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Abstract:  This paper proposes and discusses Autoregressive Moving Average (ARMA),
Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving
Average (SARIMA) time series models for broadband power line communication (PLC) networks with
impulsive noise enviroment in the frequency range of 1 - 30 MHz. In time series modelling and analysis,
time series models are fitted to the acquired time series describing the system for purposes which
include simulation, forecasting, trend assessment, and a better understanding of the dynamics of the
impulsive noise in PLC systems. Also, because the acquired impulsive noise measurement data are
observations made over time, time series models constitute important statistical tools for use in solving
the problem of impulsive noise modelling and forecasting in PLC. In fact, the time series and other
statistical methods presented in numerous available literature draw upon research developments from
two areas of environmetrics called stochastic hydrology and statistical water quality modelling as well
as research contributions from the field of statistics. In time series modelling and analysis, we determine
the most appropriate stochastic or time series model to fit our acquired data set at the confirmatory data
analysis stage. No matter what type of stochastic model is to be fitted to the data set, we follow the
identification, estimation, and diagnostic check stages of model construction. In addition, we explore
the resulting autocorrelation functions in estimating the parameters of the selected time series models.
Finally, SARIMA model is found suitable for computer-based PLC systems simulations and forecasting
based on the diagnostic checks.
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1. INTRODUCTION

Power line communication (PLC) is a technology that
involves the transmission of communication signals
through the existing high voltage low frequency power
distribution grid. It is a technology that evolved soon
after the widespread establishment of the electrical power
supply distribution systems [1]. Because of the high
costs incurred in installation of new infrastructure for new
communication systems, PLC offers an alternative solution
for the realization of the access networks using the existing
power supply grids for communications. Thus, for the
realization of the PLC networks, there is no need for the
laying of new communications infrastructure. Therefore,
application of PLC in low-voltage supply networks seems
to be a cost effective solution for the low-voltage in-door
communication networks [2].

However, the power line network is characterized as
unstable channel because of its ever varying impedance,
frequency dependent attenuation, multipath fading and
propagation due to the numerous branching as well as
impulsive noise caused by the ‘ON’ and ‘OFF’ switching
of electrical appliances connected to the power line

network. Contrary to other available communication
channels, the noise in power line channels cannot be
described by an additive white Gaussian noise (AWGN)
model [3]. Thus, a thorough analysis and understanding
of the power line network as a channel of communication
is an inevitable prerequisite for appropriate modelling, a
task that was carried out by the author in [4, 5] when
investigating the channel properties of low-voltage power
line networks. Preliminary measurement results from
Vines et al [7], Zimmerman and Dostert [3], and Meng
et al [6] among other researchers, have showed that the
impulsive noise levels depended dramatically on which
electrical loads were currently in use. This fuelled studies
to determining the major sources of noise in the power line
networks and their associated noise characteristics, studies
which are well detailed in [3, 6,7]. Besides such studies,
recent surveys in PLC noise models have also grouped the
noise models into models with memory and memoryless
models [8,9]. Because of the bursty nature of the impulsive
noise in the power line network, it is also referred to as
bursty impulsive noise [10, 11]. In the work of Asiyo
and Afullo [10, 12], the bursty nature of PLC noise and
its frequency of occurrence were investigated and found to
posses long range dependence and multiscaling behaviour
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which is a characteristic of a system with memory.

But even with all the aforementioned unresolved
challenges that form the most crucial properties of power
line networks that degrade the performance of high-speed
communications, PLC is developing as one of the strong
competitors in the broadband communication market for
in-door communication in the frequency range from 1 -
30 MHz [6]. Of recent, much attention has been focused
on addressing the impulsive noise in PLC. In the work of
Gianaroli et al [13], an algorithm is developed to make the
measured noise series stationary to allow for application
of a stationary Autoregressive moving average (ARMA)
model, while in Mosalaosi’s work [14], PLC noise
is described as a generalized autoregressive conditional
heteroskedastic (GARCH) process based on the idea that
PLC noise exhibits volatility clustering. However, both
ARMA and GARCH models, fail to account for the
seasonal behaviour of PLC impulsive noise, a key property
that cannot be assumed and diminished.

Thus, in a concerted effort to extend the knowledge about
impulsive noise modelling in PLC, our approach is by a
measurement based analysis of the fundamental properties
in the frequency range of 1 - 30 MHz using ARMA,
ARIMA and SARIMA time series models. The use of
these statistical techniques enhance the scientific method
which in turn means that the pressing problem of PLC
impulsive noise modelling can be more efficiently and
expeditiously solved. When carrying out a scientific
data analysis study using PLC impulsive noise time
series, we employ both exploratory data analysis and
confirmatory data analysis tools. The purpose of
exploratory data analysis is to use simple graphical
methods (autocorrelation functions) to uncover the basic
statistical characteristics of the data which can then be
modelled formally at the confirmatory data analysis stage
utilizing time series models. The motivation to applying
these models in PLC noise modelling in this study are: 1.
How applicable is integrated (also known as differencing)
time series models to modelling PLC network noise, 2. To
what extent can we integrate PLC noise data to achieve
some level of stationarity without complex algorithms and
3. To develop a suitable time series model for simulation
and forecasting of impulsive noise in PLC systems that
will enable for an efficient and effective bit and power
allocation algorithm with impulsive noise environment.

The rest of the paper is organized as follows: In Section
2., we present the measurement set-up and differencing
as used in preprocessing the measured PLC impulsive
noise data, while a brief theoretical frame work on time
series models for PLC impulsive noise is discussed in
Section 3.. In Section 4., we outline how time series
models are systematically identified and selected to fit the
measured data set. Results and diagnostic checks for the
fitted models are then presented in Section 5. to chose a
penurious model. Finally, the paper ends with concluding
remarks in Section 6.

2. MEASUREMENT SET-UP AND DATA
PROCESSING

The characterization of impulsive PLC noise requires an
extensive experimental activity that can be carried out
either at the port where the receiver coupler is connected
or at the ports where the main sources of noise are
connected. The former approach provides information
about the overall noise that impairs communication in the
power line channel. While the latter approach allows
for the characterization of the main sources of noise by
evaluating the level of disturbance that they individually
inject in a certain point of the power line network [15].
In this work, we apply the former approach at selected
locations for our study.

2.1 Measurement Set-up

Sample measurement data were collected using a higher
resolution Rigol DS2202A digital storage oscilloscope
(DSO). The DSO is capable of recording 14 million
data samples and was set to sample at a rate of 50
Mega-samples per second resulting in a window length
of 0.28 seconds (14 mains cycles). Measurement data
was similarly acquired from an electronic laboratory, a
postgraduate office and from an isolated five roomed
apartment using the DSO. The DSO was connected to the
power socket via a coupling circuit as shown in the set-up
of Figure 1. The coupling circuit ensured isolation and
safety of the DSO from the power line network in addition
to ensuring our operating frequencies to be within 1 - 30
MHz.

Rigol DS2202A DSO

Figure 1: Measurement set-up for acquisition of PLC Noise data

2.2 Description of Power Line Network Loading at
Locations Under Study

Herein, we provide a detailed description of the electric
devices connected to the various power line networks at
each location.

e Electronic laboratory: In this location, power line
network loading is composed of fluorescent lights, air
conditioners and numerous workstations serving 120
students per session. Each workstation is composed
of a function generator, digital multimeter, cathode
ray oscilloscope, electronic trainer board and triple
output DC power supply. The electrical wiring is
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such that three workstations are connected to a single
circuit breaker at the distribution board forming a
single network. We acquired measurement results at
the peak usage of this laboratory which started from
2:00 pm to 5:00 pm when students were undertaking
their practicals. At this time, all the aforementioned
equipments at the various workstations, fluorescent
lights and the air conditioners are turned ‘ON’ and
run throughout the session.

o Postgraduate office: The electric devices connected
to this power line network included: fluorescent
lights, desktop and laptop computers, two air
conditioner units, electric kettle and a shared Konica
Minolta C364 series heavy duty printer serving 100
postgraduate students within the discipline. This
office is fully occupied from 8:00 am to 5:00
pm before the occupants leave for their residences.
Measurement data were acquired at multiple times
during the day.

e Residential apartment: This is an isolated five
roomed apartment and contains: light dimmers,
fluorescent lights, cathode ray tube (CRT) television
set, washing machine, two fridges, iron box, a
vacuum cleaner, thermostat electric kettle, water
heater, electric cooker, juice blenders, microwave
oven and security lights. Measurements were done at
a time when all residents of the house were at home.
That is in the evening from 6:00 pm to 10:00 pm. At
this time, the use of electric appliances in the house
is at its peak, washing machine turned ‘ON’, fridge
doors opened at random, house lighting and security
lights turned ‘ON’, the CRT television set and laptops
being switched and left ‘ON’, water heating using
thermostat electric kettle among other random events.

In the earlier research work of Meng et al [6] and
Vines et al [7] among others addressing impulsive noise
sources in PLC systems, lightning, thermostats, switched
mode power supplies and other switching phenomena
(as well as capacitor banks being switched in and
out for power-factor correction) were found to cause
impulsive noise. Recently, fluorescent lamps have been
confirmed to inject impulsive noise levels that compete
with the electromagnetic interference levels. These have
a detrimental effect on PLC systems since they contain
power electronic converters and electronic ballasts that
act as noise sources in the power line channel in the
frequency range of 150 KHz - 30 MHz (See Emleh, de
Beer et al [16, 17]). Additionally, in the work of Antoniali
et al [15] and Tlich et al [18], power switches, power
supplies, various domestic appliances, rectifiers within DC
power supplies and devices such as thyristor/triac-based
light dimmers have been confirmed to inject impulsive
noise in the power line network. In the measurement
environments under study, there is a strong presence of
similar appliances and devices (See for example in Asiyo
and Afullo in [10, 12], Modisa and Afullo in [14], Nyete et
al in [27] and Awino and Afullo in [4]).
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2.3 Acquired Measurements results

A sample of the acquired measurement results within a
window length of 0.28 seconds are as shown in Figures
2, 3 and 4. In order to analyze the acquired data, a digital
bandpass filter was designed and implemented in Matlab to
filter out unwanted noise components outside the desired
frequency range of 1 - 30 MHz.
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Figure 2: Measured PLC Noise data from postgraduate office
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Figure 3: Measured PLC Noise data from Electronic laboratory

From the measured noise data, it can be seen that each of
the different environments generate unique noise samples
due to different noise sources. Even though there appears
to be no obvious upward or downward trend in the
measurement window presented in Figures 2, 3 and 4,
the seasonal series are stationary within each season and
the seasonality is clearly visible as a sinusoidal pattern
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Figure 4: Measured PLC Noise data from an isolated apartment

wrapped around the trend of the mains cycle envelope.
This occurs due to the periodic nature of impulsive noise
synchronous to the mains frequency, which is mainly
caused by switching actions of silicon controlled rectifiers
(SCRs) and rectifier diodes found in the power supply of
many electrical appliances as confirmed by Vines et al [7],
Meng et al [6], Zimmerman and Dostert [3] and Gotz et
al [19]. An SCR switches when the power voltage crosses
a certain threshold. Because this voltage is cyclic, the SCR
switches at 50 Hz or multiple of 50 Hz and thereby causing
noise at 50 Hz and multiples thereof synchronous with,
and drift with, the 50 Hz power frequency [7]. This is
illustrated by the waveform in Figure 5. This figure shows
the periodic impulsive noise over 0.08 seconds which
corresponds to four mains power supply voltage cycles.
This waveform in Fig. 5, shows that noise characteristics
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Figure 5: A Zoomed in Measured PLC Noise waveform

change synchronously with a period Txc/2, where Ty
refers to the cycle duration of the mains power supply
voltage [20].

2.4 Differencing Analogy in Processing PLC Noise Data

PLC noise is a nonstationary time series process whose
statistical properties change over very short time intervals.
When considering shorter time series, its often reasonable
to assume that a stationary model can adequately model
the data. When dealing with continuous data, a
differencing parameter corresponding to the integrated
part of the model, is employed to remove homogeneous
nonstationarity [21], a technique which is analogous
to differentiation. Consider for example, a continuous
function of time which is given by [21]

] 0 fort<T 1
Y=Y ¢ fort>T (

where c is a constant that reflects a local level for t > T.
The derivative of % will be zero for t > T and the local
level due to the constant ¢ drops due to differentiation. To
consider the analogous effect of the differencing operator
of the second derivative for a continuous function, let a

continuous function of 7 be given as [21]
yie=c+bt (2

with ¢ and b being constants. The term, (c + bt), forms
a linear deterministic trend of the process y;. The value

of the first derivative is % = b, while % = 0. Hence,
the intercept ¢ is removed from the first derivative, while
the linear function is completely eliminated by the second
derivative. While differencing the data, it is advisable
to select the lowest order of differencing for the data
to preserve as much content of the data as possible.
In this work, we consider non-differencing, nonseasonal
differencing as well as seasonal differencing and compare
their performances.

3. THEORETICAL FRAME WORK ON TIME
SERIES MODELS FOR PLC IMPULSIVE NOISE

Time series analysis has been widely employed in many
water resources projects in hydrology, stock exchange
analysis in econometrics and statistical works as evidenced
in [22-24]. However, this has not been the case in PLC
noise modelling problem with the first attempts presented
in [13] to model the impulsive nature of PLC noise using
stationary Box-Jenkins model. The Box-Jenkins approach
is based on the use of stationary ARMA models to
predict and forecast time series. However, impulsive PLC
noise data exhibit characteristics that are more seasonal
and nonstationary and as a consequence will require
removal of nonseasonal and seasonal nonstationarities
using nonseasonal and seasonal differencing operators,
respectively before fitting a stationary ARMA, ARIMA
and SARIMA models to the series.
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3.1 ARMA and ARIMA Models For PLC Impulsive Noise
A time series y; is ARMA (p, q) if it is stationary and
V=01 1+ Oy p+ 0101+ +04a 4 ()

with ¢, # 0,0, # 0 and 62 > 0[21,25]. If y; has none zero
mean u, we set 0 = u(1 — ¢y —...— ¢,) and write the model
as [25],

Ve =0+ 01y—1 + oo +Opyr—p + 01011+ ... + 0404 (4)

This can be written in concise form as [21,25],
O(B)y: = 6(B)a, ()

where B is the backward-shift operator, ¢(B) and 6(B)
are the autoregressive, AR(p) and moving average, MA(q)
operators respectively and a; is a white noise series
characterized by independent identically distributed (i.i.d)
random variates with mean zero and variance 2. By
including differencing, y; can be said to be ARIMA
(p,d,q) if [21,25]

vy, = (1-B)y, (6)

where V is the differencing operator defined by Vy, =y, —
v,—1 and d is an integer assumed to be a positive when the
series must be differenced to remove non-stationarity.

3.2 SARIMA models For PLC Impulsive Noise

Due to a strong and well established seasonal pattern in
our series, we employ seasonal differencing differencing
for the proposed SARIMA model. This is done so that
the seasonality pattern does not ‘die out’ in the long term
forecast. SARIMA model is defined by the following
(P,D,Q), where the parameters P, D and Q are the order of
seasonal autoregressive average (SAR), order of seasonal
differencing and order of seasonal moving average (SMA)
respectively.  Thus the complete model is called an
‘ARIMA (p,d,q) x (P,D,Q)’ model [21,25]. To make
the series stationary, we combine seasonal and nonseasonal
differencing as,

Yy=u+  i—y-1) -
——

nonseasonal component

(ytfs _ytfsfl)
~— ——

seasonal component

=V = Vi1 = Vi—s + Yi—s-1 (7

where s is the seasonal period of 40 data points in this
study. Note that D should never be greater than one and
d+D < 2. And if d + D = 2, then the constant term yu is
suppressed as given by (7) which is a difference equation
form. Thus, by rewriting (7) in a general form, SARIMA
model will be given by [25]

Dp(B*)(B)VE vy, = 0+ Og(B*)B(B)a;  (8)

where ®p, @, (B*) and V? define the SAR parameter of
order P, SMA parameter of order Q, seasonal backshift
operator and seasonal difference component respectively.
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The other parameters bear their usual meanings. Also,
because of the differencing process, the differenced series
wy, is d — sD shorter than the original series with d being
the order of non-seasonal differencing, D is the order of the
seasonal differencing while s refers to the periodic seasonal
behaviour of the original series. The length of the w; series
will be defined by

A

N=N-—-d—sD C)

with N being the length of original series.

4. MODELS IDENTIFICATION AND SELECTION

A key modelling principle for any process is to have as
few parameters as possible for a given model [21]. In time
series analysis for example, if a sample autocorrelation
function (ACF) for a given data set has a value that is
significantly different from zero only at a given specific
lag k, then it is appropriate to fit a MA model whose
order is defined by the lag to the data. Similarly, when
the partial autocorrelation function (PACF) for the data
cuts off at a given lag k, then it is most appropriate to
fit an AR model whose order is defined by the value of
the lag at that point. In a situation where both sample
ACF and PACF cuts off for certain time series, then it is
advantageous to have a model that contains both the AR
and MA parameters. This ensures, the fitted model has
few parameters as possible. Because, we are dealing with
a nonstationary time series data, we apply differencing to
the data to make it stationary. To determine the order
(p,q) and (P,Q), and estimate the model parameters, O
and 6y, and ®; and Oy, respectively, we resort to the
ACF and PACF as the main tools in the process. On the
other hand, parameters d and D are defined by the order
of nonseasonal and seasonal differencing respectively
applied to the data at preprocessing stage. In this section
we employ autocorrelation functions to identify possible
models for the measured data and thereafter, perform a
model selection process based on Akaike’s information
criteria (AIC).

4.1 Structure of Autocorrelations For Model identifica-
tion

Model identification involves the selection and choice of
the order p, d, g and P, D, Q of the model. Based on the
recommendation of Box-Jenkins models, the parameters p
and P, g and Q are chosen through a graphical approach
by looking at the ACF and PACF values versus the lag of
the non-differenced and differenced series. Given a sample
from the observed data yg,y1,y2,...,yn, we can define the
sample ACF to be a sequence of values [21,25]

re=% k=0,1,2,N—1, (10)
Yo
where
1N7k
Ve = N Z()’r—)_’)(ysz—)’)
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is the autocovariance at lag k and 7y is the sample variance.
Thus, to identify the type of time series model to fit a given
time series data of length N, we check for significant values
from the ACF plot. On the other hand, a sample PACF,
pr at lag k refers to the correlation between two sets of
residuals obtained from regressing the elements y, and y,_
on the set of intermediate values yi,y2,y3,...,V;—k+1. 1t is
actually a measure of the dependence between y, and y;_j
after removing the intermediate values.

In order to identify the number of AR, MA, SAR and
SMA terms required in the model of the non-differenced
and differenced series, the sample ACF and its associated
PACF are interpreted simultaneously keeping in mind
the main identification rules that the ACF cuts-off for
pure MA processes, while the PACF truncates for AR
models. For mixed processes, both functions attenuate.
The autocorrelation functions are as shown in Figures 6, 7
and 8 for non-differenced and differenced PLC noise time
series data respectively.

Series: noise
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1
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LAG
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1

o 10 20 30 40
LAG

Figure 6: Sample Correlation functions and 95% confidence
limits for the non-differenced measured PLC noise data

Interestingly, from Figure 6, ARMA models can be applied
to model the PLC noise data since the autocorrelation
functions truncates at a definite lag as the lags increases to
infinity. This is also observed from Figure 7 for ARIMA
models even though with a few noticeable significant
spikes as the lags increases. From Figure 8, we observe
a negative significant spike in the ACF at lag 1 and also
at lag 40, whereas the PACF shows a gradual decay
pattern in the neighbourhood of both lags. These denotes
an MA and SMA signatures respectively in time series
analysis. SARIMA models depend on seasonal lags and
differences to fit the seasonal patterns. When the process
is a pure MA(0,d,q) x (0,P,Q), model, the sample ACF
cuts-off and is not significantly different from zero after
lag g + sQ. Also, notice that the coefficient of lag 41
error is approximately a product of MA (1) and SMA (1)
coefficients. There is a slight surprise at lag 39 since we
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Figure 7: Sample Correlation functions and 95% confidence
limits for the nonseasonally differenced PLC noise data

Series: seasonaldiff
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Figure 8: Sample Correlation functions and 95% confidence
limits for the seasonally differenced PLC noise data

observe significant spikes on the autocorrelation. This can
be attributed to the covariance between the terms y, and y39
not being equal to zero.

4.2 Akaike’s information criteria (AIC) for model
selection

After several possible models were fitted, an optimal
model were then selected by using the Akaike’s
information criteria (AIC) (11) [26] for each as reported
in Table 1.

Aw:Nxm<§>+MI (11)

Vol.109 (4) December 2018



Vol.109 (4) December 2018

where N is the number of data points, ¥ is the number of
parameters in a given model and SS is the regression sum
of squares defined by

N
ss=) (9-3)° (12)

From the various AIC values reported in Table 1,
non-differenced ARMA models seems to have the lowest
AIC values as compared to the other integrated models.

After the optimal lag lengths selection using the AIC
values, three candidate models are obtained. We move
ahead to model the series as an ARMA (0,0,1), ARIMA
(1,1,1) and SARIMA (0,0,1) x (0,1,1) process. The
result of the estimated parameters of ARMA (0,0,1),
ARIMA (1,1,1) and SARIMA (0,0,1) x (0,1, 1) models
are as shown in Table 2. This calls for fitting of the models
and the estimated parameters are fitted. Thus,

Ve =a; —01a,-

i =a;+0.46a, (13)
for ARMA (0,0, 1) model,
Vi =a; —01a;-1 + 01yi—1
v = a; +0.49a; 1 — 0.99y, 4 14)
for ARIMA (1,1, 1) model. And lastly
Ve=u+a+01a-1 +01a;_40+ 0101041
v =u+a;—0.81a,1 — 1.00a;_40 + 0.81a;_4; (15)

for SARIMA (0,0,1) x (0,1,1) model (since d + D < 2).
Equations (13), (14) and (15) are the closed-form solutions
from the analysis. In the work of Gianaroli [13], they
employed higher order ARMA models. This is due to
the fact that in time series models, the autocorrelation
functions fail to converge because significant ‘spike’ terms
do not approach zero ‘fast enough’ as expected as the
lags tend to infinity. We encountered such a scenario
in the course of our analysis as well. However, based
on the definitions obtained from the correlation functions
and AIC values reported in Table 1, we formalized the
solutions mathematically by considering only models with
the lowest AIC values and had the most significant ‘spike’
terms at the early lags. Having fitted the models to the
times series, we check the adequacy of the models through
diagnostic checks.

5. RESULTS AND DIAGNOSTIC CHECKS

In this section, the measured impulsive PLC noise series
is analyzed using the ARMA, ARIMA and SARIMA time
series models of (13), (14) and (15) respectively. Model
validation and diagnostic checks which are concerned with
checking the residuals of the models are done to see if
they contain any systematic pattern which still could be
removed to improve the chosen models. The results for
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Table 1: Results of AIC for possible ARMA, ARIMA and

SARIMA models
Model AIC values

ARMA (0,0,1) 167.19
ARMA (0,0,2) 169.97
ARMA (0,0,5) 170.50
ARMA (0,0,10) 173.26
ARMA (0,0,20) 178.96
ARMA (0,0,60) 209.71
ARMA (1,0,0) 545.97
ARMA (2,0,0) 467.86
ARMA (5,0,0) 402.86
ARMA (10,0,0) 366.93
ARMA (60,0,0) 398.87
ARMA (1,0,1) 169.97
ARMA (5,0,10) 172.05
ARMA (10,0,15) 174.97
ARMA (10,0,10) 172.79
ARMA (10,0,5) 176.30
ARMA (15,0,10) 180.10
ARIMA (0,1,0) 2383.96
ARIMA (0,1,1) 892.00
ARIMA (0,1,2) 890.23
ARIMA (0,1,10) 750.48
ARIMA (0, 1,20) 720.98
ARIMA (0,1,60) 790.27
ARIMA (1,1,0) 1654.00
ARIMA (2,1,0) 1226.58
ARIMA (10,1,0) 1407.91
ARIMA (20,1,0) 1552.64
ARIMA (1,1,1) 556.47
ARIMA (2,1,5) 560.89
ARIMA (5,1,2) 776.80
ARIMA (5,1,5) 600.41
ARIMA (5,1,10) 577.75
ARIMA (10,1,15) 586.89
ARIMA (10,1,5) 887.73
ARIMA (15,1,10) 901.12
SARIMA (0,0,1) x (0,1,1) 289.62
SARIMA (0,0,1) x (0,1,2) 289.90
SARIMA (0,0,2) x (0,1,1) 291.56
SARIMA (0,0,2) x (0,1,2) 291.17
SARIMA (1,0,0) x (0,1,1) 651.71
SARIMA (1,0,0) x (0,1,2) 653.71
SARIMA (1,0,1) x (0,1,1) 291.57
SARIMA (5,0,1) x (1,1,1) 295.67
SARIMA (0,1,1) x (1,1,0) 1432.83
SARIMA (0,0,1) x (1,1,0) 735.42
SARIMA (1,0,0) x (2,1,0) 930.69
SARIMA (0,1,1) x (0,1,1) 993.82
SARIMA (1,1,1) x (1,1,1) 666.96

the models are as presented in Figures 9, 10 and 11 for
ARMA, ARIMA and SARIMA models respectively. Only
validation results of models with the lowest AIC values are
presented for each class.
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Table 2: Results of the estimated parameters

Model Parameters Estimates
ARMA (0,0,1) MA(1)=6, —0.46
AR(1)=0, —0.49
ARIMA (1,1,1) MA(1)=0, 099
MA(1)=6, —0.81
SARIMA (0,0,1) x (0,1,1) SMA(1)=0, —1.00

1 T

— Measurement
——ARMA (0,0,1)model

Magnitude (Volts)

1 | | | | |
0 0.05 0.1 0.15 02 025

fime (seconds)

Figure 9: Validation of ARMA Model with Measurement data

— Measurement
—— ARIA(1,1,1)model

Magnitude (Volts)

0.05 01 0.15 02 0.25
fime (seconds)

Figure 10: Validation of ARIMA Model with Measurement data

For ARMA models, the effect of having the AR (1) and
MA (1) components is evident from the AIC values. For
the AR (1) model, it is simply a linear regression model
that predicts the current value from immediate prior value
in time. Actually, the current value is assumed to be a
linear combination of previous values. The MA (1) model

—— Measurement
—— SARIMA (0, 0, 1)(0, 1, 1) model

Magnitude (Volts)
=
=) wn

s
=

_1 5 1 1 1 1

0 0.05 01 015 02 025
time (seconds)

Figure 11: Validation of SARIMA Model with Measurement
data

assumes the current values are linear combinations of the
previous error terms and consequently has the lowest AIC
value. Thus, when the two components are combined into
ARMA (1, 0, 1) model, their effect is equivalent to having
two MA (2) parameters within the same model.

For ARIMA models, the effect of nonseasonal differencing
on the series data is random walks without drift as
evidenced by the highest AIC value (i.e ARIMA (0, 1,
0)). By introducing an MA (1) component, we are simply
correcting the autocorrelated errors in the random walks
through exponential smoothing. On the other hand, an AR
(1) component also corrects the autocorrelated errors in
the random walks by regressing the first difference of the
predicted value on its own lagged values by one period.
Having both AR (1) and MA (1) components, ARIMA
(1, 1, 1) results to a reduced AIC value. This is because
the model is estimating the predicted value outside the
known range (local trend) at the end of the series while
exponentially smoothing it at longer forecast levels to
introduce conservation.

Lastly, for SARIMA models, exponential smoothing to
level, trend and seasonality is applied at the same time.
Firstly, the difference between each season’s value and an
exponentially weighted previous average for that season is
determined by applying exponential smoothing observed
in the previous season in which the SMA (1) coefficient
determines the length of the smoothing. An exponential
smoothing is then applied to these differences to enable
prediction of the deviation from the previous average that
will be observed next season. The SMA (1) coefficient
suggests that a little smoothing is applied to estimate
the current deviation from the previous average. This
means that next season’s predicted deviation from previous
average is close to the deviation from previous average
observed over the last few seasons.
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Even though all the models look to capture the measured
data very well based on the validation results presented in
Figures 9, 10 and 11, we performed diagnostic checks on
their residuals and are as reported in Figures 12, 13, 14, 15,
16,17, 18, 19, 20, 21, 22, 23, 24.

Model: (0,0,1) Standardized Residuals
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Figure 14: Diagnostic results for ARMA (1,0,0) model
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Figure 12: Diagnostic results for ARMA (0,0,1) model
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Figure 13: Diagnostic results for ARMA (0,0,2) model

5.1 ACF of Standardized Residuals

To check the adequacy of the models, the process of
diagnostics were conveniently carried out based on their
residuals. For an adequate model, the residuals should
behave as an i.i.d sequence with mean zero and variance
one and were based on the recommended autocorrelations
of the residuals. From the standardized residual plots, all
the model residuals behave as an i.i.d sequence with mean
zero and variance one except for ARIMA models.

Model: (1,0,1) Standardized Residuals
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Figure 15: Diagnostic results for ARMA (1,0,1) model

From the ACF plots, very significant spikes can be
observed at lower lags for ARMA (1, 0, 0), all ARIMA,
SARIMA (0,0,1) x (0,1,1) and SARIMA (1,0,0) x
(0,1,2) models. This is a clear indicator of unwanted
correlation in model residual, hence these models are
inadequate. The remaining models have fairly random
residuals with a few incidence of significant correlations
which can be ignored, hence adequate.

5.2 Normal Quantile-Quantile plots (QQ plots)

Also, investigation of marginal normality for these
models were accomplished by looking at their normal
quantile-quantile plots (QQ plots) which helped identify
departures from normality. Interestingly, the all the
residuals are normally distributed as can be observed from
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the QQ plots except for the ARIMA models.
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Figure 16: Diagnostic results for ARIMA (0,1,0) model

Figure 18: Diagnostic results for ARIMA (1,1,0) model
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Figure 17: Diagnostic results for ARIMA (0,1,1) model
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Figure 19: Diagnostic results for ARIMA (1,1,1) model

This is

a pointer on the inadequacy of nonseasonal differencing
when used own its own on seasonal time series data.

5.3 Ljung-Box Statistic Analysis of autocorrelation

The Ljung-Box statistics, also called modified Box-Pierce
is a function of the accumulated sample
autocorrelations r;, up to any specified time lag k [25].
Thus, as a function of k, it is given as [21,22,25]

statistic,

Vv

alues

O(k) =A(A+2) )

=1

where A is the number of usable data points given by N and

N for non-differenced and differenced series respectively.
In order to determine the p-value, we calculate the
probability past Q(k) in the relevant distribution.

A

small p-value (for instance, p-value< 0.05) indicates the

first k lags.

2
T

A—i

(16) therefore accepted.

possibility of non-significant autocorrelation within the
Thus, for an adequate model, the desired
p-values should be well above 0.05 as can be observed
for ARMA models. Also, SARIMA (0,0,1) x (0,1,1) and
SARIMA (1,0,1) x (0,1,1) models have greater p-values
from lag 1 to lag 42, which is a fairly large range and
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Figure 20: Diagnostic results for SARIMA (0,1,1) x (0,1,1)
model

5.4  Root Mean Square Errors (RMSE)

After carrying out model selection, validation and
diagnostics checks, performance analysis for selected
models based on their residuals were undertaken.
Residuals are simply the difference between the predicted
values and actual measured values, denoted by ¥y — y,,
where y is the predicted value and y; is the actual
measured value.  The residual values assumes both
positive and negative values depending on whether either
the predicted value over estimated or under estimated
the actual measured value. By squaring the residuals,
averaging the squares and taking the square root, we obtain
the Root mean square errors (RMSE). Mathematically, the
RMSE is defined as

RMSE — | Ziz1 01 =9)° (17)

where N is the number of samples. The RMSE is employed
to measure the accuracy of forecast of ARMA, ARIMA
and SARIMA models and thereafter a penurious model
would be chosen. Table 3 shows the RMSE results.

Table 3: RMSE benchmark evaluation of the three models

Model RMSE
ARMA (0,0,1) 0.69
ARIMA (1,1,1) 1.21
SARIMA (0,0,1) x (0,1,1) 0.64

From the results in Table 3, the RMSE value of ARIMA
(1,1,1) model is the highest. The RMSE values ARMA
(0, 0, 1) and SARIMA (0,0,1) x (0,1,1) models are
quite close. We can therefore conclude that SARIMA
(0,0,1) x (0,1,1) model is a much better model than the
ARIMA (1,1,1) in modelling the impulsive PLC noise,
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Figure 21: Diagnostic results for SARIMA (0,0,1) x (0,1,1)
model
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Figure 22: Diagnostic results for SARIMA (1,0,0) x (0,1, 1)
model

even though ARMA (0,0, 1) model still performs better.
6. CONCLUSIONS

In this paper, we have modelled and conducted a forecast
of the impulsive noise experienced in the power line
network using ARMA, ARIMA and SARIMA time series
models. SARIMA models have been motivated by the
existence of seasonality in the measured series. From
the autocorrelation functions of the measured PLC noise
characteristics, suitable ARMA, ARIMA and SARIMA
models were identified, fitted and optimal models selected
through the AIC. Even though all the models seemed to
have fitted the data very well, ARIMA models scored
poorly based on the diagnostic checks. In addition,
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Figure 23: Diagnostic results for SARIMA (1,0,1) x (0,1, 1)
model
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Figure 24: Diagnostic results for SARIMA (1,0,0) x (0,1,2)
model

forecasts obtained using the SARIMA models seemed
much closer to the measured values than forecasts obtained
using ARMA and ARIMA models. This was confirmed
by forecast evaluation using RMSE and showed that
SARIMA models are much better than ARMA and
ARIMA models. Based on our data, we can therefore
conclude that PLC noise modelling is better modelled by
SARIMA models, and also that seasonal differencing is
very effective as compared to nonseasonal differencing.
Now that we can correctly and accurately forecast the
impulsive noise component in the power line network,
further work will be to study and implement an effective
and efficient bit and power allocation algorithm with
considerations on the uniformity of power for PLC systems

with impulsive noise environment.
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