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Detection of Bryde’s Whale Short Pulse Calls using
Time Domain Features with Hidden Markov Models

Oluwaseyi P. Babalola, Ayinde M. Usman, Olayinka O. Ogundile, Daniel J. J. Versfeld,

Abstract—Passive acoustic monitoring (PAM) is generally used
to extract acoustic signals produced by cetaceans. However, the
large data volume from the PAM process is better analyzed
using an automated technique such as the hidden Markov
models (HMM). In this paper, the HMM is used as a detection
and classification technique due to its robustness and low time
complexity. Nonetheless, certain parameters, such as the choice of
features to be extracted from the signal, the frame duration, and
the number of states affect the performance of the model. The
results show that HMM exhibits best performances as the number
of states increases with short frame duration. However, increasing
the number of states creates more computational complexity
in the model. The inshore Bryde’s whales produce short pulse
calls with distinct signal features, which are observable in the
time-domain. Hence, a time-domain feature vector is utilized to
reduce the complexity of the HMM. Simulation results also show
that average power as a time-domain feature vector provides
the best performance compared to other feature vectors for
detecting the short pulse call of inshore Bryde’s whales based
on the HMM technique. More so, the extracted features such as
the average power, mean, and zero-crossing rate, are combined
to form a single 3-dimensional vector (PaMZ). The PaMZ-
HMM shows improved performance and reduced complexity over
existing feature extraction techniques such as Mel-scale frequency
cepstral coefficients (MFCC) and linear predictive coding (LPC).
Thus, making the PaMZ-HMM suitable for real-time detection.

Index Terms—Acoustic signal, Bryde’s whales, hidden Markov
models, passive acoustic monitoring, time-domain features.

I. INTRODUCTION

MARINE mammal populations are threatened by a num-
ber of factors, including but not limited to climate

change and human activities. Nevertheless, effective moni-
toring and management of marine living resources, where
these organisms live in a vast, largely inaccessible and hostile
environment, requires innovation and the use of best available
technologies and methods [1]. Specifically, the monitoring
of cetacean populations proves to be very difficult due to
the many challenges such as weather, limited daylight, ocean
conditions, and the cost of observing animals at sea. For
instance, electromagnetic signals such as light waves and radio
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waves are quickly dispersed underwater, and therefore systems
employing these signals have an effective range of a few
meters. Moreover, systems that rely on acoustic signals have
an effective reach, which can exceed thousands of meters.

A unique characteristic of cetaceans is that they utilize
sound, both passively and actively, to navigate and find re-
sources. Therefore, studies such as [2], [3] have implemented
passive acoustic monitoring (PAM) and found that these tech-
niques were effective, while not causing any significant envi-
ronmental damage to aquatic animals and their environment.
The PAM systems passively acquires acoustic signals from the
surrounding environment and are analyzed in order to extract
information (features) from the received signals.

PAM algorithms perform three main functions, namely de-
tection, classification and tracking. Formally, signal detection
and classification can be seen as the implementation of a
statistical hypothesis test. On the basis of observations, the
aim of the detection theory is to accept or reject a hypothesis.
Within the field of PAM, the objective therefore is to detect
whether a signal or vocalization from a marine mammal of
interest can be found in the data recording. Classification is
the more general case, where a given number of hypotheses,
say M are tested, that is, the detected signal is classified as
belonging to one of these M possible classes.

Signal detection can be performed manually [4]–[6]. How-
ever, this approach is inefficient and impractical, as it is
likely to involve human error, particularly when acoustic
recordings are made over a long duration. Thus, the detection
and classification of signals using algorithms implemented on
computer devices is an important field of research, since it
yields more accurate detection.

In the literature, automated detection and classification
of cetaceans is performed using borrowed techniques from
communication theory, such as correlation and matched fil-
ters [7], [8]. Other methods include energy summation in a
certain band together with statistical classification [8]–[11],
image-processing techniques in the frequency domain [12],
spectrogram-based template matching [13] as well as wavelet
decomposition [14] and Neural networks [15]. More so, the
classification of cetacean signals is implemented using various
optimal classifiers such as dynamic time warping (DTW)
[16]–[18], artificial neural networks (ANN) [15], [19], support
vector machine (SVM) [20], hidden Markov model (HMM)
[21], [22], and so on. However, the choice of the detector
and classifier, together with its performance depends on the
feature vector, the species involved, the volume of data, and
the location of recordings among others [23].

Bryde’s whales are members of the Balaenopteridae family
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in the cetaceans class, which are usually classified into two
main allopatric forms: Balaenoptera edeni edeni (inshore
form), and Balaenoptera edeni brydei (large offshore form)
[24]–[27]. The population and geographical distribution of the
Bryde’s whale species was discussed in [24], [26], [28], while
other literature considered the classification of the Bryde’s
whale in terms of genetic and vocal repository [25], [29]–[31].
It is important to distinguish the vocal characterization of the
Bryde’s whales from other species such as the Sei whale, since
they are similar in physical appearance [31], [32]. Although
HMMs are already in use for vocalizations of other whale
species, such as blue whales (for example, see [33], [34]),
not many authors have discussed the automated detection
of Bryde’s whale acoustics. The HMM was employed to
automatically detect Bryde’s whale call using the MatlabHTK
toolbox in [32]. In this case, default parameters (that is, sound
signal, window size, and number of cepstral parameters) were
used for feature extraction.

In this paper, a reduced complexity and enhanced perfor-
mance time-domain feature extraction technique (PaMZ) that
can be used with the HMM (PaMZ-HMM) to automatically
detect short pulse calls of inshore Bryde’s whales is developed.
The proposed algorithm utilizes three key features: average
power, mean, and zero-crossing rate, of the acquired Bryde’s
whale sound. The statistical-based approach has shown to be
the most suitable detection technique given its robustness,
efficiency and reduced computational time [35], [36]. Hence,
the HMM is used in this study to predict a sequence of
unknown (hidden) variables given the set of acoustic char-
acteristics, known as the observations. The outcome of this
study is inventive and yields high sensitivity, high accuracy,
and low false positive rate compared to existing MFCC-
HMM and LPC-HMM. In addition, the proposed PaMZ-HMM
algorithm can be applied to other class of cetaceans with
similar characteristic calls.

II. DATA COLLECTION AND PROCESSING

Inshore Bryde’s whales with short pulse call are considered
in this study as they are one of the most endangered marine
mammals in the world. The population growth of Bryde’s
whales is relatively small, although not enough information is
provided as to their estimated population size. The vocalization
of Bryde’s whales from Eastern Tropical Pacific, Southern
Caribbean, and Northwest Pacific have a frequency range of
21−207 Hz and a time span of 0.35−2.8 s [37]. Other Bryde’s
whales call from Southeast Brazil reveal more call types with
a duration of 0.8 − 1.5 s within a frequency range of 9 − 670
Hz [38]. Moreover, for a case study of Bryde’s whales in the
Gulf of California, the sound of the whales is described as
having fundamental values ranging from 90 − 900 Hz and a
duration range from 25 ms to 1.4 s [39]. Thus, it is important to
develop an automated detection method that precisely detects
this particular short pulse call of the inshore Bryde’s whales’
in the presence of many other sounds.

The raw sound data was collected using PAM within a
few of days of January 2019. The dataset consists of short
pulse calls of inshore Bryde’s whales along with dissimilar

sounds like those of other marine mammals and noise of
various forms. This dataset is obtained from four separate
recordings with a total of 44 hr and 26 mins. In terms of the
geographical location, the data was recorded close to Gordon’s
bay harbor situated at 34◦8�57.5��S, 18◦51�26.7��E and in False
bay situated at 34◦12�38.9��S, 18◦38�27.3��E, South Africa, as
seen in Figure 1.

Fig. 1. Dataset recordings location (Google map)

Standard guidelines have been strictly followed during
recording, as stipulated by the South African Department of
Environmental Affairs [40], [41]. Among other items, the
recommended minimum distance of 300 m away from the
animal was observed. Recordings were made on sighting
the inshore Bryde’s whale that corresponds to the physical
appearance descriptions in [42]. Also, to verify the test,
recordings were performed in the absence of Bryde’s whale
from the vicinity. In this case, no short pulse call was reported.
Short pulse call of inshore Bryde’s whales was recorded by
attaching a hydrophone to a Zoom H1N recorder. Specifically,
Aquarian Audio H2A-XLR hydrophone with sensitivity of
−180dB re1V at a frequency interval of 10 Hz - 100 kHz
and the recorder operating at 24 bit resolution at a sampling
frequency Fψ of 96000 Hz. The hydrophone was submerged
from a 8 m long inboard motor sailboat, under varying
conditions of sailing (2 − 4 kts/h), dropping sails (< 1 kt/h),
and heaving (< 2 kts/h). The raw data was stored as a .wav
file, that is, in an uncompressed and lossless format, to retain
its original property.

Furthermore, the raw data was filtered to remove unwanted
signal frequencies, that is, background noise and DC com-
ponents. This is achieved by using the MATLAB 3rd order
Butterworth bandpass filter due to its smooth frequency re-
sponse in the passband. The passband frequency was chosen
between 90 Hz and 46000 Hz since the basic call frequency
of Bryde’s whale is generally greater than 90 Hz [37], while
the upper band frequency is half the sampling rate of the data.
Thus, a pre-processed data is obtained with less attenuation.

The pre-processed sound dataset is analyzed by visual and
auditory inspection using the Sonic Visualiser - version 3.2.1
software as shown in Figure 2. This dataset is annotated as
the Bryde’s whale vocalization segment known as the Whale
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Fig. 2. Time series and spectrogram representation of the inshore Brydes
pulse calls. (Sonic Visualiser 3.2.1)

snippet WS, and any other sound segment (produced either
by anthropogenic activities or other marine mammals), known
as the Noise snippet NS. For instance, let D be the pre-
processed dataset containing n-sampling points. D can be
visually annotated as:

D =[d1, d2, d3︸����︷︷����︸
WS1

, d4, d5︸︷︷︸
NS1

, d6, d7, d8, d9︸���������︷︷���������︸
WS2

, d10, d11, d12︸��������︷︷��������︸
NS2

, . . . ,

dn−5, dn−4, dn−3︸��������������︷︷��������������︸
WSp

, dn−2, dn−1, dn︸�����������︷︷�����������︸
NSq

],
(1)

where d represents the n-sampling points. p and q are the
total numbers of whale and noise snippets respectively. Each
snippet has a different length or call duration and thus, each
categorized snippet is stored in the corresponding sets W Si
and N Sj as:

W Si =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W S1
W S2
...

W Sp

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

≡
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[d1, d2, d3]
[d6, d7, d8, d9]

...
[dn−5, dn−4, dn−3]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, (2)

where i = 1, 2, . . . p, and

N Si =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N S1
N S2
...

N Sq

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

≡
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[d4, d5]
[d10, d11, d12]

...
[dn−2, dn−1, dn]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, (3)

where i = 1, 2, . . . q.

III. HIDDEN MARKOV MODEL

The HMM is a stochastic process with non-observable
underlying mechanism. This hidden mechanism can only be
observed by a different set of stochastic processes that gen-
erate the observed sequence symbols [43]. For a continuous
signal, HMM performs the processes of training, decoding,
and detecting for a given set of extracted vectors as shown in
Figure 3. The HMM training process involves estimating three
important parameters: initial start probability π, transition
probability matrix Γ, and emission distribution matrix � . The

Fig. 3. HMM based detection system

Γ matrix represents the probabilities γ of transiting from
one state to another, while � = {μ, σ} is directly associated
with the observation symbols, where μ is the mean, σ is
the standard variation matrix. Thus, the maximum-likelihood
of HMM parameters λ = (π, Γ, � ) is estimated in order to
maximize the occurrence of a sequence of extracted signal
features using the Expectation-Maximization (E-M) algorithm
[44], [45].

During decoding, the most probable hidden state of the
models is obtained using the Viterbi algorithm [46], [47].
The algorithm utilizes the estimated parameters λ t and the
testing feature vector Ot to generate the best state sequence
ω. Subsequently, detection is performed on ω to determine
whether or not the signal is received correctly. The per-
formance of the HMM depends on the extracted features,
which are typically determined during the detection process.
Therefore, the focus of this study is to determine the best
time domain feature vector. Here, the performance is measured
based on the following [48]:

1) Sensitivity (S),

S =
Tp

Fn + Tp
, (4)

where Tp is the true positives, which is the number
of times the output of the automated sound detector
corresponds to the manually identified sound. On the
other hand, Fn is the false negatives, which is the
number of times the automated sound detector does not
correspond to the manually identified sound.

2) Accuracy (Acc),

Acc =
Tp + Tn

Fp + Fn + Tp + Tn
, (5)

where Tn is the true negative, which evaluates the
number of correctly rejected sounds. That is, the number
of times the automated model predicts the wrong signal
just as the wrongly identified signal. Also, the Fp is
the false positives, which is the number of times the
automated detector identifies a wrong signal as the call
to be detected.

3) False Positive Rate (FPR),

FPR =
Fp

Tn + Fp
. (6)

The FPR is computed as the ratio between the number of
times the automated detector categorizes a wrong signal
as the call to be detected ( Fp) and the total number of
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times the detector categorizes the actual rejected sounds
(Tn + Fp).

IV. FEATURE EXTRACTION FOR HMMS

The feature extraction process can be performed in time or
frequency domains. The Mel Frequency Cepstral Coefficients
(MFCC) and Linear Predictive Coefficients (LPC) are often
used as frequency domain techniques in speech recognition
and other applications [49], [50]. More so, both the MFCC
and LPC are popular feature extraction algorithms used with
the HMM [32], [51]. The MFCC derives feature coefficients by
converting the signal from time domain to the Mel frequency
scale, which represents the short-term power spectrum of the
sound. The scale compares the recognized frequency of a
raw sound with its original measured frequency. The steps
for feature extraction using the MFCC entails: pre-emphasis,
framing, windowing, fast Fourier transform (FFT), mel-scale
filter bank, logarithm operation, and discrete cosine transform
(DCT) [52]. The MFCC computes the coefficients as [53]:

αm =

n∑
i=1

Xicos
(m(i − 0.5)π

n

)
m = 1, 2, . . . , n, (7)

where n is the total number of cepstral coefficients and Xi is
the logarithmic energy of the ith Mel spectrum band.

In the case of LPC, the technique utilizes a linear combi-
nation of initial established ζ th signal to predict a value for
the actual sound signal H (ζ ) as described by [43], [54]:

Ĥ (ζ ) =
m∑

ζ,k=1

ak H (ζ − k), (8)

where H (ζ − k) is the initial ζ signal. Also, ak is the filter
coefficients of order m, which values are derived from the
prediction error:

d(ζ ) = H (ζ ) − Ĥ (ζ ), (9)

using the autocorrelation approach.
In this paper, inshore Bryde’s whale produces short pulse

calls with unique signal characteristics such as observable
and limited call duration, mean, and average power. Also,
the amplitude of the signal is observable, and can be used
to compute the zero-crossing rate of this pulse call. Thus,
three important time-domain features: average power P, mean
μ, and zero-crossing rate Z, are employed independently as
feature vectors with respect to the frame duration and number
of states. Consequently, the features are combined, in no
specific order, to obtain a single vector known as (PaMZ).

These features are obtained by first framing each snippet of
the pre-processed signal. The frame length ρ is given as:

ρ = Fψ × Fδ, (10)

where Fψ and Fδ are the sampling frequency and frame
duration respectively. Suppose υ is the number of sampling
points in a given snippet, say W Si . The number of frames η
in the snippet is computed as:

η =
υ

ρ
, (11)

such that the x-sampling points in W Si are framed as:

W S1 = [x1, x2, . . . , xρ︸�����������︷︷�����������︸
Φ1

, xρ+1, . . . , x2ρ︸�����������︷︷�����������︸
Φ2

, . . . , x (η−1)ρ+1, . . . , xηρ︸�����������������︷︷�����������������︸
Φη

],

(12)
where Φi, i = 1, 2, . . . , η are the frames, and each frame
contains τ number of sampling points.

Consequently, the feature formulas are applied on Φi to
yield a scalar value, signifying the value of that particular
feature over the length of the ith frame. The mean μ of the
ith framed signal is obtained as:

μi =
1
τ

τ∑
j=1

(Φi ) j . (13)

This generates a mean vector for the complete η as:

μ =
�
μ1, μ2, · · · , μη

�
. (14)

Similarly, average power P of the ith framed signal is com-
puted as:

Pi =

τ∑
j=1

(Φi )2
j . (15)

Thus, the P vector is obtained for all the η as:

P =
�
P1, P2, · · · , Pη

�
. (16)

The P is a good measuring tool to differentiate detectable and
silent sounds with a high signal-to-noise ratio [49]. More so,
the Z measures the rate at which the framed signal changes
its sign at the ith frame as:

Zi =
1

2( j − 1)

τ−1∑
j=1

|sgn[(Φi ) j+1] − sgn[(Φi ) j ]|, (17)

where sgn[Φi ) j ] is a signum function such that,

sgn[Φi ) j ] =
⎧⎪⎨⎪⎩

1, Φi ) j ≥ 0
−1, Φi ) j < 0.

(18)

The Z values are within a relatively small range compared
to the absolute range of the frequency distribution. Therefore,
the Z vector is formed as:

Z =
�
Z1,Z2, · · · ,Zη

�
. (19)

For every snippet, the set of extracted features is represented
as:

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P μ Z
Φ1 P1 μ1 Z1
Φ2 P2 μ2 Z2
...

...
...

...
Φη μx mx Zx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

V. RESULTS AND DISCUSSION

A. Training

All the recordings (44 hr 26 min long) collected during PAM
were aurally and visually analyzed using the spectrogram in
the Sonic Visualiser. Several 2 hrs recordings were extracted
from the accumulated dataset (recordings), where each of the
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2 hrs recordings were divided into two sections. A part is used
for training the model, while the remaining part is used as a
sequence of observation or test data, to evaluate the model.
The test data is annotated into two segments: 1.) Inshore
Bryde’s whale vocalization (Whale snippet, W S), and 2.) other
sounds apart from the whale pulse call (Noise snippet (N S)).
Hence, two HMM’s were obtained as λW = (π1, Γ1, �1) and
λN = (π2, Γ2, �2). During training of each model, the number
of states N is varied from 3, 5, and 10 states. Also, the frame
duration Fδ of the snippets are varied from 1, 5, and 10 ms
to obtain varying sets of feature vectors in Ψ. Performance
analysis are implemented for the varying parameters N and
Fδ since they are known to influence the HMM.

Furthermore, the trained λW and λN are combined into
a single model before being fed into the decoder. The initial
state probability distributions are concatenated as π = [π1, π2],
while the transition probability matrices are represented as a
block diagonal matrix:

Γ =

[
Γ1 0
0 Γ2

]
,

where Γ1 is an N × N matrix with states {W1,W2, . . .WN },
and Γ2 is an N × N matrix with states {N1,N2, . . .NN }. Like-
wise, the combined emission distribution becomes � = [�1, �2],
where �1 = (μ1, σ1) and �2 = (μ2, σ2). Therefore, the decoder
operates on these estimated parameters, with equal switching
probability for Γ, and the testing feature vector to determine
the best state sequence ω. The ω eventually detects whether
the test signal is either the whale pulse call or noise.

B. Performance comparison of each extracted feature

Performance of the automated HMM detector is executed
by varying N and Fδ using standard of measurement in
the literature [21]. Of importance, the time domain features
(average power, mean, and zero-crossing rate) are computed
depending on the frame duration of a snippet.

1) Frame duration - 1 ms: Table I shows the performances
of the P, μ, andZ extracted features using different states with
a frame duration of 1 ms. It is observed in Table I that the three
extracted features have the highest percentage of sensitivity
when 10 states are used compared to when 3 and 5 states
are used. Likewise, the extracted features are mostly accurate
when 10 states are used by a model in comparison to 3 and
5 states. Moreover, the FPR performances of P, μ and Z
indicate that using 10 states produce the best performance as
compared to the model with 3 and 5 states. Consequently, the
performances of each extracted feature are analyzed using 10
number of states.

In this case, the P is the most sensitive (99.56%) feature
compared to 96.99% and 95.71% sensitivity for μ and Z
accordingly. Furthermore, Table I shows that P feature is most
accurate since it yields 96.34% as compared with the μ and
Z that produce 94.69% and 93.55% respectively. In addition,
the P continues to show the best performance as it exhibits the
lowest FPR of 0.10 in comparison to the μ with 0.13 FPR,
and Z with 1.42 FPR. By implication, Z will produce the
least performance, followed by the μ. But, the P has the best

performance with regard to Table I, and could be considered
as a time domain feature for an HMM.

TABLE I
PERFORMANCE COMPARISON OF FEATURE EXTRACTION AT FRAME

DURATION = 1 MS

Sensitivity Accuracy False Positive rate
No of States (N) P μ Z P μ Z P μ Z

3 97.69 95.43 90.81 94.91 92.26 87.58 0.14 0.23 1.83
5 98.98 96.54 91.89 96.27 93.31 88.72 0.15 0.17 1.59

10 99.56 96.99 95.71 96.34 94.69 93.55 0.10 0.13 1.42

TABLE II
PERFORMANCE COMPARISON OF FEATURE EXTRACTION AT FRAME

DURATION = 5 MS

Sensitivity Accuracy False Positive rate
No of States (N) P μ Z P μ Z P μ Z

3 97.61 94.81 82.42 93.72 91.59 79.25 0.12 0.17 1.87
5 98.93 95.83 86.89 94.96 91.94 82.41 0.14 0.19 1.83

10 99.45 96.13 91.36 95.71 92.28 87.47 0.11 0.16 1.59

2) Frame duration - 5 ms: Table II indicates the perfor-
mance comparison of each feature extraction with an increased
frame duration from 1 ms to 5 ms. This implies that fewer
number of frames are used and thus, reducing the computa-
tional time to train and detect the dataset. Similar to the frame
duration of 1 ms, the features exhibit the best performances
in terms of sensitivity, accuracy and FPR when 10 states
are used in a model as compared to using 3 and 5 states.
As a result, we analyze each extracted feature based on the
sensitivity, accuracy and FPR measures when N = 10. The
percentage of correctly identified sounds being the sensitivity,
presents a P feature of 3.32% and 8.09% more than the μ
and Z respectively. More so, the P exhibits 3.43% and 8.24%
accuracy gain over the μ andZ respectively. In addition, the P
shows a low FPR of 0.11 in comparison to 0.16 and 1.59 FPR
produced by the μ and Z respectively. This result indicates
that extracting the P as a feature enhances the performance of
the model compared to the μ and Z features.

However, a trade off occurs between the computational time
and all the three performance parameters (sensitivity, accuracy
and FPR) considered for the model. For sensitivity; P, μ and
Z yield a performance loss of 0.11%, 0.86%, and 4.35%
respectively in Table II. A similar performance loss of 0.63%,
2.41%, and 6.08% is obtained for P, μ and Z respectively,
with regard to accuracy in Table II. Also, considering the FPR,
the extracted features in Table II produce 0.01%, 0.03%, and
0.17% performance less than Table I. The performance loss
is due to the use of less amount of data (as feature vectors)
during the training and detection phases.

TABLE III
PERFORMANCE COMPARISON OF FEATURE EXTRACTION AT FRAME

DURATION = 10 MS

Sensitivity Accuracy False Positive rate
No of States (N) P μ Z P μ Z P μ Z

3 97.45 93.84 81.77 93.14 88.78 77.25 0.20 0.33 1.98
5 98.88 94.79 86.65 93.82 90.27 81.94 0.16 0.21 1.91

10 99.25 95.82 90.40 94.73 91.51 85.37 0.14 0.20 1.70

3) Frame duration - 10 ms: Table III shows a further
increase in the frame length. This is to verify the performance
of the extracted features based on an increase in the frame
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duration from 5 ms to 10 ms. Similar to Tables I and II,
the model exhibits the best performance when 10 states
are used. Here, P yields a 99.25% sensitivity measure as
compared with μ and Z that produce 95.82% and 90.40%
respectively. In addition, the P has an accuracy performance
of 94.73% compared to 91.51% of the μ and 85.37% of theZ.
Therewithal, the P exhibits the least FPR of 0.14 as compared
to 0.20 and 1.70 of the μ and Z respectively. Hence, the P
exhibits an overall performance gain compared to the μ and
Z, making it the most competent time domain feature for the
automated model.

C. Different frame durations for N = 10

TABLE IV
PERFORMANCE COMPARISON OF FEATURE EXTRACTION AT DIFFERENT

FRAME DURATIONS FOR N = 10

Sensitivity Accuracy False Positive rate
Fδ (ms) P μ Z P μ Z P μ Z

1 99.56 96.99 96.71 96.34 94.69 93.55 0.10 0.13 1.42
5 99.45 96.13 91.36 95.71 92.28 87.47 0.11 0.16 1.59

10 99.25 95.82 90.40 94.73 91.51 85.37 0.14 0.20 1.70

Table IV illustrates that increasing the frame duration from 5
ms to 10 ms results in a reduced sensitivity of 0.2%, 0.31%,
0.96% for P, μ, Z respectively. Comparing the sensitivity
measure of Tables I and III shows an ample difference of
0.31%, 1.17%, 5.31%, for P, μ, Z respectively. Likewise,
the accuracy performance of each extracted feature is reduced
by 0.98%, 0.77%, 2.1% and 1.61%, 3.18%, 8.18%, when the
frame length increases from 5 ms to 10 ms and 1 to 10 ms
respectively. Furthermore, the FPR measure shows a decrease
in P, μ, Z of 0.03, 0.04, 0.11 and 0.04, 0.07, 0.28 as a result
of an increase in the frame duration from 5 ms to 10 ms and
1 ms to 10 ms respectively.

D. Performance comparison of the proposed PaMZ-HMM
with LPC-HMM and MFCC-HMM

The performance of the proposed PaMZ-HMM detector at
N = 5 is compared to conventional LPC-HMM and MFCC-
HMM in Table V. Tables I to IV indicate that Fδ = 1 ms
yields the best performance as compared to increasing the
frame duration, that is, Fδ = 5 ms, and Fδ = 10 ms. Thus,
the frame duration is fixed as Fδ = 1 ms, while the number of
samples used to train the HMM is varied as k = 6, 12, 18. Here,
the PaMZ-HMM yields improved performance compared to
LPC-HMM and MFCC-HMM for all k values.

The MFCC typically uses a total number of cepstral coef-
ficients n ranging from 10 to 14 [23], [32], which has been
shown to produce low computational complexity compared
to other HMM based feature extraction methods [53]. Here,
the 12-dimensional MFCC-HMM and LPC-HMM models are
used compared to the 3-dimensional PaMZ-HMM. The result
in Table V shows that the PaMZ-HMM exhibits improved
performance with low computational time complexity. For
instance, at k = 18, the PaMZ-HMM has a sensitivity perfor-
mance gain of 1.85% and 0.09%, an accuracy performance
gain of 5.14% and 0.52%, and an FPR performance gain

TABLE V
FEATURE EXTRACTION PERFORMANCE WITH THE HMM: Fδ = 1 MS

Sensitivity Accuracy False Positive rate
k PaMZ LPC MFCC PaMZ LPC MFCC PaMZ LPC MFCC
6 97.75 91.38 96.37 94.95 84.90 93.48 0.12 1.43 0.17

12 98.64 92.78 97.36 95.59 89.64 94.10 0.09 1.32 0.12
18 99.41 97.56 99.32 97.83 92.69 97.31 0.09 1.10 0.10

of 1.01% and 0.01% over LPC-HMM and MFCC-HMM
respectively.

A more in-depth analysis of the performance parameters
is shown in Figures 4 to 7. In Figure 4, the sensitivity
performance of the time domain features are compared based
on the frame duration. As the number of states used increases,
P is slightly more sensitive compared to the μ and Z at frame
duration of 1 ms. In the same way, P presents the highest
sensitivity performance as compared with the μ and Z at
frame durations of 5 ms and 10 ms. Moreover, the P offers
the general best performance in all the three frame durations.
Hence, the P is the most sensitive time domain feature for the
automated model.

In addition, Figure 5 shows the accuracy performance
comparison of the time domain features according to the frame
durations. The figure shows that P offers the highest accuracy
performance compared to the μ and Z at 1 ms frame duration.
Also, the accuracy of P at frame duration of 1 ms approaches
the Z at 1 ms when the model constitutes 10 states. Even
more, P at 10 ms frame duration exhibits an accuracy which
is greater than the accuracy of the μ and Z at the frame
duration of 5 ms. This implies that P yields a more accurate
model as compared to μ and Z, despite the increase in the
frame duration of the model.

Furthermore, the time domain features at a frame duration
of 10 ms demonstrate the least FPR in Figure 6 since the
features with the lowest FPR is an indication of a model
with best performance. The P at frame duration of 1 ms
has approximately the same performance in comparison to
the μ and Z when 5 and 10 states are used in the model.
Nevertheless, P yields the least FPR at 5 and 10 when the
model constitutes any of the three number of states.

Moreover, Figure 7 shows the comparative parameters; the
sensitivity, accuracy, and false positive rate performance of
the integrated PaMZ-HMM compared to the LPC-HMM and
MFCC-HMM using the frame duration of Fδ = 1 ms. The
LPC yields the least performance, while the PaMZ produces
the best performance.

VI. CONCLUSION

In this paper, an automated acoustic detector for Bryde’s
whale vocalizations, based on time-domain features, average
power P, mean μ, zero-crossing rate Z, and the hidden
Markov model technique is developed. The number of states
used in a model during the training process was varied as
either 3, 5 or 10 states. On a general observation, the model
exhibits best performances when 10 states are used. Also,
with regard to the frame duration of the snippets, the model
yields an overall best performance when a short frame duration
of 1 ms is considered, in comparison to 5 ms and 10 ms.
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Fig. 4. Sensitivity Performance Comparison of time domain extracted features
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Fig. 5. Accuracy Performance Comparison of time domain extracted features
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Fig. 6. FPR Performance Comparison of time domain extracted features

Moreover, the model offers the best performance while using
the P as the extracted feature, in comparison to the μ and
Z extracted features. However, the μ presents a similar low
FPR with the P when the model has 5 and 10 states, at 1 ms
frame duration. Also, with respect to these three time-domain
features, the model shows to be sensitive and dependable as it
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Fig. 7. FPR Performance Comparison of the PaMZ-HMM with LPC-HMM
and MFCC-HMM: N = 10, Fδ = 1 ms

yields a low FPR in the overall performance. From the analysis
and discussion of the results obtained in this study, average
power proves to be the best time domain feature for the
detection of short pulse call of inshore Bryde’s whales based
on the hidden Markov model technique. More so, combining
the feature vectors produces better performance compared to
MFCC and LPC. Also, the combined PaMZ exhibits a reduced
computational time complexity with the HMM process, and
can be utilized in real-time acoustic detection.
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deâĂŹs whales inferred from mitochondrial DNA: further support for
subspecies delineation between the two allopatric populations,” IEEE
Access, vol. 19, p. 1349âĂŞ1365, 2018.
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