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 
Abstract— In past studies on the costs of interruptions of 

electricity supply in South Africa, the concepts of sporadic and 
chronic interruptions were introduced. Cost was modelled using 
different parameters, and the measurement of customer 
interruption cost (CIC) was acquired through surveys. Rotational 
load shedding, as experienced during more than a decade in South 
Africa, shares many characteristics with chronic interruptions 
and large system collapse scenarios. Since CIC data are based on 
electricity customers’ valuations of their impacts from electricity 
interruptions, and allow only for a bottom-up estimation of the 
economic cost of large electricity interruption events (without 
considering sectoral interdependencies), an alternative assessment 
of the cost using a suitable macroeconomic model that employs less 
subjective data allows for a validation of CIC-based results and a 
determination of a plausible range of estimates of the cost of large 
electricity interruptions. We test this proposition using a 
combination of a time-dependent probabilistic CIC model based 
on CIC survey data, and a dynamic inoperability input-output 
model (DIIM) that accounts for sectoral interdependencies, 
economic resilience and the temporal variation of electricity 
interruption impacts. The results lead to estimates of the costs of 
large interruptions of electricity supply in South Africa. 
 

Index Terms— customer interruption cost, cost of unserved 
energy, customer survey, dynamic inoperability input-output 
model, rolling blackouts. 

I. INTRODUCTION 
LECTRICITY supply reliability indices and customer 
interruption costs, as commonly used in power system 

planning and investment approval, are usually based on 
infrequent short duration interruptions.  High impact, low 
frequency events like power system collapse affect large 
numbers of customers, often for extended periods. 
Internationally, there have been several studies of the economic 
impact that might arise from blackouts such as those initiated 
by severe solar storms [1], [2].  

The advent of rotational load shedding, also called rolling 
blackouts, in South Africa (SA) in 2005, repeated in 2007/8, 
2014/15 and 2018/19 has provided the incentive and 
opportunity to examine the costs of large disturbances. In the 
past, some authors [3]–[8] have assessed the costs to some of 
SA’s electricity customer segments using customer surveys. 
These surveys typically assume chronic electricity interruption 
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scenarios. Other authors have preferred the use of 
macroeconomic models for assessing the cost of unserved 
energy [9], [10] and the economy-wide cost of hypothetical 
sporadic nation-wide blackouts [11]. The relationship between 
the economic impact of large disturbances and the costs of 
electricity interruptions at the utility and customer level have 
not been investigated widely. 

Since rotational load shedding as experienced during more 
than a decade in South Africa shares many characteristics with 
chronic electricity interruptions and large system collapse 
scenarios, we propose that a dual-level assessment of the 
economic cost of electricity interruptions using a robust 
bottom-up modelling approach based on customer interruption 
cost (CIC) survey data and a suitable macroeconomic model 
allows for leveraging the relative merits of each approach to 
derive plausible estimates of the cost. Accordingly, we describe 
a load survey in 2018 to highlight the significance of survey 
data in providing low-level qualitative and quantitative 
indications of the impacts of unreliability from the electricity 
customer’s viewpoint. Also, we show that certain caveats must 
be borne in mind when analysing CIC estimates provided by 
survey respondents. Subsequently, parallel estimations of the 
economic cost of electricity interruptions in SA using a time-
dependent probabilistic CIC model and a dynamic inoperability 
input-output model (DIIM) are discussed. Rigorous comparison 
of the results of each approach and those published in similar 
studies allowed for an identification of plausible ranges of the 
cost of large electricity interruptions in SA. Further, we show 
that many days of widespread rotational load shedding could 
have a cumulative effect like that of a large blackout. 

The layout of the rest of the paper is as follows: section II is 
a comprehensive review of the literature on the cost of 
electricity interruptions; section III discusses the protocol of our 
2018 customer level survey, some descriptive statistics on the 
survey data and a quantitative assessment of the CIC data from 
the survey; section IV presents a brief formulation of the input-
output (IO) model, its variants for assessing the economy-wide 
cost of disasters or economic shocks, and the application of the 
dynamic input inoperability model (DIIM) for electricity 
interruption impact assessment; section V discusses the 
procedure and the results of the estimation of the cost of load 
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shedding using survey data and an adapted DIIM (A-DIIM), 
and  a comparison of the results of the estimated weekly 
economy-wide cost of load shedding using the A-DIIM and the 
most recent national cost of unserved energy published in [10]. 
Relevant conclusions are drawn in section VI. 

II. RELEVANT LITERATURE 
The electric power system may be classified into three 

hierarchical levels (HLs) for system appraisal or analysis [12]. 
HL I consists of only generating facilities. HL II refers to the 
bulk power system consisting of generation and transmission 
facilities. HL III connotes the complete system including 
generation, transmission and distribution facilities. Various 
risks may affect one or a combination of the power system’s 
facilities resulting in sustained electricity supply interruptions. 
These interruptions may be chronic or sporadic [4]. Sporadic 
interruptions are often caused by severe weather conditions and 
other high impact low frequency (HILF) risks like geomagnetic 
storms, cyber-attacks, pandemics, and massive industrial strike 
actions. These are initiated mainly at HL II and III and are 
prevalent in countries in the ‘global north' [13], [14]. Chronic 
interruptions occur more frequently than sporadic ones, 
resulting in higher system average interruption duration index 
(SAIDI) and system average interruption frequency index 
(SAIFI). Chronic interruptions are prevalent in developing 
countries with less robust power systems and are mostly due to 
load shedding caused by generation inadequacy (HL I), and 
other technical and maintenance problems at HL II and HL III. 
The costs of sustained electricity interruptions have been 
assessed at the customer and macroeconomic levels using 
different approaches. 

A. Electricity interruption cost assessment at customer level. 
Customer surveys became the predominant approach for 

assessing the cost of electricity interruptions to electricity 
customers after the success of Canadian seminal CIC surveys 
[15]–[17]. In CIC surveys, the impacts of electricity 
interruption are monetized by: 
 Direct Costing. Respondents are given worksheets to 

estimate the costs of impacts due to electricity interruptions 
in actual or hypothetical scenarios [4], [6], [7], [18], [19]. 
The validity and accuracy of respondents’ CIC estimates 
are influenced by the time since actual interruptions or the 
similarity of hypothetical interruptions with actual ones 
that respondents might recall from the past. Generally, this 
valuation approach is applied to commercial and industrial 
customers whose economic activities are linked with 
financial returns. 

 Contingent valuation. In this case, respondents are asked 
about their willingness to pay (WTP) to avoid an electricity 
interruption or their willingness to accept (WTA) a certain 
amount of money as compensation for electricity 
interruption impacts [3], [4], [8], [20]. Alternatively, 
respondents may be presented with a set of electricity 
interruption options, each accompanied with a rate increase 
or decrease. 

CIC estimates for different electricity customer segments are 

typically expressed as a function of interruption duration and 
applied for reliability planning [21]–[24] and regulation [25], 
[26]. However, these CIC estimates are subjective as they are 
based on electricity customers’ perception of their cost in 
electricity interruption scenarios. Since conciseness is required 
for effective customer surveys, only a limited number of 
electricity interruption scenarios can be studied. Also, most CIC 
studies assume infrequent stochastic interruptions. The impacts 
of chronic interruptions prevalent in Sub-Saharan Africa (SSA) 
can be ascertained more accurately by extending typical 
surveys to include questions on backup power systems [6], [7], 
[18], [27]–[29]. This reveals the actual market behaviour of 
electricity customers to electricity interruptions. Other authors 
[1] have resorted to an assessment of insurance claims due to 
damages incurred from electricity interruptions as an alternative 
indicator of the cost of these interruptions to electricity 
customers. 

B. Electricity interruption cost assessment at macroeconomic 
level. 

Some Canadian studies [30], [31] proposed the sector 
customer damage function (SCDF) and composite customer 
damage functions (CCDF) to describe electricity interruption 
cost at the sectoral and bulk power system levels respectively. 
However, SCDF and CCDF are derived using CIC data from 
customer surveys.  

Seeking a more objective, reliable, repeatable and low-cost 
approach to assessing electricity interruption cost at sectoral, 
regional, and national levels, many recent studies have applied 
the macroeconomic production function (MPF) approach [32]–
[38]. Value of lost load (VoLL), cost of unserved energy 
(CoUE), and cost of energy not supplied (CENS) are the typical 
descriptors of electricity interruption cost in these studies. Since 
data on sectoral GDP/GVA and electricity use are usually 
publicly available, a sector’s CoUE/VoLL/CENS is derived as 
a ratio of its gross domestic product (GDP) or gross value added 
(GVA) to its electricity consumption (kWh) or peak or average 
load (kW) for a given period (usually a year). The main 
drawback of this simple approach is that key customer and 
interruption parameters that influence electricity interruption 
cost are often neglected. Also, sectoral interdependencies are 
usually neglected. 

To account for sectoral interdependencies and the ripple 
effects of localized or wide-area sporadic electricity 
interruption on the value chain of a modern economy, 
economy-wide simulation models can be used [39]. These 
models use flow measures (i.e. the output of stock or services 
over time) to assess electricity interruption cost. This is 
advantageous because flow measures are readily linked to 
higher order effects and give insights on the short-run impacts 
of large blackouts. Economy-wide simulation models applied 
for electricity interruption cost assessment include the 
econometric model [40], [41], input-output (IO) model [2], [9], 
[42], [43] and computable general equilibrium (CGE) model 
[40], [44].  

The econometric model or long run model, is a model with 
statistically estimated simultaneous equations that represent the 
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aggregated workings of an economy [39]. Econometric model 
analyses are typically concerned with the effects of disasters on 
economic growth rather than overall economic output. The 
model’s inability to distinguish between higher order effects 
and direct effects reduces its application in electricity 
interruption cost analysis. 

The IO model is a widely utilized tool for modeling inter-
sectoral linkages and the cascading effects of disasters. The IO 
tables used in IO analysis provide comprehensive detail on the 
inter-sectoral trading relationships between sectors of an 
economy. A significant benefit of the IO model is its ability to 
capture indirect or higher-order effects that are not easily 
captured using other models. However, there is an assumption 
of fixed coefficients to determine input-output relationships 
between industries. This notion creates a set of weaknesses, 
rigidity, and linearity with respect to the application of the IO 
model for electricity interruption cost assessment [45], [46]. 

The computable General Equilibrium (CGE) model is an 
advanced extension of the IO model. It presents a complete 
view of an economy, considering market prices and exogenous 
interventions following a disaster, and how the economy may 
respond to changes in demands and supply. The CGE model 
incorporates input/import substitutions and has finite supply 
constraints. However, the complexity of the model’s 
formulation and the extensive data it requires pose a challenge 
for electricity interruption cost analysis especially for regions 
where such data are not available. 

The economy-wide simulation models discussed above do 
not normally include temporal parameters, they need to be 
modified to allow for a more refined analysis that considers the 
influence of temporal parameters on the economic cost of 
electricity interruptions. 

III. CUSTOMER LEVEL SURVEY  
Past surveys conducted in SA [4], [5], [7] and other SSA 

countries [27], [47] provided methodical insights for the survey 
in this study. The survey was administered to commercial and 
manufacturing businesses in the City of Cape Town by face-to-
face interviews, telephone interviews, web survey, and survey 
form drop off and collection between August – mid-October 
2018. The survey form included questions on a business’ 
experience with electricity interruptions, backup/parallel 
electricity supply, electricity interruption cost estimation, and 
some demographics. Out of 475 businesses contacted for 

participation in the study, 227 responses (partial and complete) 
were retrieved.  54% of these contained usable data. Face-to-
face interviews accounted for about 87% of retrieved responses. 
In subsequent discussions, a respondent implies each business 
unit represented in the useful sample data. 

A. Electricity supply interruption frequency and satisfaction 
level with reliability 

The average annual number of electricity interruptions as 
perceived by respondents was three interruptions per year in the 
2 years preceding the survey (i.e. 2016 and 2017). Accordingly, 
about 88% of respondents were either very satisfied or satisfied 
with their electricity supply reliability. In [6], after severe 
interruptions in 2008, over 45% of businesses surveyed in Cape 
Town in 2009 were either dissatisfied or very dissatisfied with 
experiencing more than five interruptions per year, on average. 
Thus, customer satisfaction level with electricity supply 
reliability decreases with increasing frequency of electricity 
interruptions. 

B. Business size parameters and dependence on electricity  
The business size parameters investigated in the survey were 

electrical size and number of employees, shown in Table I and 
II respectively. Most respondents could only report their 
electrical size in monetary value (Rands), not in kW or kWh. 
The medians of the average monthly electricity bill (Table I) 
and number of employees (Table II) indicate that most of the 
businesses in the sample were small – medium scale, and that 
the manufacturing sector has a higher electrical and labour size 
than the commercial sector. In both sectors, on average, over 
90% of business activities depended on electricity, as illustrated 
in Fig. 1. The need for reliable supply is very high. 

 
 

TABLE I 
SUMMARY STATISTICS ON AVERAGE MONTHLY ELECTRICITY BILL (RANDS) 

Sectors Number of 
responses 

Mean Stda Mina Meda Maxa 

Commercial 110 11 134.7 18 874.18 300 5 625 150 000 
Manufacturing 42 165078 692 408.3 1400 14 836.52 4 500 000 

aHere and elsewhere in this paper: Std - standard deviation; Min - Minimum; Med – Median; Max – Maximum 
 

TABLE II 
SUMMARY STATISTICS ON ON NUMBER OF EMPLOYEES 

Sectors Number of 
responses 

Mean Stda Mina Meda Maxa 

Commercial 92 20 39 1 9 300 
Manufacturing 37 106 234 3 30 1200 

Fig. 1: Perception of dependence on electricity for business 
activities in the commercial and manufacturing sectors. 
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C. Backup/parallel electricity supply 
Most respondents indicated that they do not own a 

backup/parallel electricity supply, nor have it provided as a 
service (Table III). Backup electricity supply ownership is 
higher in the manufacturing sector than the commercial sector. 
This could be due to the sensitivity of the processes of the 
manufacturing businesses; about 24% of the surveyed 
manufacturing businesses ran continuous processes. 

The cumulative percentage of respondents who indicated 
ownership of backup power supply rose from 13% and 24% 
before 2008 in the commercial and manufacturing sectors 
respectively to 72% and 95% between 2014 – 2016 (Fig. 2). 
Dzobo [6], also observed increased purchase and installation of 
backup/parallel electricity supply by businesses in Cape Town 
between 2007 – 2009 i.e. during and immediately after periods 
of load shedding events. The trends in both studies indicate that: 
following the improvement in electricity supply after the 2008 
load shedding events in SA, the rate of backup power supply 
procurement among respondents in the commercial and 
manufacturing sectors dropped significantly but increased 
again during the 2014/2015 load shedding events. Thus, the 
experience or expectations of chronic electricity interruption 
encourages procurement of backup power supply, especially 
diesel/petrol generators.  

 
TABLE III 

TYPE OF PRIMARY BACKUP POWER SUPPLY AVAILABLE IN THE COMMERCIAL 
AND MANUFACTURING SECTORS 

Sector Percentage of respondents 
Backup power supply 
owned 

Backup 
power 
supply 
provided as 
a service 

No 
backup 
power 
supply 

Generator UPSa 

Commercial 23% 8% 3% 66% 
Manufacturing 42% - - 58% 

aUninterruptible power supply or battery-inverter systems 
 

 
However, a seemingly counterintuitive but interesting and 

plausible observation in this study is that: chronic interruption 
might have some non-negative outcomes. The increase in 
purchase and installation of backup power supply indicates 
increased economic activity for the backup power supply 
industry, which might translate to some positive outcomes to 

other associated industries in the economic chain (e.g. the 
petroleum products industry). Also, it is plausible that 
respondents who owned a backup generator during the load 
shedding period gained competitive advantage by satisfying 
more customers than their competitors who didn’t own one. 

D. CIC assessment for businesses without backup power 
supply 

The potential worst-case CIC of businesses can be 
ascertained by considering electricity interruption scenarios 
where there is no backup power supply [5], which characterizes 
most respondents in this study (Table III). Their CIC was 
estimated using a direct costing approach. Generally, CIC is 
affected by the interruption duration, economic sector and size 
of the business. It is useful to normalize CIC estimates based on 
an electrical size parameter, such as monthly energy 
consumption or maximum demand, to allow for easy 
application in power system management [48]. Since most 
respondents in this survey could report their electrical size only 
in terms of their average monthly electricity bill, it was used as 
the normalization parameter. The relationship between average 
monthly electricity bill and CIC for each duration was tested by 
linear regression analysis using (1).  

𝐶𝐶𝐶𝐶𝐶𝐶���  =  𝑏𝑏�  +  𝑏𝑏�𝐸𝐸                               (1) 
Where 𝐶𝐶𝐶𝐶𝐶𝐶��� is the customer interruption cost estimates for 

businesses with no backup power supply for an interruption of 
duration d occurring in the reference interruption context – the 
busiest operating time and season of a business; E is average 
monthly electricity bill; 𝑏𝑏� and 𝑏𝑏� are intercept and slope 
parameters respectively for the fitted regression line.  

For each electricity interruption duration, the CIC and 
average monthly electricity bill data pair in each sector 
contained significant number of zero, near-zero, and extreme 
CIC values, as observed also in [5], [19], [49]. To assess the 
effect of these outliers on the linear regression results, two types 
of linear fits were considered i.e. a regular linear fit and a 
bisquare fit. The bisquare linear fitting technique in 
MATLAB’s 2017 Curve Fitting Toolbox [50] was used in this 
study. Compared with simple linear regression, it reduces the 
weight of each data point according to the distance from the 
fitted line. 

The coefficient of determination, R2, of the bisquare fit was 
higher than that of the regular fit across the different electricity 
interruption scenarios in each sector (Table A-1 in Appendix 
A). With the regular linear fit, average monthly electricity bill 
could explain less than 50% of the variation of CIC for most of 
the electricity interruption scenarios in each sector. With the 
bisquare fit, it could explain 54% to 97% of the variation of CIC 
because the bisquare fit reduces the effects of outliers. The 
approximately linear relationship between CIC and the average 
monthly electricity bill with the bisquare fit corroborates 
observations in [6] and improves previous approaches  based on 
a simple ratio of CIC divided by the business size [51], [52]. 

The CIC estimated by each respondent was normalized (by 
the business size) according to the bisquare linear relation. The 
normalized CIC (CIC*) is a unitless multiplier of the average 
monthly electricity bill of the customer and the values for all 

Fig. 2: Backup power supply procurement across recent years in the 
commercial and manufacturing sectors 

13% 13%
6%

41%

7%

20%24% 29%
43%

5%

0%
10%
20%
30%
40%
50%

Be
fo

re
 2

00
8

20
08

 - 
20

10

20
11

 - 
20

13

20
14

 - 
20

16

20
17

 - 
20

18

no
t s

pe
ci

fie
d

Pe
rc

en
ta

ge
 o

f r
es

po
nd

en
ts

 w
ho

 
ow

ne
d 

ba
ck

up
 p

ow
er

 su
pp

ly

Backup supply installation period

Commercial Manufacturing



Vol.111 (2) June 2020 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 77

 5

customers are distributed about a mean value for each sector 
and interruption duration. The statistics of the distribution of 
CIC* for customers without backup supply are shown in Table 
IV. In deriving these statistics, values greater than three 
standard deviations (3σ) from the mean were considered as 
outliers and excluded. The shape parameters (α, β) of the beta 
probability distribution function (pdf) of the CIC* data reflect 
the high skewness of the data. Past research [23], [24], [53]–
[55] has shown the use of the beta pdf for characterizing CIC 
and reliability indices data since it provides estimates from the 
distribution based on a defined confidence level, as applied in 
Section V-A.   

The CIC data for the 8-hour electricity interruption scenario 
in the ‘hospitality’ and ‘other commercial services’ sectors 
were insufficient for meaningful statistical analyses, and they 
were not included in Table IV. The variation of the interruption 
cost according to the duration is depicted in a customer damage 
function (CDF). The CDFs for the trade and manufacturing 
sectors were derived as interpolants between each sector’s 

mean CIC* (with and without outliers) for each interruption 
duration (Fig. 3). In both sectors, CIC* increases with 
electricity interruption duration, albeit at different rates for the 
two sectors. 

The CIC* for the trade sector is generally higher than that of 
the manufacturing sector, but this does not directly imply that 
the trade sector respondents have higher CIC. This observation 
could be due to the greater electrical size of the manufacturing 
sector respondents i.e. a manufacturing sector respondent with 
similar CIC as a trade sector respondent, but higher average 
monthly electricity bill will have lower CIC*. Furthermore, it is 
plausible that manufacturing sector respondents were more 
conservative when estimating their CIC. Trade sector 
respondents mostly estimated their CIC in terms of ‘volumes of 
sales’ they would have made in the presented electricity 
interruption context (i.e. busiest time-of-day, day-of-week, and 
season of the year). It is possible that they were quite optimistic 
about their potential sales in such a period, for example around 
midday on a ‘Black Friday’. 

 
TABLE IV 

SUMMARY STATISTICS OF CIC* FOR CUSTOMERS WITHOUT BACKUP POWER SUPPLY 
Sectors Duration 

(hours) 
Mean Std Min Med Max aStd error Skewness Beta distribution 

parameters 
α β 

Trade 0.5 1.848 3.224 0.000 0.889 11.667 0.512 2.407 0.118 0.627 

2 5.598 7.925 0.000 2.857 30.000 1.120 1.871 0.219 0.955 

4 16.427 35.575 0.000 3.600 156.923 3.585 3.193 0.086 0.737 

8 29.090 61.108 0.000 6.680 198.462 9.199 2.433 0.047 0.273 

Hospitality 0.5 0.183 0.287 0.000 0.060 0.960 0.053 1.871 0.137 0.584 

2 0.794 0.646 0.000 0.725 2.500 0.169 1.068 0.712 1.531 

4 1.065 0.870 0.000 1.000 2.500 0.295 0.529 0.434 0.585 

Other Commercial 
Services 

0.5 1.039 1.734 0.000 0.300 4.806 0.393 1.730 0.065 0.237 

2 3.369 5.061 0.000 1.550 19.222 0.900 2.395 0.190 0.895 

4 12.618 28.451 0.150 1.714 100.000 3.643 2.709 0.046 0.316 

Manufacturing 0.5 0.370 0.414 0.000 0.286 1.000 0.165 0.644 0.132 0.226 

2 1.811 2.822 0.050 0.414 10.000 0.427 1.866 0.156 0.706 

4 3.776 6.875 0.150 1.027 30.000 0.805 2.847 0.138 0.957 

8 9.850 18.168 0.667 2.763 60.000 3.115 2.388 0.082 0.415 
aStandard error 
 
 

       
          (a)                           (b) 

Fig. 3: CDFs for (a) Trade sector (b) Manufacturing sector 
(CIC* = CIC/Average monthly electricity bill) 
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E.  Case studies on the cost of using backup generator 
The cost of using a backup generator to mitigate the impacts 

of electricity interruption includes its purchase and installation 
cost depreciated over the duration of use, its maintenance cost, 
and running cost for the duration of use. Case studies assessed 
the difference in the cost of using a backup generator to provide 
full electricity interruption mitigation and the corresponding 
cost of the electric utility’s supply. The respondents considered 
in these case studies reported that their backup generators 
powered all their facility and reported usable data on their 
backup generators.  

The results of the case studies indicate that local businesses 
(especially those of large electrical size) experience significant 
increase in operating cost if they were to use backup generators 
providing full electricity interruption impact mitigation, The 
average hourly cost of using a backup generator was 100% to 
300% higher than the average hourly electricity bill for the 
respondents in the commercial sector; and 149% - 1320% 
higher for the manufacturing sector respondents (Table V). The 
hourly cost difference observed for each business is an unbiased 
indicator of its willingness to pay to avoid electricity 
interruptions. 

F. Summary 
Generally, from the results of a multiple regression analysis 

that included all usable CIC datasets for businesses with and 
without backup power supply, it was observed that average 
monthly electricity bill, electricity interruption duration, 
backup power supply ownership and the percentage of a 
business facility powered by its power supply are statistically 
significant predictors of its CIC (or unmitigated loss) at the 5% 
significance level (Appendix B).  The model coefficients for 
average monthly electricity bill and electricity interruption 
duration were positive, but negative for the percentage of 
business facility powered by backup power supply. Thus, for 
the businesses in this study, CIC tends to increase as average 
monthly electricity bill and electricity interruption duration 
increase and decrease as the coverage of business facility by 
backup power supply increases. 

 
TABLE V 

COMPARISON OF AVERAGE HOURLY GENERATOR COST AND AVERAGE HOURLY 
ELECTRICITY BILL FOR SELECTED RESPONDENTS 

Respa Average 
hourly 
electricity 
bill, 
𝑬𝑬𝒉𝒉 (R/hr) 

Generator 
size 
(kVA) 

Average 
hourly 
generator 
cost, 𝑪𝑪𝒃𝒃𝒉𝒉 
(R/hr) 

Cost 
difference 
𝑪𝑪𝒃𝒃𝒉𝒉  −  𝑬𝑬𝒉𝒉 
(R/hr) 

Percentage 
difference 
𝑪𝑪𝒃𝒃𝒉𝒉  � 𝑬𝑬𝒉𝒉

𝑬𝑬𝒉𝒉 ×
 𝟏𝟏𝟏𝟏𝟏𝟏 

C1 8.33 5.5 28 19.66 235.97% 

C2 25.93 45 51.84 25.91 99.95% 

C3 24.42 70 101.17 76.75 314.31% 

M1 33.69 250 477.67 443.98 1318.01% 

M2 1250 600 3114.43 1864.43 149.15% 

M3 531.69 1 200.00 3949.03 3417.33 642.73% 

aResp - Respondent; Ci and Mi imply respondent i considered in the 
commercial and manufacturing sector respectively. 

IV. ECONOMY-WIDE COST ASSESSMENT USING 
INPUT-OUTPUT (IO) MODEL 

A. The Leontief IO model formulation 
The general form of the Leontief IO model [56] is shown by 

(2).  
𝒙𝒙 = 𝑨𝑨𝑨𝑨 + 𝒇𝒇 ⟺  �𝑥𝑥� =  ∑ 𝑎𝑎��𝑥𝑥� +  𝑓𝑓�� �   (2)  

Where 𝑥𝑥� is the total output of sector 𝑖𝑖, A refers to the 
technical coefficient matrix with technical coefficient 𝑎𝑎��  i.e. 
the ratio of the input requirement of sector 𝑗𝑗 from sector 𝑖𝑖 (𝑥𝑥��) 
to the total output of sector 𝑗𝑗 i.e. 𝑥𝑥�, and 𝑓𝑓� is the amount of 
sector 𝑖𝑖’s output sold to final demand. In (2), the economy is 
assumed to be static, in competitive equilibrium, and has 
constant production coefficients for a fixed unit of time, usually 
a year. Miller and Blair [56] discuss extensively the IO model 
and its variants. 

B. Inoperability IO model (IIM) 
The IIM is an extended form of the IO model. It improves the 

modelling of the extent to which  extreme conditions make 
economic sectors inoperable [57]. Inoperability can be caused 
by internal or external perturbations, which have a negative 
effect on sectors’ intended output. The IIM assesses sectoral 
inoperability through matrix manipulations. An inoperability 
index is derived as a measure of the level of an economic 
system’s dysfunction. In the case of electricity interruptions, it 
complements the economic loss obtained from the traditional 
IO model. The basic formulation of the IIM as shown in (3) has 
been discussed extensively [58], [59]. 

𝒒𝒒 =  𝑨𝑨∗𝒒𝒒 +  𝒄𝒄∗                  (3) 
Where: 𝒒𝒒 is the inoperability vector, which is a dimensionless 

quantity with values ranging from 0 (i.e. normal state of system) 
to 1 ( i.e. system collapse) indicating varying degrees of system 
failure; 𝑨𝑨∗ is the interdependency matrix (orthogonalized 
technical coefficient matrix) which states how much additional 
inoperability is contributed by a column sector to the row 
sector, thus indicating the varying degree of interconnectedness 
between sectors; and 𝒄𝒄∗ is the demand side perturbation vector 
expressed in terms of normalized degraded final demand, i.e. 
planned final demand minus actual final demand relative to the 
planned production level.  

C. Dynamic Inoperability Input-Output Model (DIIM) 
The DIIM is an extension of the IIM. It allows for modelling 

the dynamic recovery, behaviour and interactions caused by a 
perturbation on economic sectors [60], [61]. The DIIM takes 
into consideration the resilience of sectors to model their 
recovery over time. The resilience coefficient reflects the output 
response of each individual sector to an imbalance of supply 
and demand. A general form is shown in (4).  

𝒒𝒒(𝒕𝒕 + 𝟏𝟏) = 𝒒𝒒(𝒕𝒕) + 𝑲𝑲[𝑨𝑨∗𝒒𝒒(𝒕𝒕)  +  𝑪𝑪∗ − 𝒒𝒒(𝒕𝒕)]         (4)     
The term K is the industry resilience coefficient matrix. It 

refers to the ability of a sector to recover to a nominal level of 
inoperability. Eq. (4) indicates that the inoperability in time 𝑡𝑡 is 
equivalent to the inoperability in the previous period plus a 
partial adjustment of inoperability due to resilience K. It is 
assumed that all off-diagonal entries of matrix K are zero, 
depicting that the resilience of each sector comes from the 
inherent characteristic of the sector itself. Eq. (5) shows the 
computation of the individual elements 𝑘𝑘� of the resilience 



Vol.111 (2) June 2020 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 79

 7

matrix K based on the diagonal elements of the interdependency 
matrix 𝑨𝑨∗ (i.e. 𝑎𝑎��

∗ ), and the time Ti it takes each sector to return 
to a predefined level of inoperability (𝑞𝑞�(𝑇𝑇�)) from an initial 
level of inoperability (𝑞𝑞�(0)).   

𝑘𝑘� =  �� (��(�)/��(��))
�� ������

∗ �
         (5)     

The numerator of (5) describes the recovery rate of each 
sector and the denominator indicates the reliance of the sector 
on itself. Using the DIIM, the continuous form of the 
cumulative economic loss for each sector 𝑖𝑖 by time 𝑡𝑡 is given 
by (6). 

    𝑄𝑄�(𝑡𝑡) =  𝑥𝑥 �  ∫ 𝑞𝑞�(𝑡𝑡)𝑑𝑑𝑑𝑑�
���         (6)   

Where: 𝑥𝑥� is the planned output of sector 𝑖𝑖 (Rands/time unit); 
and 𝑞𝑞�(𝑡𝑡) is the inoperability of sector 𝑖𝑖 at time 𝑡𝑡. 

The total economic loss for all sectors of the economy by time 
t is shown in (7). 

𝑄𝑄(𝑡𝑡) =  ∑ �𝑥𝑥�  ∫ 𝑞𝑞�(𝑡𝑡)𝑑𝑑𝑑𝑑���
��� ��

���        (7)  

D. Electricity interruption impact assessment using the DIIM  
The data source for the assessment was South Africa’s 2014 

IO table [62]. It was the latest publicly available IO table 
published by StatsSA at the time of this study. The table 
consists of fifty sectors at the 2-digit level of SA’s standard 
industrial classification code (SIC). In the IO table, it was 
observed that the electricity sector was lumped with the gas and 
water sectors, thus it was required that these interactions be 
separated, for which the 2013 summary statistics on the lumped 
electricity, water and gas sector [63] were used. The average 
percentage contributions to sales and expenditure of the lumped 
sector (83.7% for electricity sector and 16.3% for gas and water 
sector combined) were used to weight the rows and columns of 
the lumped sectors to derive a revised a 50-sector IO table with 
the electricity sector separated from the gas and water sectors. 

 
1) Scenario formulation 

The DIIM requires the initial inoperability level vector for all 
the sectors present in the economy of interest, the desired 
recovery period for the analysis (𝑇𝑇) and a predefined final 
inoperability level for each sector (𝑞𝑞�(𝑇𝑇)).  For consistency, 
(𝑞𝑞�(𝑇𝑇)) can be the same for all sectors. To determine the initial 
inoperability vector for each sector  (𝑞𝑞�(0)), we use (8) as 
defined in [64].  

𝑞𝑞�(0) =  𝑝𝑝�  
���

���(���)
            (8) 

Where 𝑞𝑞�(0) is the initial perturbation to the ith sector due to 
a single perturbation 𝑝𝑝� to the electricity sector (taken as sector 
𝑗𝑗); and 𝑧𝑧��  is the transaction between sector 𝑖𝑖 and the electricity 
sector, i.e. the amount of electricity (in Rands) sold to sector 𝑖𝑖. 
The denominator is the amount of electricity purchased by the 
maximum consuming sector of electricity (i.e. the metal ores 
mining sector). For illustration, 𝑝𝑝� is arbitrarily set at 5%, 𝑞𝑞�(𝑇𝑇) 
at 0.1% to ensure a positive 𝑘𝑘� for each sector (see (5)) and T at 
12 hours, as most single electricity interruption event do not 
exceed 12-hours [65]. The bi-directional relationship in the IO 
model implies that a sector becomes somewhat inoperable if 
there is an interruption of electricity supply and electricity is a 
major component of its production [11]. In the DIIM, if a given 
sector is dependent on the perturbed sector, it will follow the 
same recovery path as that of the initially perturbed sector. 

2) Some illustrative results 
The inoperability experienced due to a 5% perturbation to the 

electricity sector is shown in Fig. 4 for select sectors. The 
effects of electricity interruption are more apparent in sectors 
with a high level of dependence on the electricity sector. After 
12 hours, the inoperability level of all sectors considered was 
below 0.5%. Metal ores mining sector is most affected because 
it has the highest dependence on the electricity sector. Gas & 
Water sectors are also significantly affected because of the 
dependence of their production processes on electricity.  

The corresponding total economic losses incurred over a 12-
hour period is obtained for different levels of inoperability of 
the electricity sector i.e. 5%, 20%, 40%, 60%, 80% and 100%, 
illustrated in Fig. 5.  In each case, the profile of economic loss 
stems from the assumed exponential recovery trajectory of the 
electricity sector. The result in Fig. 5 conforms with the 
inherent characteristics of the Leontief model, i.e. higher levels 
of inoperability of the electricity sector result in decrease in 
production of dependent sectors and higher economic losses.  

 

 

V. ESTIMATION OF THE COST OF LOAD SHEDDING 
Prior to South Africa’s democratic dispensation in 1994, a 

significant portion of residential customers were unelectrified. 
The introduction of the national electrification programme led 
to a rapid increase in new connections. However, insufficient 
attention was given to generation and transmission capacity 
expansion which require long lead times [4]. This led to supply 
constraints and the introduction of load shedding in 2005 [66], 
[67]. Since then, the problems have not been resolved fully, 

Fig. 4: Inoperability change of selected sectors over 12 hours 

 
Fig. 5: Total economic loss incurred by all sectors at different 

inoperability levels of the electricity sector. 
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leading to recurrence of load shedding around periods of annual 
peak in 2007/08, 2014/15 and 2018/19.  

Generally, the national electric utility, Eskom, and municipal 
electric utilities implement load shedding in stages depending 
on the prevailing network contingency [68]. Up to 1000 MW of 
load is shed from the network at each stage i.e. 1000 MW, 2000 
MW, 3000 MW and 4000 MW at stage 1, 2, 3 and 4 
respectively. The duration of interruption at each stage can be 
2.5-hours or 4.5-hours at a time. The frequency of load 
shedding groups of customers increases for higher stages of 
load shedding, according to the shortage of generation 
adequacy and to avoid a system collapse. 

These rotational load shedding events have similar 
characteristics as chronic interruptions whose economic 
impacts are typically assessed using a CIC model based on 
customer survey data [3]–[8], and large blackouts whose 
economic impacts are better assessed using a macroeconomic 
model [2], [9], [11], [69]. Accordingly, we assess the potential 
cost of load shedding using both customer-level survey CIC 
data and an adapted DIIM (A-DIIM). The CIC data are applied 
in a time-dependent probabilistic CIC model and the results are 
scaled up to macroeconomic sectoral levels to allow for 
comparison with the A-DIIM estimations. The assumptions and 
estimation procedure in each case differ according to the 
respective models used. 

A. Load shedding cost estimation using survey results 
 The weekly costs incurred by the trade and manufacturing 
sectors due to stages 1 – 4 load shedding were estimated using 
the following assumptions: 
1. During a stage 1 load shedding, an individual customer will 

experience load shedding three (3) times for 2 hours each 
over a 4-day period [68]. For stages 2, 3, and 4, the 
frequency increases to six, nine, and twelve times 
respectively. 

2. From 1, in a 168-hour week, electricity supply to a 
customer in each sector will be interrupted for 
approximately 6%, 13%, 19%, and 25% of the time for 
stage 1, 2, 3, and 4 load shedding respectively. Thus, it is 
assumed that 6%, 13%, 19%, and 25% of the electricity 
customers in each sector experience electricity interruption 
during each stage 1, 2, 3, and 4 load shedding event 
respectively.  

3. There are twenty-four possible hours of load shedding in a 
day. Thus, in each time interval of a given row of the 
season-time activity weight matrix for a sector (e.g. Table 
VI for the manufacturing sector), there are three load 
shedding events. The season-time activity weight matrices 
for the sectors were derived from the survey data on 
business’ activity levels. 

4. The reference season is January – March. Past load 
shedding events have occurred in this period [70]. 

5. Businesses do not use backup power supply. 
 

 The normalized 2-hour CIC data for the trade and 
manufacturing sectors were applied in a time-dependent 
probabilistic CIC model (9) for the estimation. 

𝑇𝑇𝑇𝑇𝑇𝑇�
� =  𝑁𝑁�

� × 𝐶𝐶𝐶𝐶𝐶𝐶��
∗(�)�𝜏𝜏���, 𝑑𝑑� × 𝑊𝑊�(𝜏𝜏) ×  𝐸𝐸�  ×  𝑃𝑃�(𝜏𝜏)  (9) 

 Where: 𝑇𝑇𝑇𝑇𝑇𝑇�
� is the total interruption cost of sector 𝑖𝑖, due to 

electricity interruption events of duration 𝑑𝑑, occurring over a 
given period; in this case, a week; 𝑁𝑁�

� is the number of 
electricity interruption events of duration 𝑑𝑑 in the considered 
period; 𝐶𝐶𝐶𝐶𝐶𝐶��

∗(�)�𝜏𝜏���, 𝑑𝑑� is the probabilistic normalized CIC 
estimate for an electricity interruption event of duration 𝑑𝑑 in a 
reference season – time-of-day interval 𝜏𝜏���; 𝐶𝐶𝐶𝐶𝐶𝐶��

∗(�)�𝜏𝜏���, 𝑑𝑑� is 
obtained using the parameters of the beta distribution of the 
normalized CIC data for electricity customers without backup 
power supply; 𝐸𝐸� is average monthly electricity  bill (in Rands); 
𝑃𝑃�(𝜏𝜏) is the proportion of electricity customers affected by an 
electricity interruption event in season – time-of-day interval τ; 
and 𝑊𝑊�(𝜏𝜏)  is the season – time-of-day activity weight 
corresponding to τ. 
 For comparison purposes, estimations were done using 
results in studies that are similar to ours both in sector 
description and the form of published CIC data. The estimation 
for the trade sector was done using both the normalized 2-hour 
CIC data from our 2018 survey and that reported by Dzobo [5] 
from a 2009 CIC survey of commercial and industrial electricity 
customers in Cape Town. Normalized 2-hour CIC data for the 
manufacturing sector was not specifically reported in the 2009 
study. 

 The estimation results for the trade and manufacturing 
sectors are shown in Tables VII and VIII respectively. The 
estimates obtained for the trade sector using the 2018 CIC data 
were significantly higher than those obtained using the CIC data 
in 2009 (Table VII).  To confirm whether the trade sector 
respondents in the 2018 survey largely overestimated their 
CICs, a further comparison was made with Goldberg’s estimate 
of the cost of load shedding to SA’s retail trade sector in 2015 
[7]. 

 
TABLE VI 

SEASON-TIME ACTIVITY WEIGHT MATRIX FOR THE MANUFACTURING SECTOR 
Season Season – Weekdaya 

00:00 - 6:00 06:00 - 12:00 12:00 - 18:00 18:00 - 00:00 

Jan - Mar 0.255 0.842 0.845 0.343 

Apr - Jun 0.256 0.846 0.850 0.345 

Jul - Aug 0.268 0.885 0.888 0.361 

Oct - Dec 0.301 0.996 1.000 0.406 
a A similar matrix was developed for season-weekend 

TABLE VII 
WEEKLY COST OF LOAD SHEDDING TO THE TRADE SECTOR AT DIFFERENT 
PERCENTILE VALUES OF THE BETA DISTRIBUTION OF ITS NORMALIZED 2 – 

HOUR CIC DATA FROM 2009 AND 2018 CUSTOMER – LEVEL SURVEYS 
Load 
shedding 
Stage 

Survey 
year 

Weekly cost (R millions) a 
50th 
percentile 

80th 
percentile 

90th 
percentile 

1 2009 270 1 578 2 811 
2018 2 480 15 697 25 677 

2 2009 539 3 157 5 622 
2018 4 960 31 393 51 355 

3 2009 809 4 735 8 433 
2018 7 440 47 090 77 032 

4 2009 1 078 6 314 11 244 
2018 9 920 62 786 102 709 

aAdjusted to 2017 Rand values using available GDP deflators 
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TABLE VIII 
WEEKLY COST OF LOAD SHEDDING TO THE MANUFACTURING SECTOR AT 

DIFFERENT PERCENTILE VALUES OF THE BETA DISTRIBUTION OF ITS 
NORMALIZED 2 – HOUR CIC DATA FROM 2018 CUSTOMER – LEVEL SURVEY 
Load 
shedding 
Stage 

Weekly cost (R millions) a 
50th percentile 80th percentile 90th percentile 

1 1 903 34 799 64 753 
2 3 805 69 599 129 507 
3 5 708 104 398 194 260 
4 7 611 139 198 259 013 

aAdjusted to 2017 Rand values using available GDP deflators. 
 

Goldberg used average CIC estimates from a 2015 survey 
conducted for the retail trade sector in Pretoria and an 
extrapolation procedure quite different from the one in this 
study and [5]. The cost of 99 days of load shedding between 
January – June 2015 was estimated to be R13.72 billion. In this 
period, the implemented load shedding stages were mainly 
stages 1, 2 and 3, but the estimate was not differentiated across 
load shedding stages. Adjusting Goldberg’s 2015 estimate to 
2017 values using available GDP deflators results in an average 
of R0.57 billion per week over the 6-month period or R1 billion 
per week of continuous load shedding. The latter figure lies in 
the range of the 50th percentile weekly cost of stages 1 – 4 load 
shedding estimated using the trade sector’s 2009 CIC data [5], 
but it is smaller than the estimates for all the load shedding 
stages using the trade sector’s 2018 CIC data. The 
corroborations observed in the load shedding cost estimates for 
the trade sector using the CIC data from surveys in 2009 and in 
2015 might be because these studies were conducted near 
periods of chronic load shedding, thus respondents would have 
been more likely to accurately recall the impacts of load 
shedding  on their business activities. The 2018 survey was 
conducted during a period of high electricity supply reliability; 
the average number of electricity interruptions as perceived by 
respondents in the survey area (Cape Town) between 2016 – 
2018 was three interruptions per year (section III-A). Thus, it is 
plausible that when CIC surveys are not conducted near nor 
during periods of electricity interruptions, respondents might 
not give reliable CIC estimates. 

B. Load shedding cost estimation using DIIM 
The fundamental DIIM discussed in section IV does not fully 

capture some aspects of rotational load shedding as 
implemented in SA. For a sector, it takes only a single input 
inoperability vector – which corresponds to the sectors 
inoperability profile for a single event.  Since the DIIM assumes 
a monotonically decreasing function to represent the recovery 
of directly affected sectors, the rollover effects of rotational 
load shedding events are not fully accounted for. The 
implementation of load shedding in continuous successions 
over several days results in an accumulation of impacts, hence 
sectoral recovery will take longer than is required for a single 
event. To adapt the DIIM to the context of load shedding in SA, 
we leverage on the methodology in [71] and make the following 
assumptions and formulations: 
1. The shock to the electricity sector that results in load 

shedding and cascaded effects throughout the economy can 
be described as: 
  

𝑝𝑝�  =  ���� ����(��)
������� �����  ���� ����(��)

     (10) 
 

2. Each load shedding event creates its own unique 
inoperability profile in each sector. Thus, the inoperability 
of a sector at a given time t should be derived from the 
combination of the direct inoperability due to the load 
shedding event at t, and the residual inoperabilities from 
period 1, 2, …, t-1. Accordingly, we adopt the following 
notations and relations for the ith sector:  
 
𝒒𝒒𝒊𝒊

𝒄𝒄(𝑡𝑡): cumulative total inoperability at t. 
 
𝒒𝒒𝒊𝒊

𝒅𝒅(𝑡𝑡): direct inoperability from event occurring at t. 
 
𝒒𝒒𝒊𝒊

𝒓𝒓(𝑡𝑡): combined residual inoperabilities from events 
preceding t, derived using (11). 

 
𝒒𝒒𝒊𝒊

𝒓𝒓(𝑡𝑡) = 𝑂𝑂𝑂𝑂 {𝒒𝒒𝒊𝒊
𝟏𝟏(𝑡𝑡), 𝒒𝒒𝒊𝒊

𝟐𝟐(𝒕𝒕), 𝒒𝒒𝒊𝒊
𝟑𝟑(𝑡𝑡), … , 𝒒𝒒𝒊𝒊

𝒕𝒕�𝟏𝟏(𝑡𝑡)}  (11) 
 

In (11),  𝒒𝒒𝒊𝒊
𝟏𝟏(𝑡𝑡) implies the residual inoperability at period 

t from the event at period 1, and 𝒒𝒒𝒊𝒊
𝒕𝒕�𝟏𝟏(𝑡𝑡) implies the 

residual inoperability at period t from the event at period t-
1. Op is a mathematical operator chosen to combine the 
residual inoperabilities. Two operators were considered i.e. 
max_op which takes the maximum of the set of residual 
inoperabilities and sum_op – which takes the sum of 
residual inoperabilities. 

The cumulative total inoperability at t is derived using 
(12). 

𝒒𝒒𝒊𝒊
𝒄𝒄(𝑡𝑡)  =  𝒒𝒒𝒊𝒊

𝒓𝒓(𝑡𝑡)  +  𝒒𝒒𝒊𝒊
𝒅𝒅(𝑡𝑡)      (12) 

 
3. The simulation time step is bihourly to account for the fact 

that each load shedding event lasts about 2 hours, and for 
consistency with the use of 2-hour CIC data in section V-
A. Thus, there are 12-time steps per day corresponding to 
twelve events per day.  
 

4. The period of load shedding implementation is one week. 
However, a simulation period of three weeks was 
considered (i.e. 504 hours) to observe the decline in 
sectoral inoperabilities after load shedding ceases. 
  

For the calculation of sectoral resilience coefficients (5) and 
vectors of inoperability profiles at the start of the simulation, a 
desired final inoperability level of 0.01% was used. This pre-
set value of final inoperability ensures that the resilience 
coefficient computed for all sectors using (5) are positive. 

For a fixed load shedding stage throughout the week of load 
shedding, the direct inoperability profiles created in a sector are 
similar as depicted for the trade sector in Fig. 6. The effect of 
combining residual sectoral inoperabilities with the max_op is 
such that, after the first load shedding event, a sector remains 
inoperable at the same level throughout the period of load 
shedding (Fig. 7). When residual sectoral inoperabilities are 
combined with the sum_op, sectoral inoperability increases 
steadily and tends to plateau as load shedding becomes 
protracted (Fig. 8). 
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Using the adapted DIIM’s (A-DIIM) max_op and sum_op, the 
weekly cost of stages 1 – 4 load shedding were computed (using 
(6)) for SA’s fifty sectors at the 2-digit level of its SIC, however 
we present only the results for the trade and manufacturing 
sectors at the 1-digit level of SA’s SIC to allow for comparison 
with survey-based estimations in section V-A. Generally, the 
results obtained using the max_op were significantly less than 
those obtained using the sum_op (Table IX). This is in line with 
observations in Fig. 7 and 8. 

 

 

 

 
 
 

TABLE IX 
WEEKLY COST OF LOAD SHEDDING TO THE TRADE AND MANUFACTURING 

SECTORS USING THE A-DIIM 
Load 
shedding 
stage 

Weekly cost (R millions) a 

Trade Manufacturing 

max_op sum_op max_op sum_op 

1 524.79 4 013.13 454.49 6 855.72 

2 1 018.44 6 986.83 870.63 11 728.30 

3 1 504.44 9 739.26 1 279.54 15 282.11 

4 1 985.86 12 363.85 1 684.08 17 998.27 
aAdjusted to 2017 Rand values using available GDP deflators. 
 

C. Comparison of survey and A-DIIM results 
A comparison of the survey and A-DIIM estimates of the 

weekly cost of each stage of load shedding to the trade sector 
(i.e. Table VII and Table IX respectively) shows that the 50th 
percentile estimate derived using the 2009 CIC survey data and 
the estimate derived using the A-DIIM sum_op establish a 
conservative lower bound (CLB) and a conservative upper 
bound (CUB) of the cost respectively. While the 50th percentile 
estimates derived using the 2018 CIC data falls within this CUB 
and CLB, the corresponding 80th and 90th percentile estimates 
are significantly higher than the defined CUB and are unlikely 
when compared with the trade sector’s 2017 annual GDP of 
approximately R625 147 million. 

A similar comparison of the survey and A-DIIM estimates of 
the weekly cost of load shedding to the manufacturing sector 
(i.e. Table VIII and Table IX respectively) shows that the CLB 
and CUB estimates of its weekly cost of load shedding are 
defined by the estimates derived using the A-DIIM’s max_op 
and sum_op respectively. As observed for the trade sector, the 
50th percentile estimates derived using the 2018 CIC data falls 
within this CUB and CLB. The corresponding 80th and 90th 
percentile estimates are unlikely, especially when compared 
with the manufacturing sector’s 2017 annual GDP of 
approximately R559 000 million. 

D. Total economy-wide cost of load shedding 
 The total  weekly economy-wide cost of load shedding 
estimated using the A-DIIM were also compared with that using 
a national CoUE of  R84.16/kWh, which is currently approved 
by the National Energy Regulator of South Africa (NERSA) 
[10]. Across all load shedding stages, the average of the 
percentage difference between the estimates derived using the 
A-DIIM sum_op and NERSA’s CoUE (Table X) is 
approximately 12%. This indicates significant corroboration of 
the findings in these studies. 

Using NERSA’s CoUE, the economy-wide wide cost of a 
full day blackout is approximately R54 536 million. This 
implies that 27 days of continuous stage 1 load shedding has a 
similar economic cost as a day-long nation-wide blackout. 
Similarly, fourteen (14), nine (9) and seven (7) days of stage 2, 
3, and 4 load shedding respectively, have a similar economic 
cost as a day-long nation-wide blackout. 

 

 
  

 
Fig. 6: Direct inoperability profiles of the trade sector due to three load 

shedding events. 

 
Fig. 7: Total inoperability profile of the trade sector using max_op. 

 
Fig. 8: Total inoperability profile of the trade sector using sum_op 
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TABLE X 
TOTAL  WEEKLY ECONOMY-WIDE COST OF LOAD SHEDDING 

Load 
shedding 
stage 

Weekly cost (R millions) a 
A-DIIM CoUE 

(R84.16/kWh) 
[10] 

max_op sum_op 

1 2 383.14 18 942.48 14 562.28 

2 4 608.59 32 425.20 29 124.55 

3 6 799.98 42 971.38 43 686.83 

4 8 970.50 51 706.87 58 249.11 
aAdjusted to 2017 Rand values using available GDP deflators. 

VI. CONCLUSIONS 
Customer-level surveys provide qualitative and quantitative 

indications of the impact of electricity interruptions to 
electricity customers. For instance, information on the 
proliferation and cost of using backup generators to mitigate the 
impact of chronic electricity interruptions can be readily 
obtained from such surveys. However, CIC estimations by 
survey respondents might be biased or affected by measurement 
errors, especially when surveys are not conducted during or 
near period of electricity interruptions. Event chasing surveys 
should be adopted if it is needful to estimate electricity 
interruption cost using surveys. Further, conducting 
representative customer surveys by electric utilities across the 
country or in carefully selected provinces will allow for the 
development of a meta-database that will aid accurate 
evaluation of risk-based reliability worth indices expressed in 
Rands@Risk. Such indices could enhance value-based 
decision-making by electric utilities and regulators. 
Collaboration between electric utilities and academic 
researchers involved in researching the cost of electricity 
interruptions will improve the data collection process, as 
electric utilities can share ancillary customer data. For instance, 
using a utility's comprehensive data base as a sampling frame 

would allow a more representative, stratified random sampling 
of the customers. The ancillary data from an electric utility 
could also reduce the length of the survey questionnaire as 
questions pertaining to respondents’ electrical size and 
economic activity may be omitted. For such region-wide or 
nation-wide customer surveys, it is necessary to maintain 
consistency in the survey design and execution protocol. 

An analyst’s or decision maker’s confidence level (risk 
aversion level) can be reflected in a CIC-based estimation by 
the choice of percentile CIC values used for the estimation. The 
results in this study indicate that the choice of percentile CIC* 
values used in the time-dependent probabilistic CIC model and 
the operator used for combining residual inoperabilities in the 
A-DIIM influences the magnitude of the difference in the cost 
estimates obtained using each model. Conservative upper and 
lower bounds of the cost of electricity interruptions to economic 
sectors were established through a comparison of the estimates 
obtained using different percentile CIC* values and those 
obtained using the max_op and sum_op in the A-DIIM. Also, 
the comparison of the results in this study with those in other 
studies lends credibility to the findings presented herein. 
Furthermore, the electricity interruption cost estimation 
principles demonstrated here can be applied in countries other 
than SA. 

Reliable estimates of the cost of electricity interruptions 
should aid power system reliability planning and operation, 
especially in very centralized power systems like SA’s. 
However, to make optimal investments, the cost of investments 
to minimize electricity interruptions must be carefully weighed 
against the cost of the interruptions. Using infrequent extreme 
interruption scenarios as the basis for system planning and 
operation, and regulation might lead to ineffective decisions as 
discussed in [72]. In the long run, chronic electricity 
interruptions are costlier than sporadic ones due to the 
accumulation of residual sectoral inoperabilities.
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APPENDIX 

A. Assessing linear relationship between CIC and average monthly electricity bill (Table A-I) 
 

TABLE A-I 
PARAMETER ESTIMATES AND GOODNESS OF FIT OF LINEAR MODELS DESCRIBING RELATIONSHIP BETWEEN AVERAGE MONTHLY ELECTRICITY BILL AND CIC 

FOR BUSINESS CUSTOMERS WITHOUT BACKUP POWER SUPPLY 
Sector Electricity 

interruption 
duration 

Non-robust linear fita Bisquare linear fita DFEc 
Parameter estimates 𝑹𝑹𝟐𝟐 Parameter estimates 𝑹𝑹𝟐𝟐 

𝒃𝒃𝟎𝟎b 𝒃𝒃𝟏𝟏 𝒃𝒃𝟎𝟎b 𝒃𝒃𝟏𝟏 
Trade 30 mins 2.903 0.388 0.225 2.408 0.627 0.226 5 

2 hours 7.669 0.571 0.109 6.345 0.078 0.730 19 

4 hours 12.850 2.097 0.312 19.110 0.382 0.609 17 

8 hours 38.450 8.682 0.548 25.900 9.075 0.532 7 

Hospitality 30 mins 0.572 0.114 0.146 -0.501 0.232 0.614 10 

2 hours 0.385 0.666 0.390 2.597 0.317 0.689 20 

4 hours 2.427 0.716 0.266 5.403 0.226 0.542 11 

Other commercial 
services 

30 mins -9.758 4.301 0.663 -2.208 1.265 0.853 5 

2 hours 14.250 0.830 0.041 4.088 0.583 0.769 12 

4 hours 37.340 -0.424 0.005 9.085 0.422 0.722 10 

Manufacturing 30 mins -5.713 0.567 0.977 -5.960 0.569 0.972 3 

2 hours 24.230 0.344 0.162 13.950 0.132 0.760 16 

4 hours 21.400 0.287 0.371 3.938 0.345 0.871 20 

8 hours 42.110 0.466 0.383 12.680 0.626 0.787 8 
aValues are reported to 3 decimal places. bEstimated intercept is in R1000s. cDFE: Degree of freedom in error: the difference between number of observations 
(n) and number of regression model parameters (two in this case). 

B. Multiple regression analysis of CIC
The multiple linear regression model for CIC assessment was 

specified for the reference electricity interruption scenario 
considered in the survey: an unplanned electricity interruption 
of a given duration occurring at the busiest operating time and 
season of a business. The generic form of the model is given by 
(1). 

𝐿𝐿�  =  𝜃𝜃� + ∑ 𝜃𝜃��𝑆𝑆𝑆𝑆𝑆𝑆��
��� + 𝜃𝜃�𝑑𝑑 + 𝜃𝜃�𝐸𝐸 + 𝜃𝜃�𝐵𝐵�𝐵𝐵�� + 𝜃𝜃�𝐵𝐵�𝐵𝐵��  (1) 

 Customers without backup power supply are considered to 
have zero mitigation in place, hence their reported interruption 
cost is taken as their unmitigated loss. The interruption cost 
besides the cost of running a backup power supply is considered 
the unmitigated loss of customers who own backup power 
supply.  

LU (unmitigated loss) is the response variable. The predictors 
are economic sector Sec; electricity interruption duration d; 
average monthly electricity bill, E; backup ownership Bo; 
percentage of business facility powered by backup power 
supply, BFC, backup power supply size BSZ. ϴi’s are the model’s 
coefficients. Bo is a logical variable; takes the value 1 if present, 
otherwise it is 0. Sec is a nominal variable, hence Secj is a 
dummy (indicator) variable for the jth economic sector in the 
dataset; its associated model coefficient is ϴ1j. To evaluate (1) 
for the jth economic sector, 𝑆𝑆𝑆𝑆𝑆𝑆� takes the value 1, otherwise it 
takes the value 0. The hospitality sector is the reference sector 
i.e. 𝑆𝑆𝑆𝑆𝑆𝑆�; to evaluate the model for this sector only, the second 
term of (1) i.e. ∑ θ��𝑆𝑆𝑆𝑆𝑆𝑆��

���  is eliminated. The parameter 

estimates and goodness of fit of the multiple regression model 
are shown in Tables B-I and B-II respectively. 

 
TABLE B-I 

ESTIMATED COEFFICIENTS OF MULTIPLE LINEAR REGRESSION MODEL FOR 
INTERRUPTION COST 

Predictor Coefficient estimatea t-statistica p-valuea 

(Intercept) -15000.260 -1.386 0.167 
𝑺𝑺𝑺𝑺𝒄𝒄𝟐𝟐 19581.680 1.552 0.122 
𝑺𝑺𝑺𝑺𝒄𝒄𝟑𝟑 20470.683 1.379 0.169 

𝑺𝑺𝑺𝑺𝒄𝒄𝟒𝟒 11521.749 0.863 0.389 
𝐝𝐝 7084.298 3.800 0.000 
𝐄𝐄 0.348 33.049 0.000 

𝑩𝑩𝒐𝒐𝑩𝑩𝑭𝑭𝑭𝑭 -59.858 -2.005 0.046 

𝑩𝑩𝒐𝒐𝑩𝑩𝑺𝑺𝑺𝑺 -30183.596 -1.653 0.100 
a. reported to 3 decimal places 
Reference model is for the hospitality sector. 
𝑆𝑆𝑆𝑆𝑆𝑆� - Trade; 𝑆𝑆𝑆𝑆𝑆𝑆� – Other commercial services; 𝑆𝑆𝑆𝑆𝑆𝑆� – Manufacturing. 

TABLE B-II 
GOODNESS OF FIT OF MULTIPLE LINEAR REGRESSION MODEL FOR 

INTERRUPTION COST 
Item description Value 

Number of observations 245a 

R-squared 0.83 

Adjusted R-Squared 0.825 

F-statistic vs. constant model: 
p-value: 

165 
2.01e-87 

a.The data for a respondent for an electricity interruption duration was considered 
as one observation, because the respondent’s reported unmitigated loss differed 
in each duration considered. 
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