied, the particular iteration is skipped.

The Proposed Decoding algorithm is given below.

begin
i:=1;
T:=n;
I(y,x) : = o0
while i <2'-1 do

begin
Algebraically decode y" + ¢'
If  decoder

1)
successfully  finds x  and

I(y,x) </(,r.,;-) then
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begin
If x satisfies eq (4) then exit else
Calculate T from eq (5)
end
=1+l
end
Calculate the ruling out condition eq (6)
if ¢q (6) is satisfied
i =1+1; (skip iteration)
end
end
end

Exit (Codeword decoded is x )
End

1. SIMULATION

Computer  simulations performed for binary
antipodal signals over the additive white Gaussian noise
(AWGN) channel using BCH (15, 5, 7) code. The

received signal is given by y, =\ E, +z, when x, =0

wcere

and y, =—JE +z whenx, =1, where £, is the energy
per bit of the channel input and z, is identically
distributed Gaussian random variables with mean (0 and
varianceo” = N, /2, and N, is the noise spectral
density.  The SNR  for

y=£E /N,and the SNR per transmitted information bit

the channel is given as

isy, =y-n/k . The SNR range considered is from 0dB to
6dB.

Simulations were averaged with a minimum of 200000
samples and at least 150 frame errors per sample point.
The decoders compared were the original Kancko
decoder and the proposed decoder with Ruling-Out
useless Iterative Steps Conditions. The time complexity
of the decoder is defined as the number of iterations that
the decoder performs during the decoding process.
Initially, the decoder performs algebraic decoding of the
received sequence. This decoding is not considered to be
part of the iterative process and is not counted as an
iteration.

The simulation results show a marked improvement in
the complexity of the proposed algorithm as compared to
the original Kancko decoder. The frame error rate in
Fig. I shows that the performance of the proposed decoder
matches that of the Kancko decoder with negligible
performance loss at high SNR and also has some
low SNR. The bit

performance gain at error rate

comparison in Fig.2 shows comparable performances of

the original and proposed decoding systems, with the
proposed decoder having negligible performance loss at
high SNR.
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From the complexity comparison graphs in Fig.3 it can be
seen that the original Kaneko decoder goes through at
least one iterative step during the decoding procedure.
The proposed decoder however does not always perform
this decoding step. This is due to the fact that there is an
initial algebraic decoding step that performs optimal
decoding at the outset, which then eliminates the need for
further decoding iterations.

The complexity comparison in Fig.4  shows an
improvement of decoding complexity of at least 58%
which then increases with increasing SNR. The reduction
in the number of iterations is low at lower SNR due to the
fact that at lower SNR there are more received sequences
in error that cannot be corrected by single decoding by
the algebraic decoder and therefore requires iterations of
the decoder. At higher SNR, the algebraic decoder is able
to correct a majority of the errors of the received
sequence and thus the decoder does not have to perform
any iteration. This is seen from fig 3, as the SNR reaches
5dB, the average number of iterations approaches 0 as the
algebraic decoder corrects the majority of errors. The
percentage reduction in number of iterations therefore
approaches 100% as SNR increases as can be seen from
Fig 4.

IV. CONCLUSION

This paper proposes a reduced complexity Maximum-Like-
lihood (ML) decoding Algorithm for Linear Block Codes
based on the Kancko decoder and incorporating ruling out
conditions for useless iteration steps. The simulation results
for (15, 5, 7) code show a marked improvement in the com-
plexity of the proposed algorithm as compared to the original
Kaneko decoder. The frame error rate shows that the perfor-
mance of the proposed decoder matches that of the Kancko
decoder. The bit error rate shows comparable performances
of the original and proposed decoding systems.

From the complexity comparison graphs it can be seen that
the proposed decoder has lower complexity of decoding at
lower SNRs compared to the Kaneko decoder and has com-
parable complexity of decoding at higher SNRs. The pro-
posed decoder has lower complexity that makes it preferable
for implementation on practical communication systems that
have limited processing power. This complexity advantage
does not negatively affect the ML decoding performance of

the decoder.
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Fig.1 Frame Error Probability comparison between the

Kaneko Decoder and the Proposed Decoder
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Fig.2 Bit Error Probability Comparison between the
Kaneko Decoder and Proposed Decoder
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Fig.3 Comparison of average number of iterations of
Kaneko Decoder and Proposed Decoder
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Fig.4 Percentage Reduction in Number of Iterations in
Proposed Decoder as compared to the Kaneko Decoder
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