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Abstract: This paper discusses the development of a control system that optimally controls the power 
output of a Brayton-cycle based power conversion unit.  The original three shaft design of the Pebble 
Bed Modular Reactor (PBMR) power plant is considered.  The power output of the system can be 
manipulated by changing the helium inventory to the gas cycle.  The helium inventory can be 
manipulated in four ways:  Injecting helium at the high-pressure side of the system by means of a 
booster tank; extracting helium at the high-pressure side of the system; injecting helium at the low-
pressure side of the system and lastly opening and closing the bypass control valve.  The control 
system has to intelligently generate set point values for each of the four helium manipulation 
mechanisms to eventually control the power output.  In this paper two control strategies are 
investigated namely PID control and Fuzzy PID (FPID) control.  The FPID control strategy is a linear 
type Fuzzy controller, but can progressively be made nonlinear if nonlinearities exist in the system.  
An optimal control system is derived by applying an optimisation technique to the gain constants of 
the controllers.  A Genetic Algorithm (GA) is used to optimise the gain constants of both the PID and 
FPID controllers.  The GA uses the ITAE performance index as an objective function.  
 
Key words: Brayton-cycle, PID control, Fuzzy PID control, Genetic Algorithms, Pebble Bed 
Modular Reactor. 
 
 
 

1. INTRODUCTION 
 

In this paper a power generation system will be 
considered that can produce up to 110 MW of electrical 
power.  This system is called a module and can operate in 
a stand-alone mode, or as part of a power plant that can 
have more of these units [ HYPERLINK \l "MCN02" 1 ].  
Figure 1 gives a schematic layout of this power 
generation module.  This module contains a graphite-
moderated, helium-cooled reactor and uses the Brayton 
direct gas cycle to convert the heat, which is generated in 
the core by nuclear fission.  The heat is then transferred 
to the coolant gas (helium), and converted into electrical 
energy by means of a gas turbo-generator.  The ideal 
Brayton cycle consists of two isentropic and two isobaric 
processes.  In Figure 2 a temperature vs. entropy graph of 
the ideal Brayton cycle is given.  Starting at (1), gas at a 
low pressure and temperature is compressed in an 
isentropic process to a higher pressure (2).  From (2) to 
(3), the gas is heated in an isobaric (constant pressure) 
process to the maximum cycle temperature.  From (3) to 
(4), the hot high-pressure gas is expanded isentropically 
in a turbine to a lower pressure and temperature.  The 
cycle is completed from (4) to (1) by cooling the gas at 
constant pressure.  By adding to the gas inventory of the 
cycle, the electrical power generated will be increased 
and by removing inventory the power generated will be 
decreased.  This is the primary method of controlling 
power.  
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Figure 1: Schematic layout of the Brayton cycle based 
power conversion unit [1] 
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Figure 2: Temperature vs. entropy graph of the ideal 

Brayton cycle [2] 
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The power control system constitutes four helium 
manipulation mechanisms: 

 
 Gas bypass 
 Low-pressure injection 
 High-pressure extraction 
 High-pressure injection (by means of a booster 

tank) 
 
An existing linear Simulink® model [3,4] of the system 
shown in Figure 1 is used to illustrate to the reader the 
effect the four helium manipulation mechanisms have on 
the power output of the system.  The linear model is used 
as a test platform for the control system.  Opening the gas 
cycle bypass control valve will reduce the power and 
closing it will increase the power as shown in Figure 3 
and Figure 4 respectively.  Extraction of gas at the high-
pressure side results in an instant decrease in the power of 
the system.  The power response due to extraction is 
given in Figure 5.  A limited amount of helium can be 
injected at the high-pressure side of the system depending 
on the pressure in the booster tank.  Figure 6 shows the 
instant increase in power during boosting (high-pressure 
injection).  Injection of gas at the low-pressure side of the 
system does not result in an instant increase in the power 
output of the system.  The power first decreases and then 
starts to increase as shown in Figure 7.  This phenomenon 
is called the non-minimum phase effect [1]. 
 

 
Figure 3: Bypass valve opening 

 
Figure 4: Bypass valve closing 

 
Figure 5: High-pressure extraction 

 
Figure 6: Booster tank high-pressure injection 

 
Figure 7: Low-pressure injection 

 
A  control system needs to be designed that will 
intelligently generate set point values for each of the four 
helium manipulation mechanisms as shown in Figure 8. 
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Figure 8: Power control system configuration 
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2. CONTROL SYSTEM DESIGN 
 
2.1 Control methodology 
 
The control system comprises four individual controllers, 
each generating a set point value for a specific helium 
manipulation mechanism.  The control system is 
simulated for both PID and Fuzzy PID control strategies.  
A schematic layout of the control system is given in 
Figure 9.  The difference between the power reference 
value, refP , and the actual electrical power generated, P , 
called the power error pe , determines whether helium 
should be added to, or removed from the cycle.  Although 
helium injection and extraction are normally used as the 
main control mechanisms, the bypass valve is mainly 
used to control the power output of the system in this 
particular case.  pe  is the input to a controller that 
generates a bypass valve set point value, BPV-sp. 
 
The efficiency of the system depends greatly on the 
setting of the bypass valve.  If the valve opening it too 
large, a great amount of helium will be re-circulated 
through the compressors, rendering the system very 
inefficient.  The non-minimum phase effect can be 
avoided by closing the bypass valve while injecting 
helium at the low-pressure side of the system.  If the 
bypass valve opening is too small it would not be 
possible to avoid the non-minimum phase effect.  The 
bypass valve therefore has to be kept at a predefined 
reference to allow for a certain amount of  reserve 
capacity without degrading efficiency too much.  This 
predefined reference is called the bypass valve reference, 

refBPV .  The bypass valve set point value is subtracted 
from the bypass valve reference value to obtain the 
bypass valve error, BPVe .  BPVe  is the input to three other 
controllers that generate set point values for boosting, 
low-pressure injection and high-pressure extraction.  
When the bypass valve operates away from its reference 
point, these three controllers will generate set point 
values that will restore the bypass valve to its reference 
value.  

The activation system determines which set point value 
may be ported to the system.  When the power error is 
positive the low-pressure injection set point is connected 
to the system and when the power error is negative the 
high-pressure extraction set point is connected.  Boosting 
is only activated when the power error is positive and 
above a specified value.  The bypass valve set point is 
always connected.  This activation system eliminates 
conflicting set points among the helium manipulation 
mechanisms.  For example it is not desirable to inject 
helium and extract helium at the same time. 
 
2.2 Fuzzy PID control 
 
A Fuzzy controller can be regarded as a superset of linear 
controllers [5-8].  Under certain assumptions it is possible 
for the Fuzzy controller to emulate a PID controller.  In 
conventional PID controllers, the control variable, )(tu  is 
defined in terms of the error, )(te  between a reference 
value, refy  and the process output, )(ty : 

)()()()(
0

te
dt
dGdtteGteGtu d

t

ip (1)

where pG , iG  and dG  are proportional, integral and 
derivative gains respectively. 
 
In order to emulate a PID controller by means of a linear 
Fuzzy controller, the summation in the PID control 
equation has to be replaced by a Fuzzy rule base acting 
like a summation [9].  A Fuzzy PID (FPID) controller 
uses the variables error, e, change of error, ce, and 
integral of error, ie, in the antecedent of IF-THEN rules 
and the control variable, u, as consequent [10-12].   
 
A Fuzzy controller based on the Mamdani-type Fuzzy 
inferences would consist of rules having the form: 
 
 
 

perefP

refBPV BPVe

P

 
Figure 9: Schematic layout of the power control system 
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 (2)

 
 
where n is the rule number and jiA , , nB  are Fuzzy sets. 
 
A Fuzzy controller can be represented as an input-output 
mapping.  In the general case it may result in a non-linear 
shaped control hyper surface.  When three inputs 

iecee  , , and one output u are considered, this mapping 
takes the form given in (3). 
 
 (3)

 
However assumptions need to be made to allow the 
Fuzzy rule base to act like a summation resulting in a 
linear mapping given by (4). 
 
 (4)

 
A Fuzzy controller becomes linear by making the 
following assumptions with respect to the input 
universes, rules, membership functions and Fuzzy 
connectives [9]: 
 

 The input universes of the Fuzzy controller must 
be large enough for the input to stay within the 
limits (saturation is not allowed).  The input sets 
must be triangular and cross their neighbouring 
sets at the membership value 5.0 ; their 
peaks thus being equidistant.  Any input value 
can thus be a member of at most two sets; and its 
membership of each is a linear function of the 
input value. 

 The terms of the rules has to be combined by the 
AND operator (outer product) to ensure 
completeness.  The output sets should preferably 
be singletons equal to the sum of the peak 
positions of the input sets.  The output sets may 
also be triangular and symmetric about their 
peaks, but singletons simplify defuzzification. 

 Linearity is also ensured by choosing the 
algebraic product for the AND connective.   

 
The next step in the design process is to derive the Fuzzy 
gain constants (see Figure 10) from the PID gain 
constants.  The Fuzzy PID controller emulates the PID 
controller if the following equation holds [5]: 
 
 
 (5)

 
 
By comparing the gain constants of the FPID controller 
with the gains of the conventional PID controller in (5), 
the following relations can be derived [5]: 
 

 
 (6)

 
 (7)

 
 (8)

 
If it is assumed that the error is within the range [-E,E] 
and the input universe of the Fuzzy controller is for 
example [-100,100], the Fuzzy gain FGp  can be derived 
as follows [5]: 
 
 (9)
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Figure 10: Fuzzy PID controller 

 
A rule base with three inputs, however, easily becomes 
very large and rules concerning the integral action 
becomes troublesome.  It is therefore common practice to 
separate the integral action to form a Fuzzy PD+I 
(FPD+I) controller as shown in Figure 11. 
 

e FGp

dtd / FGd
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Figure 11: Fuzzy PD+I controller 

 
The controller function is separated into two additive 
parts as given by (10). 
 
 (10)

 

2.3 Membership function definitions 
 
A Mamdani inference system is used.  Consider a 
universe of discourse, [-E,E].  The membership functions 
for the inputs and output are defined as shown in Figures 
12 and 13.  The input membership functions for both the 
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error, e, and change of error, ce, are triangular.  The input 
space is partitioned into three Fuzzy sets called negative 
(N), about zero (AZ) and positive (P).  Singleton 
membership functions are chosen to define the output 
control variable u.  The output space is partitioned into 
five Fuzzy sets called Negative big (Neg_Big), Negative 
small (Neg_Small), Zero (Zero), Positive small 
(Pos_Small) and Positive big (Pos_Big). 
 

1
N AZ P

-E E0 c,ce

Figure 12:  Input membership functions 
 

1

-2E E0-E 2E

Neg_Big Neg_Small Zero Pos_Small Pos_Big

u  
Figure 13:  Output membership functions 

 
2.4 Rule base definition 
 
The rule base of the Fuzzy controllers consists of nine 
rules.  These rules link two inputs namely the error and 
the change of the error to a control output.  The rules are 
defined in the following table. 
 

Table 1:  Rule base of Fuzzy controllers 

Change in error 
Inputs Negative About Zero Positive 

Negative Neg_Big Neg_Small Zero 

About Zero Neg_Small Zero Pos_Small 

E
rr

or
 

Positive Zero Pos_Small Pos_Big 

 
 
 
 
 
 
 
 
 
 
 

3. CONTROLLER OPTIMISATION 
 
3.1 Genetic algorithm optimisation 
 
Genetic Algorithms (GAs) are general search algorithms 
that imitate natural biological evolution.  The idea is to 
evolve populations of individuals that are better adapted 
to their environment than the individuals from which they 
are created.  GAs operate on a population of potential 
solutions applying the principle of survival of the fittest 
to produce successively better approximations to a 
solution.  At each generation of a GA a new set of 
approximations is created by the process of selecting 
individuals according to their level of fitness and 
reproducing them using operators borrowed from natural 
genetics [13].  
 
The performance of  both the PID and FPD+I controller 
can be improved by adapting the gain values of each 
controller according to some objective function [14-17].  
A strong characteristic of GAs is that they are able to 
optimise a large amount of parameters simultaneously.  In 
the case of PID control, 4 PID controllers, each having 3 
gains, will be optimised.  This will result in 12 gain 
constants that will be optimised simultaneously.  In the 
case of FPD+I control each controller has 4 gains 
resulting in a total of 16 gains to be optimised 
simultaneously. 
 
The GA used to optimise the controllers make use of real-
valued genes instead of binary encoded genes.  Consider 
for example the four Fuzzy controllers presented in Table 
2.  As previously stated, all four gain values of each 
Fuzzy controller will simultaneously be optimised by the 
GA.  Let indN  be the number of individuals in the 
population and indL  the number parameters that needs to 
be optimised.  In Table 2 the number of individuals used 
can vary but the number of parameters is fixed at 16.  The 
initial population is therefore an indind LN  matrix shown 
in Table 2. 
 
3.2 Objective function 
 
The power output response of the system controller by 
both PID and FPD+I controllers is evaluated by means of 
the ITAE performance index as given by: 
 
 

(11)

 
The upper limit T  is a finite time chosen somewhat 
arbitrarily so that the integral approaches a steady-state 
value and )(tep

 is the power error.  It is usually 
convenient to choose T  as the settling time, sT .  The 
lower the value of the performance index the better the 
performance.   

.)(
0

dttetITAE
T
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 Table 2: Initial GA population 

This specific performance index was chosen because it 
reduces the contribution of the large initial error to the 
value of the performance integral, and it emphasizes 
errors occurring later in time. 
 

4. RESULTS 
 
The optimal gain values for the PID and FPD+I control 
strategies after 100 generations are summarised in Tables 
3 and 4. 
 

Table 3:  Optimal gain values of the PID control strategy 
PID controller GE GCE GIE 

1 (BPV-sp) 47.67 37.75 0 

2 (LPINJ-sp) 0 0 0 

3 (HPEXT-sp) 134.61 199.61 0 

4 (BOOST-sp) 194.69 62.16 157.91 

 

Table 4: Optimal gain values of the FPD+I control 
strategy 

FPD+I 

controller 
GE GCE GIE GU 

1 (BPV-sp) 14.51 83.97 0 0.31 

2 (LPINJ-sp) 0 0 0 0.17 

3 (HPEXT-sp) 0 61.01 0 0.79 

4 (BOOST-sp) 19.35 62.34 0 0.69 

 
As can be seen the GA chose the integral gains close to 
zero.  This shows that proportional derivative control is 
sufficient.  The GA penalises low-pressure injection by 
giving the proportional and derivative gains values of 
zero.  This means that according to the objective function 
low-pressure injection leads to undesirable responses.  
Figures 14 and 15 show the plots of the objective 
function values of the fittest individual in each 
generation.  It can be seen that after approximately 20 
generations the objective function value converges. 

 
Figure 14: Objective value of the fittest individual in each 

generation (PID strategy) 

 
Figure 15: Objective value of the fittest individual in each 

generation (FPD+I strategy) 

The performance improvement of the optimised 
controllers are now illustrated by testing the system with 
a specific power reference sequence.  The response of a 
non-optimal system is given in Figure 16 and that of the 
systems optimised for the PID and FPD+I control 
strategies are given in Figures 17 and 18 respectively. 
 

Individuals 
1 

Fuzzy controller 1 Fuzzy controller 2 
GE GCE GIE GU GE GCE GIE GU 

40.23 17.7 28.95 15.38 20.45 33.61 10.2 15.56 
82.06 13.26 13.35 0.09 70.21 8.01 11.61 0.02 
52.43 25.64 15.20 2.54 30.12 11.3 14.71 0.62 
47.5 49.10 9.09 10.65 80.33 22.27 1.56 4.32 

90.50 13.46 25.63 0.89 9.13 2.98 20.88 17.77 
47.21 25.29 7.89 10.48 43.2 15.21 8.63 18.23 

 

Fuzzy controller  4 
GE GCE GIE GU 

20.45 33.61 10.2 15.56 
70.21 8.01 11.61 0.02 
30.12 11.3 14.71 0.62 
80.33 22.27 1.56 4.32 
9.13 2.98 20.88 17.77 
43.2 15.21 8.63 18.23 

 

90.50 13.46 25.63 0.89 9.13 2.98 20.88 17.77 
52.43 25.64 15.20 2.54 30.12 11.3 14.71 0.62 

 

20.45 33.61 10.2 15.56 
43.2 15.21 8.63 18.23 

 

1indN  

indN  

Parameters      1    indL  
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Figure 16: Non-optimal system output (ITAE value of 

77.7) 
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Figure 17 Optimal PID control (ITAE value of 23.03) 

 
Figure 18 Optimal FPD+I control (ITAE value of 24.62) 

The GA was able to derive optimal gain values after 100 
generations.  The objective function value of 77.7 for a 
non-optimal system was reduced to values of 23.03 and 
24.62 for the optimal PID and FPD+I control strategies 
respectively.  This shows that the GA is an effective 
parameter optimisation technique. 
 

5. CONCLUSION 
 
In this study both PID and FPD+I control strategies 
consisting of four controllers each were developed to 
optimally control the power output of a Brayton cycle 
based power conversion unit.  The performance of these 
control strategies was optimised by using a GA. 
 
 

The optimised control systems showed superior 
performance compared to the non-optimal control system. 
The ITAE objective function proved to be very effective.  
However, further work on the objective function is 
needed to take other constraints into account such as the 
reserve capacity and system stresses.  Fuzzy controllers 
that simulate PID control were used.  These linear Fuzzy 
controllers can be converted to non-linear Fuzzy 
controllers by using Gaussian membership functions.  
Some research can still be done on GAs and their use in 
relation to Fuzzy systems. Different parts of the Fuzzy 
system can be optimised by means of a GA.  The effect of 
optimisation of the rule base and the membership 
function parameter values warrants valuable future work 
[18,19]. 
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